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Gaining understanding of common complex diseases and
their treatments are the main drivers for life sciences. As
we show here, comprehensive protein set analyses offer
new opportunities to decipher functional molecular net-
works of diseases and assess the efficacy and side-ef-
fects of treatments in vivo. Using mass spectrometry, we
quantitatively detected several thousands of proteins and
observed significant changes in protein pathways that
were (dys-) regulated in diet-induced obesity mice. Anal-
ysis of the expression and post-translational modifica-
tions of proteins in various peripheral metabolic target
tissues including adipose, heart, and liver tissue gener-
ated functional insights in the regulation of cell and tissue
homeostasis during high-fat diet feeding and medication
with two antidiabetic compounds. Protein set analyses
singled out pathways for functional characterization, and
indicated, for example, early-on potential cardiovascular
complication of the diabetes drug rosiglitazone. In vivo
protein set detection can provide new avenues for moni-
toring complex disease processes, and for evaluating pre-
clinical drug candidates. Molecular & Cellular Proteom-
ics 12: 10.1074/mcp.M112.025031, 1965–1979, 2013.

The application of reductionism and experimental manipu-
lation in the 20th century biological research has generated
important insights into functional processes of life. Based on
this successful paradigm, researchers rationally dissected
multiple underlying molecular mechanisms of “living systems”
and efficiently developed drugs. However, drugs or dietary
interventions can interfere with numerous proteins in hun-
dreds of different cell types in various tissues, not to mention
potential crosstalk on various levels of biological organization.
Not surprisingly, conventional in vitro and lengthy preclinical
studies that target only specific marker molecules often
missed out important but unexpected physiological effects of

drug treatment. Although complex biological phenomena
such as physiological outcomes of disease treatment depend
on various individual molecules, they are based on in vivo
network properties, which cannot be adequately described or
explained by “parts of the sum” of mechanistic events.

Soft-ionization mass spectrometry (MS) has been widely
validated as a tool for precise quantitative analysis of biomol-
ecules (1, 2), and isotope-labeling procedures were intro-
duced to detect protein expression, primarily in cell culture
models (3, 4). Previous attempts of using mass spectrometry
for protein quantification in mammalian disease models were
limited to analysis of a small number of usually abundant
proteins, which made comprehensive pathway analysis and
physiological outcome prediction impossible (5, 6). Recent
technical pilot studies provided extensive information on the
protein inventories of different mouse tissues (7, 8), and iso-
tope-labeled mice have been introduced as a resource for
accurate protein quantification (9).

The development of diet-induced obesity and diabetes is a
complex pathophysiological process involving a number of
interacting organs, in which chronic hyperglycemia and hy-
perlipidemia lead to cumulative damaging effects on meta-
bolic tissues such as skeletal muscle, liver, and adipose tis-
sues. As we show here, disease processes and in particular
physiological effects of drug treatment are largely determined
by the actual cellular protein expression levels and post-
translational modifications of proteins. Whereas analyses of
single protein changes were mostly uninformative, quantita-
tive protein set enrichment analysis was an efficient tool to
monitor tissue-specific responses of anti-diabetic treatments.
This approach allows for investigation of interacting molecular
and physiological processes that occur on the pathway level,
and enables sensitive, unbiased and robust diagnostic detec-
tion of treatments in vivo.

In this pilot study, we compared the effects of the drug
rosiglitazone (RSG)1, which has been associated with a num-
ber of undesirable side effects (10), and the plant-derived
amorfrutin A1 (A1) (11) in diet-induced obesity (DIO) mice.
Both compounds’ antidiabetic effects appear to be derived
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from activation of the peroxisome proliferator-activated re-
ceptor gamma (PPAR�).

EXPERIMENTAL PROCEDURES

Animal studies were carried out according to internationally ap-
proved standards as described recently (11), and have been validated
and approved by the State Office of Health and Social Affairs Berlin
(LAGeSo). The animals were maintained one per cage under temper-
ature-, humidity- and light-controlled conditions (22 °C, 50% humid-
ity, 12 h light/12 h dark-cycle). The health status and behavior of mice
were examined daily. Mice had ad libitum access to food and water.
Mice and food were weighed regularly to determine changes in body
weight and food intake. Low-fat diet (LFD, D12450B, 10 kcal% fat,
18.0 MJ/kg, ssniff, Soest, Germany) was composed of: 4.1% crude
fat, 18.1% crude protein, 26.6% starch, 35.5% sugar/dextrines, 4.7%
crude fiber. High-fat diet (HFD, D12492, 60 kcal% fat, 25.3 MJ/kg,
ssniff) was composed of: 34.0% crude fat, 24.1% crude protein, 1.1%
starch, 23.8% sugar/dextrines, 6.0% crude fiber.

For the therapeutic study, we subjected DIO mice to a short-term
treatment. Therefore, 6-week-old male C57BL/6 mice were fed with a
HFD for 12 weeks. The mice were then weighed and randomly dis-
tributed equally to three groups (n � 13 each). DIO mice were then
treated over 3 weeks with 4 mg/kg/d RSG or 100 mg/kg/d A1 or
vehicle only. A number of physiological assays such as glucose
tolerance or insulin sensitivity tests were performed as described
recently. Mice of similar age treated only with LFD were served as
healthy controls. Plasma and tissues were collected and stored at
�80 °C before use.

For the A1 prevention study, 9-week-old male C57BL/6 mice were
weighed and randomly assigned to each treatment. Then the mice
were fed over 15 weeks with either LFD, HFD, or HFD with low-dose
(37 mg/kg/d) of A1 (HFD�A1prev). A number of physiological tests
were performed as described recently (11). After 15 weeks of dosing,
fasted mice were sacrificed by cervical dislocation. Plasma and tis-
sues were collected and stored at �80 °C before use.

Tissue Harvest for MS Analysis—To discover reliable changes in
proteome expression of important metabolic peripheral target tissues
such as visceral adipose-, heart-, and liver-tissue, we used pools of
eight mice per treatment cohort. Tissues were dissected, washed in
phosphate buffered saline (PBS, pH7.4) and shock frozen in liquid
nitrogen. Instead of labeled cell culture references, we preferred 13C6

lysine labeled reference tissues (Silantes, Martinsried, Germany) to
certainly compare animal tissues with each other (K and R labeled
mice we unfortunately not available). The only exception was the
reference for the phosphoproteome, for which we used 13C6

15N2

lysine and 13C6
15N4 arginine labeled murine hepatoma cells (Hepa

1–6) obtained from ATCC (Manassas, VA). As recent method devel-
opments showed this method can produce a much higher number of
phosphopeptides with a tryptic digest versus Lys-C digest (12).

Sample Preparation for MS analysis—Tissues from eight mice were
pooled in frozen condition and a lysis buffer containing 4% SDS, 0.1
M DTT, 0.1 M Tris pH 8.0 was added. In general, we analyzed tissue
proteins in duplicates. Tissues were homogenized with a FastPrep
(3 � 6.5 M/s for 60 s) immediately after lysis to avoid any proteolytic
activities. SILAC mouse reference tissues were lysed in the same
way. The direct comparison of labeled reference and unlabeled
mouse tissues under investigation allows for straightforward quanti-
tative protein analysis, as both tissues types are very similar to each
other. Lysates were sonicated for 1 min at the lowest intensity,
centrifuged at 15,000 � g and boiled for 5 min. Supernatants were
transferred to low protein binding tubes (Eppendorf, Germany).

For protein separation, samples were mixed 1:1 with the SILAC
reference samples and about 200 �g protein was loaded onto a 12%
SDS gel. After destaining the Coomassie blue stained gel, 18 gel

slides from high to low molecular weight were excised and cut into
small pieces of no larger than 1 mm3.

The in-gel Lys-C digestion was done as described (13). Each
sample was dissolved in 5% acetonitrile, 2% formic acid and (5 �l of
19 �l) were used for LC-MS analysis. Every sample was analyzed in
duplicates.

For the liver phosphoproteome 90% of the peptides were sequen-
tially separated and enriched with SCX (strong cation exchange, (3M
Purification, USA)) and TiO2 (GL Sciences, Japan): SILAC labeled
Hepa 1–6 cells were mixed with equal amounts of protein from liver
tissues of LFD, HFD, or HFD �A1prev groups, each contained a total
of 15 mg of proteins and precipitated in acetone overnight at �20 °C.
Pelleted precipitates were lyophilized and dissolved in 8 M urea with
10 mM Tris pH 8.0. Lys-C digestion (2.5 �g/sample) was performed
for 4 h followed by a trypsin digestion (50 �g/sample) in 2 M urea
overnight at 37 °C. Peptides were desalted with C18 StepPack
columns.

The remaining 10% of the peptides were sequentially separated on
a SCX and SAX (strong anion exchange) column (3M Purification).
SCX separation was performed according to (14), TiO2 enrichment for
phosphopeptides (90% fraction) according to (12), and SAX separa-
tion (10% fraction) according to (15). The use of labeled cells allows
to up-scale the method in a cost-efficient way (as SILAC mouse
tissues are still very expensive). On the other hand, cells from culture
do not completely reflect the protein inventory of cells in tissue. For
example, as detected by mass spectrometry, FABP1 is highly ex-
pressed in liver but only to a very limited degree in Hepa 1–6 cells,
rendering normalization for quantitative analysis difficult.

Liquid Chromatography, Tandem Mass Spectrometry, and Data
Processing—Liquid chromatography, tandem mass spectrometry
(LC-MS/MS) was carried out by nanoflow reverse phase liquid chro-
matography (RPLC) (Agilent, Santa Clara, CA) coupled online to a
Linear Ion Trap (LTQ)-Orbitrap XL mass spectrometer (Thermo-Elec-
tron Corp). Briefly, the LC separation was performed using a PicoFrit
analytical column (75 �m ID � 150 mm long, 15 �m Tip ID (New
Objectives, Woburn, MA)) in-house packed with 3-�m C18 resin
(Reprosil-AQ Pur, Dr. Maisch, Germany). Peptides were eluted using
a nonlinear gradient from 2 to 40% solvent B over 160 min at a flow
rate of 200 nL/min (solvent A: 97.9% H2O, 2% acetonitrile, 0.1%
formic acid; solvent B: 97.9% acetonitrile, 2% H2O, 0.1% formic
acid). A 1.8kV voltage was applied for nanoelectrospray generation. A
cycle of one full FT scan mass spectrum (300–2000 m/z, resolution of
60,000 at m/z 400) was followed by 10 data-dependent MS/MS scans
acquired in the linear ion trap with normalized collision energy (setting
at 35%). Target ions already selected for MS/MS were dynamically
excluded for 60 s.

Primary Mass Spectrometry Data Analysis—Raw files for each LC-
MS/MS experiment were submitted to MaxQuant v1.0.13.13 for da-
tabase searching (16), based on Mascot v2.2.2. For the liver phos-
phoproteome (in combination with all other liver samples), we used
MaxQuant version 1.2.2.5, based on Andromeda. The mouse data-
base (ipi.MOUSE.v3.87 from 20 Sep. 2011, 91.464 entries) was used
for database searching. The cutoff value was set to 1% false discov-
ery rate (FDR) to be 99% confident at the peptide level. As SILAC
modification we used 13C6-labeled lysine, but in the case of the
phospho proteome we used: 13C6

15N2 lysine and 13C6
15N4 arginine.

Following chemical modifications were selected as variable modifi-
cations during database search: protein N-terminal acetylation and
methionine oxidation, for the phospho proteome: methionine oxida-
tion and phospho STY. Carbamidomethyl C was used as fixed mod-
ification. Lys-C or trypsin was set with a maximum of two missed
cleavage sites. Mass tolerance for precursor and fragment ions was
0.5 Da and 7 ppm (for MaxQuant v1.0.13.13) and 0.5 Da and 6 ppm
(MaxQuant version 1.2.2.5). Known contaminants are indicated in

Proteins Predict In Vivo Effects of Drug Treatment

1966 Molecular & Cellular Proteomics 12.7



MaxQuant result lists. Quantification was performed with at least two
identified peptides. Protein ratios were calculated as the exponent of
the median of the log-transformed evidence ratios by MaxQuant, no
minimum thresholds were set and no outliers were removed. Thereby,
SILAC protein ratios were determined as the median of all peptide
ratios assigned to the protein. Scatter plot analysis of each treatment
using the results derived from two samples revealed in general high
data correlation of the duplicates (Fig. S1), as was also observed in
previous studies (17). In general, MaxQuant normalized H/L SILAC
ratios were used, except data for adipose tissue, which were manu-
ally normalized. MaxQuant Viewer v1.2.2.5 was used to extract an-
notated spectra of all phosphorylated peptides of the liver tissue.

Protein expression changes between samples were calculated us-
ing this formula:

12C6 treatment 1
13C6 reference

12C6 treatment 2
13C6 reference

�
12C6 treatment 1
12C6 treatment 2

(Eq. 1)

Raw- and MaxQuant processed data including annotated pho-
shopeptides can be downloaded via: ftp://PASS00201:
BG7335ub@ftp.peptideatlas.org/

Secondary Protein Data Analyses—For fine-tuning of pathways
analyses, we performed protein set enrichment analysis (PSEA) using
the GSEA tool ((18, 19), v2.07, http://www.broadinstitute.org/gsea/
index.jsp) to analyze whether an a priori defined set of proteins
revealed statistical significance and concordant differences between
two diet regimes or treatments. For PSEA, the following parameters
were chosen if not otherwise noted: 1000 protein set permutations,
weighted enrichment statistics, minimal gene set size of 5, and log2
ratio metric with preranking. RNA expression data and protein SILAC
ratios were analyzed using the Reactome database (version 3.0, 430
pathways) from the Molecular Signature Database (MSigDB). We
considered regulated pathways only as statistically significant, if the
FDR was �0.25. Heatmaps were carried out with Mayday 2.8 (20). For
presenting different treatment effects in heatmaps, the normalized
enrichment score (NES) for a pathway was adjusted with the appro-
priate FDR as follows: adjustedNES � (1-FDR) � NES.

Protein distance matrix (PDM) analyses included the protein ex-
pression data of every treatment, and the expression value for each
protein was translated to a vector in Euclidean space, thus, the
complete expression profile was collapsed to a high-dimensional
vector sum. Pairwise distances were calculated for comparison of
two treatments. The Euclidean distance between the vector sums of
two different treatments was therefore a measure of similarity be-
tween the protein expression profiles. PDM analyses were conducted
using the MeV 4.3 software tool (21).

Meta-analysis on the SILAC data of RSG-treated heart samples
were performed with publicly available expression data of heart dis-
eases. We therefore created lists of proteins that contributed to the
enrichment of the pathway clusters “muscle contraction,” “hemosta-
sis,” and “energy metabolism” as detected by PSEA (Fig. 4A). Ex-
pression of these three pathways was analyzed in gene expression
data of studies related to myocardial infarction in rodents (GSE1957,
GSE4648, GSE6580, GSE18703, GSE19322, GSE23294, and
GSE26671), which were extracted from the NCBI Gene Expression
Omnibus (GEO) database. Additionally, our SILAC data of RSG-
treated heart samples were tested for connection with expression
signatures of known drugs using the Connectivity Map (22), which is
a collection of gene expression profiles from cultured cells treated
with small molecules in combination with a pattern-matching soft-
ware. We therefore used a merged protein list of the three pathway
clusters “muscle contraction,” “hemostasis,” and “energy metabo-

lism” detected by PSEA (Fig. 4A) to create a query signature for the
Connectivity Map tool. This SILAC-based RSG profile was then tested
for correlation with gene expression signatures of 1310 small mole-
cules. To investigate if these connected drugs have been previously
reported to induce myocardial defects, we extracted a list of drugs
that are linked to “cardiac failure” or “myocardial infarction” from the
SIDER database (23).

Kinase enrichment analysis (KEA) (24) was performed using a web-
based tool with an underlying database to link lists of mammalian
proteins with the kinases that phosphorylates them. KEA considers
several kinase-substrate databases to calculate kinase enrichment
probability based on the distribution of kinase-substrate proportions
in the respective background database compared with kinases found
to be associated with a user input list of proteins. We performed KEA
using data of two-fold regulated peptides with one phospho-site.

To extract phosphorylation motifs from our large tandem mass spec-
trometry-based data sets, we performed kinase motif search (motif X
search (v1.2 10.05.06, http://motifx.med.harvard.edu/motif-x.html)).

For investigating and visualizing of enriched pathways in the phos-
phoproteome of HFD-fed versus LFD-fed mice, we mapped hypo-
and hyperphosphorylated proteins (ratio � 1.33) with the Ingenuity
Pathway Analysis (IPA) Software (Ingenuity Systems, CA).

RNA Expression Analysis—Total RNA was isolated and purified
using TRIzol reagent (Invitrogen) with subsequent usage of the
RNeasy Mini Kit (Qiagen, Germany) according to the manufacturers.
Tissues were lysed and homogenized in TRIzol reagent with 5 mm
steel beads at 20 Hz for 4 min (TissueLyser, Qiagen). Genomic DNA
was digested on column using the DNase-Set (Qiagen, Valencia, CA).
RNA quality was determined by the Bioanalyzer 2100 (Agilent, Santa
Clara, CA). Biotin-labeled cRNA was generated from the Illumina
TotalPrep RNA Amplification Kit (Ambion, Austin, TX) following the
manufacturer’s instructions. Cy3-stained cRNA was hybridized onto
MouseWG-6 v2.0 Expression BeadChips (Illumina, Eindhoven, The
Netherlands). Scanning was executed on Illumina BeadStation 500
platform. Reagents were applied according to the manufacturer’s
protocols. Samples were hybridized in biological triplicates. All basic
expression data analyses were carried out using GenomeStudio
V2011.1 (Illumina). Raw data were background-subtracted and nor-
malized applying the cubic spline algorithm. Processed data were
subsequently filtered for significant detection (p value � 0.01) and
differential expression versus vehicle treatment according to the Illu-
mina t test error model, and were corrected according to the Benja-
mini-Hochberg method (p value �0.05) of the GenomeStudio soft-
ware. Gene expression data were submitted in MIAME-compliant
form to the NCBI Gene Expression Omnibus database (GSE38856).

Qualitative correlation was calculated as the part of the genes that
were regulated in the same direction by RNA and protein expression.
A correlation of 50% was thus considered as correlated only by
chance. For correlation analyses between RNA and protein expres-
sion on single gene level, differentially expressed genes or proteins
that were detectable in both transcriptome and proteome were fil-
tered for candidates with fold change �1.33 or �0.75 versus vehicle
control treatment. For correlation analyses on the pathway level, we
compared the Reactome pathway regulation determined by GSEA for
RNA and PSEA for protein expression, and included only detectable
regulated pathways with FDR � 0.05 for RNA or protein. Correlation
analyses were done for each treatment and tissue.

Mitochondrial DNA—DNA of heart samples was isolated with the
QIAamp Mini Kit (Qiagen). Mitochondrial DNA content was subse-
quently determined by quantitative real-time PCR as described re-
cently (11). Relative mitochondrial DNA content was quantified by the
2���Ct method and adjusted with primer efficiency. Primers of the
following sequences were used: mtDNA specific, COX1, forward 5�-
TGCTAGCCGCAGGCATTAC-3�, reverse 5�-GGGTGCCCAAAGAAT-
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CAGAAC-3�, and ND1, forward 5�-CCGCAAGGGAAAGATGAAA-
GAC-3�, reverse 5�-TCGTTTGGTTTCGGGGTTTC-3�; nuclear DNA
specific, HK2, forward 5�-GCCAGCCTCTCCTGATTTTAGTGT-3�, re-
verse 5�-GGGAACACAAAAGACCTCTTCTGG-3�, and NDUFV1, for-
ward 5�-CTTCCCCACTGGCCTCAAG-3�, reverse 5�-CCAAAACCC-
AGTGATCCAGC-3�.

Physiological Parameters—To measure liver triglyceride levels, tis-
sues were weighed and disrupted at a concentration of 44 mg/ml in
100% isopropanol. Disruption was performed with 5 mm steel beads
at 20 Hz for 4 min (TissueLyser, Qiagen). After centrifugation for 10
min at 20,000 �g at 4 °C, the supernatants were collected and meas-
ured in the colorimetric triglyceride assay (BioVision, Mountain View,
CA). To measure ATP in hearts, tissues were weighed and disrupted at
a concentration of 50 mg/ml in ATP assay buffer (BioVision). Disruption
was performed with 5 mm steel beads at 20 Hz for 4 min. After centri-
fugation for 10 min at 20,000 � g, 4 °C, the supernatants were collected
and deproteinized using the perchloric acid precipitation method (Bio-
Vision) according to the manufacturer’s instructions. Finally, ATP levels
in heart lysates were measured in a colorimetric quantification kit (Bio-
Vision) and were normalized by DNA as quantified by PicoGreen assay
(Quant-iT, Invitrogen, USA).

For determination of liver glycogen, tissues were weighed and
disrupted at a concentration of 28 mg/ml in 200 mM sodium acetate
(pH 4.8) using the TissueLyser (Qiagen), heated to 70 °C for 10 min,
and then centrifuged for 10 min at 6000 � g and 4 °C. Three �l of
sample supernatants were added to 57 �l of 200 mM sodium acetate
(pH 4.8) without or with 27 U/ml amyloglucosidase (A1602, Sigma-
Aldrich) and incubated at 41 °C for 2 h. Afterwards samples were
neutralized with 15 �l of 280 mM sodium hydroxide, and free glucose
was measured with a colorimetric glucose assay kit (Invitrogen). For
determination of TNF� concentrations in liver, tissues were weighed
and disrupted at a concentration of 100 mg/ml in a tissue lysis buffer
containing 20 mM Tris, 150 mM NaCl, 1% Nonidet P-40, 0.5% sodium
deoxycholate, 1 mM EDTA, 0.1% SDS and protease inhibitor mixture
(Roche), using disruption with 5 mm steel beads at 20 Hz for 4 min
(TissueLyser). Samples were centrifuged for 10 min at 20,000 g and
4 °C, and supernatants were measured in a TNF� ELISA (TNF� ELISA
Ready-SET-Go, eBioscience, NatuTec, Frankfurt, Germany) and nor-
malized against DNA content measured with the PicoGreen assay
(Quant-iT, Invitrogen). Plasma alanine transaminase (ALT) was quan-
titatively measured using a colorimetric quantification kit (Biovision,
BioCat), according to the manufacturer’s instructions.

Mitochondrial Sample Preparation for Western Blot Analysis and
Enzyme Measurements—Mouse heart tissues (10–30 mg) from 13
mice fed either a high-fat diet (HFD) or a HFD plus rosiglitazone (4
mg/kg/d) were homogenized with a tissue disintegrator (Ultraturrax,
IKA, Staufen, Germany) in extraction buffer (20 mM Tris-HCl, pH 7.6,
250 mM sucrose, 40 mM KCl, 2 mM EGTA) and finally homogenized
with a motor-driven Teflon-glass homogenizer (Potter S, Braun, Mel-
sungen, Germany). The homogenate was centrifuged at 600 � g for
10 min at 4 °C. The supernatant containing the mitochondrial fraction
was diluted 1/100 for measuring enzyme activities and Western blot
analysis.

Western Blot Analysis—Ten microgram protein/lane from the pre-
vious step were loaded onto 15% polyacrylamide gels. Nitrocellulose
membranes were blocked with 1% blocking solution and developed
with the Lumi-LightPLUS Western blotting Kit (Roche). Western blot
analysis was performed with a rabbit polyclonal antibody against the
mitochondrial protein ATP5A1 (14676–1-AP, Proteintech Group, IL).
A mouse monoclonal antibody against �-actin (�-Actin (C4) sc-47778,
Santa Cruz Biotechnology, TX) was applied as loading control.
Western blot images were analyzed using GelAnalyzer 2010a
(www.gelanalyzer.com).

Mitochondrial Enzyme Measurements—Enzymatic activity of the
citrate synthase was determined according to Srere et al. (24), with
the following modifications to the assay buffer: 50 mM HEPES pH 7.6,
2 mM MnCl2, 4 mM DL-isocitrate and 0.1 mM NADP (nicotinamide
adenine dinucleotidephosphate). Oligomycin sensitive ATPase activ-
ity of complex V was determined using buffer conditions described by
Rustin et al. (26), but by applying sonification of the whole reaction
mixture for 10 s with an ultra-sonifier (Bio cell disruptor 250, Branson,
Vienna, Austria) at the lowest energy output (27). The concentration of
oligomycin was 3 �M. All spectrophotometric measurements (Uvicon
922, Kontron, Milano, Italy) were assayed in duplicates and performed
at 37 °C.

Statistical Analyses—If not stated otherwise, statistical significance
was determined by unpaired two-tailed Student’s t test for single
comparisons and one-way ANOVA with Dunnett’s post-hoc test for
multiple comparisons. Pearson correlation analyses were carried out
using GraphPad Prism 5.0. A p value � 0.05 was defined as statis-
tically significant. For gene and protein set enrichment analyses a
FDR � 0.25 was considered as statistically significant.

RESULTS

We analyzed protein expression from tissues of mice fed
with LFD or HFD, as well as HFD supplemented with either
RSG or A1. As a reference for quantitative mass spectrome-
try, we used isotope-labeled mouse tissues or cells in com-
bination with high precision mass spectrometry. In general,
we detected several thousands of proteins per tissue and
identified several hundreds of up- or down-regulated proteins
per experiment (Fig. 1A).

To get insight into the potentially differential dynamics of
RNA and protein expression, we first analyzed the correlation
between genes and proteins or pathways that were either
both up-regulated or both down-regulated. Comparing the
expression of single RNAs with the corresponding proteins,
we observed a mean correlation of 60% from all analyzed
tissues and treatments (Fig. 2), suggesting that the level of
expressed proteins only marginally correlated with the level of
RNA transcripts (28).

As is summarized for the various treatments in supplemen-
tal Table S1, a large fraction of detected proteins was slight
regulated (ratio 0.75 to 1.33); only few proteins were three-fold
up- or down-regulated. To extract relevant molecular path-
ways from protein expression data of slightly regulated indi-
vidual proteins, we applied protein set enrichment analysis
(PSEA, Fig. 1B) (29, 30), an extension of gene set enrichment
analysis (GSEA) (18). This approach allows detecting the ef-
fects of coordinated differential expression of groups of func-
tionally related molecules, which show only subtle changes at
the level of individual proteins. Applying this rationale, protein
pathways correlated better with respective transcriptomic
pathways than individual genes and proteins, leading to a
mean correlation of 70% (partly even 100%) over all analyzed
tissues and treatments (Figs. 2 and supplemental Fig. S2). The
nonetheless rather small correlation in expression of corre-
sponding sets of RNAs and proteins indicated different dy-
namics of production and degradation of these biomolecules.
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Visceral Adipose Tissue—We started our protein set anal-
yses with visceral adipose tissue, because physiological ef-
fects of ligand-based PPAR� activation are triggered in white
fat cells (31). To determine the treatment effects of RSG and
A1 on protein expression, we performed protein distance
matrix (PDM) analyses. The PDM of our adipose tissue sam-
ples clearly showed a large difference in protein expression
between nondiabetic (LFD) and obese (HFD) mice (Fig. 3A,
supplemental Table S2). Treatment of obese mice with RSG
or A1 strongly shifted the expression profile toward that of
nondiabetic (LFD) mice. PSEA revealed a strong relative
down-regulation of oxidative phosphorylation signaling after
HFD feeding (FDR�0.25, Fig. 3B), but which was reconsti-

tuted by treatment with RSG and also, less efficiently, with A1.
Interestingly, HFD feeding also resulted in a significant de-
crease in the protein expression of key enzymes involved in
the degradation of branched-chain amino acids (BCAAs)
(supplemental Fig. S3A). Elevated BCAA levels can induce
insulin resistance in fat cells via mTOR signaling (32). Treat-
ment of DIO mice with A1 effectively counteracted the HFD-
induced down-regulation of catabolic BCAA protein
pathways.

Notably, HFD-mice exhibited reduced expression of oxida-
tive stress defense pathways (Fig. 3B and supplemental Fig.
S3B), including lowered expression of glutathione-S-trans-
ferases and cytochrome P450 enzymes. Strikingly, only A1

FIG. 1. General work scheme for
sample- and data analysis. A, Proteomic
workflow. Lysates of tissues of interest
from an isotope-labeled reference mouse
are equally mixed with unlabeled treated
or mock-treated tissues. Proteins are ex-
tracted, separated via gel electrophoresis,
and digested with the protease Lys-C.
Resulting peptides are analyzed on a LC-
MS/MS system. MaxQuant software is
used to calculate differentially expressed
proteins (16). Using 200 �g amounts of
protein extracts derived from tissues and
simple gel-based protein fractionation, we
could detect 3295 proteins in the adipose
tissue, 1556 proteins in the heart tissue,
and 3476 proteins in the liver tissue. Not
surprisingly, the number of identified pro-
teins in the heart tissue was comparably
low, as we detected many abundant large
structural proteins. Depending on treat-
ment conditions, we observed differential
expression of several hundreds of up- or
down-regulated proteins per experiment.
Although individual proteins showed sub-
tle variation, sets of functionally related
proteins revealed insights in physiology
and metabolic regulation in the differen-
tially treated DIO mice. We further inves-
tigated the phosphoproteome of fatty and
chronically inflamed liver of DIO mice.
These sophisticated analyses required 15
mg of protein and column-based peptide
enrichment. In total, 6956 liver proteins
were identified, 3862 belonging to the
phosphopeptide enrichment fraction. B,
We adopted the widely accepted func-
tional genomics principle of gene set en-
richment to explain physiological effects
in mice derived from concerted actions of
individual proteins. Protein sets or path-
ways can be extracted from quantitative
mass spectrometry results using appro-
priate maintained databases, as is exem-
plified in the figure.
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(but not RSG) treatment rescued in part these changes to the
oxidative stress defense system, which was accompanied by
a decrease in body weight (supplemental Fig. S4A). Addition-
ally, the proteins of secretory pathways were significantly
up-regulated in HFD-fed DIO mice (Fig. 3B). Reversal of these
effects was achieved by A1, and correlated again with reduc-
tion of body weight of A1-treated mice (supplemental Figs.
S4B, C). Furthermore, A1 treatment of DIO mice exclusively
led to down-regulation of ribosomal biogenesis and transla-
tion (supplemental Fig. S5A) via reduced expression of ribo-
somal proteins (supplemental Fig. S5B). Since increased ribo-

somal biogenesis has been correlated with elevated nutrient
availability and tumorigenesis (33), these results may contribute
to understanding the mechanisms of potential antiproliferative
effects attributed to selective PPAR� activation (34).

We observed strong effects of PPAR� ligand-induced reg-
ulation. Characteristically, the full agonist RSG was efficient in
shaping gene and protein expression profiles during HFD to a
LFD status (Fig. 3B), but with the concomitant disadvantage
of unspecific expression of proteins that can contribute to
increased weight gain such as fatty acid binding proteins as
FABP1 (fold up-regulation in RSG: 2.54; A1: 0.59), fatty acid

FIG. 2. Correlation between gene and protein expression from different treatments on singular gene/protein or pathway level in
visceral white adipose tissue (A), heart (B), and liver (C). Mice were treated with low-fat diet (LFD) or high-fat diet (HFD) and with
rosiglitazone (RSG) or amorfrutin A1 (A1) after HFD feeding or amorfrutin A1 (A1prev) during the HFD feeding. In heart, we focused on
differential effects of RSG and A1 treatment. Regulation is presented relative to HFD-fed mice. Differentially expressed genes/proteins, which
were found in both transcriptome and proteome data sets, are displayed as relative change in expression in logarithmic scale (change�1.33
for RNA or protein). Pathway regulation was analyzed using PSEA and is displayed as normalized enrichment score (FDR�0.05 for RNA or
protein). Percentage values represent qualitative correlation between gene and protein expression. Whereas on single gene level treatment-
induced expression of RNA and protein only marginally correlated to each other, collapsing to biological pathways revealed high correlation
between RNA and protein regulation, partially up to 100% in white adipose tissues (A). However, in the heart (B) RSG-treatment led to pathway
down-regulation exclusively on the protein level, which was subsequently biochemically validated. In the liver (C), for A1prev we also observed
inverse expression tendencies of RNA and respective protein pathways. However, only protein expression data were statistically significant (14
Reactome pathways below FDRs of 0.05), whereas RNA expression data indicated no statistical significance (FDRs ranging from 0.64–1). Most
proteins detected contributed to ribosomal biogenesis and translation pathways, suggesting that A1prev led to increased translational
processes in the liver during HFD-feeding.

FIG. 3. Protein pathway analysis of visceral white adipose tissue. A, Protein distance matrix of protein expression profiles in white
adipose tissue from low-fat diet (LFD) or high-fat diet (HFD)-fed mice treated with rosiglitazone (RSG) or amorfrutin 1 (A1) or treatment by
amorfrutin 1 during HFD feeding (A1prev). Squares show the distance of two conditions in Euclidean space, ranging from exactly the same
profile (black) to completely different (yellow). Mass spectrometry ratios were filtered with a minimal change in protein expression of 1.33.
B, Regulation of pathways on protein level in white adipose tissue relative to HFD-fed mice. Mass spectrometry ratios from (A) were used
for protein expression analysis and pathway regulation was explored with subsequent PSEA against the Reactome database. PSEA is
applied to determine whether any defined protein sets are enriched from a list of proteins ordered according to expression differences
between two classes using Kolmogorov-Smirnov running sum statistics as described in Supplemental Material. Regulation is displayed as
FDR-adjusted enrichment score and was normalized to HFD-fed mice for technical reasons. Protein sets were filtered with FDR � 0.25
for LFD treatment.
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transporters as FATP (fold up-regulation in RSG: 2.97; A1:
1.48) or fat storing proteins as FACL2 (fold up-regulation in
RSG: 1.47; A1: 0.57).

In summary, treatment of obese mice with RSG and A1
showed in visceral white adipose tissue that protein and RNA

expression profiles shifted back to the state of nondiabetic
mice. Both treatments displayed beneficial effects. In contrast,
preventive A1 treatment had no significant effect in this tissue.

Heart Tissue—RSG was withdrawn from the pharmaceuti-
cal market in 2011, several years after its release by the FDA

FIG. 4. Protein and RNA pathway analysis of heart tissue. A, Pathway-level regulation of protein expression in the heart after treatment
of HFD-fed mice with rosiglitazone (HFD�RSG) or amorfrutin A1 (HFD�A1). Regulation is displayed as FDR-adjusted enrichment score relative
to HFD-fed mice. Protein sets were filtered with FDR � 0.05 for one condition. B, Comparison of regulated pathways on RNA and protein level
in the heart of RSG-treated mice. C, Cellular ATP concentration (-19% with RSG, n � 11 each group), normalized to total DNA. D, Comparison
of the RSG-induced myocardial protein expression profile (left) with published RNA expression data related to myocardial infarction (right). The
RSG protein profile (left) was determined in mice treated for 3 weeks with RSG by mass spectrometry and subsequently subjected to PSEA,
whereas the RNA myocardial infarction profiles derived from severely diseased animals (right) were extracted from the NCBI gene expression
omnibus (GEO) database. Regulation is presented relative to HFD-fed or uninfarcted control mice, respectively. *, p � 0.05.
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because of an increased cardiovascular risk, in part as a result
of fluid retention caused by impaired kidney function, which
can result in chronic stress of the heart (35, 36). To demon-
strate the potential diagnostic strengths of detecting protein
pathways, we investigated whether our approach would en-
able early prediction of adverse effects in the heart tissues of
RSG- or A1-treated DIO mice. In RSG-treated DIO mice,
hemostasis, muscle contraction, and cytoskeletal pathways
were remarkably impaired (Fig. 4A). For example, RSG
strongly induced the expression of myosins and tropomyosins
(Fig. 5A) as well as axon guidance pathways and semaphorin
interactors. These changes were indicative for cardiac hyper-

trophy and may provide another link to cardiovascular disease
phenotypes (37). In contrast to RSG, in general A1 did not
induce significant changes in the heart muscle contraction
protein expression data, consistent with previous reports that
A1 treatment did not induce fluid retention (11) (Fig. 4A and
Fig. 5A). Only the hemostasis pathways were significantly
up-regulated in both, RSG and A1 treated mice (Fig. 4A and
Fig. 5B).

Although correlation between RNA and protein expression
remained high at the pathway level, we detected several
striking differences between the heart proteome and its tran-
scriptome (Fig. 4B). We observed strongly down-regulated

FIG. 5. Expression of heart proteins
involved in muscle contraction (A)
or hemostasis (B) after treating mice
with high-fat diet with rosiglitazone
(HFD�RSG) or amorfrutin A1 (HFD�A1).
Protein expression is presented relative
to HFD-fed mice. C, Comparison of RNA
and protein expressions in energy me-
tabolism of RSG-treated mice.
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pathways that are involved in the citric acid cycle and oxida-
tive phosphorylation after RSG (but not A1) treatment of HFD
mice only in the proteome, not at the transcriptome level (Fig.
4A and Fig. 5C).

A series of Western blot and enzymatic experiments con-
firmed the mitochondrial protein sets down-regulation de-
tected by mass spectrometry, which in part resulted from the
reduced number of mitochondria in the heart tissue (supple-
mental Figs. S6A-6C), leading to 19% reduction of ATP in the
heart of RSG-treated HFD-mice (Fig. 4C).

Using the connectivity map approach (22) we further com-
pared the RSG-induced regulation of the characteristic pro-
tein pathway sets with gene expression profiles of drugs with
side effects as “cardiac failure” or “myocardial infarction.”
Interestingly, we found striking overlap between data from our
proteomic analysis of mice subjected to only 3 weeks of RSG
treatment with the transcriptomic data reported for severely
heart-diseased rodents (Fig. 4D and supplemental Table S3).
Concordantly, 8 of 10 drugs were significantly correlated to
our RSG-induced protein expression data from the murine
heart (supplemental Table S3).

In summary, heart tissue showed pathway regulations upon
RSG treatment, which were indicative for heart failure, like
up-regulations of hemostasis and cytoskeleton and down-
regulation of mitochondrial energy metabolism. These af-
fected pathways were unchanged at the RNA expression
level. Thus, protein set analysis in the heart was predictive for
potential systemic cardiovascular complications of RSG treat-
ment at an early preclinical stage and can therefore be used
as a method for drug testing. Interestingly, the natural A1
compound showed no maleficent changes of the cytoskele-
ton and mitochondrial energy metabolism in the heart.

Liver Tissue—Diet-induced obesity usually leads to liver
steatosis because of excessive storage of fat in central organs
(37). In the livers of HFD-fed mice, we observed down-regu-
lation of proteins involved in oxidative phosphorylation and
citric acid cycle (Figs. 6A and 7A). Whereas RSG and A1
treatment showed no significant influence on protein expres-
sion, preventive application of A1 during HFD feeding mini-
mized the impairment of these key metabolic pathways. HFD-
induced obesity led amongst others to an up-regulation of

apoptosis proteins and concomitant reduction of proteins
involved in ribosomal biogenesis and translation, indicating
liver injury as observed in nonalcoholic steatohepatitis (NASH)
(39), which was consistent with detected pertinent physiolog-
ical liver parameters (Figs. 7B–7E). HFD-induced obesity fur-
ther led to significant down-regulation of proteins involved in
proteasomal function (Fig. 6A), in agreement with recent stud-
ies that reported the role of proteasomal impairment in obesity
(40).

Liver Phosphoproteome—To further study inflammatory
processes in the liver, we analyzed the liver phosphopro-
teomes of LFD, HFD, and HFD�A1prev mice, and identified
8732 unique phosphorylation sites in phospho-enriched sam-
ples, belonging to 6956 proteins. We observed mostly Ser
phosphorylation (7691, 88.1%), followed by Thr (977, 11.2%)
and Tyr (64, 0.7%). In the case of HFD versus LFD amino acid
motifs surrounding each phosphorylation site were 46.5%
proline-directed (.SP.) and 20.5% (R..S) motif-directed.

HFD-triggered phosphorylation of liver proteins was partly
suppressed by preventive treatment with A1 (Fig. 6B, supple-
mental Table S4). Differential enrichment analysis revealed
characteristically increased phosphorylation of kinase sub-
strates that are known to be involved in insulin-resistant
states, most importantly substrates of glycogen synthase ki-
nase � (GSK�) (Figs. 6C and supplemental Fig. S7). GSK is
normally inactivated by phosphorylation via nutrient signaling
pathways (for example via mTOR and in particular AKT kinase
signaling). A1 prevention suppressed this protein signaling
axis concomitant with significantly increasing storage of liver
glycogen compared with HFD livers (Fig. 7E), suggesting a
beneficial switch from fat to glycogen storage in the liver. HFD
led to further differential regulation of phosphorylation path-
ways (as is exemplarily shown for the ERK/MAPK protein
signaling network in Fig. 8), and specifically for decreased
phosphorylation of the apoptosis factor BAD at serine 155,
which was efficiently reconstituted by preventive A1 treatment
(Fig. 6D). Phosphorylation of BAD at serine 155 inhibits asso-
ciation with Bcl-2 and thus promotes cell survival (41, 42).
These data suggest liver-protective effects of preventive A1
treatment by modulating phosphorylation pathways and res-
cuing BAD-mediated cell death.

FIG. 6. Protein pathway analysis of liver tissue and its phosphoproteome. A, Regulation of protein pathways in the liver. Pathway
regulation was analyzed by PSEA. Regulation is displayed as FDR-adjusted enrichment score and was normalized to HFD-fed mice. Protein
sets were filtered with FDR � 0.25 for LFD treatment. As shown in B–D, quantitative mass spectrometry analysis can further provide valuable
insights into phosphorylation dynamics. B, Phosphopeptide distance matrix (PPDM) of the phosphoproteome of liver samples. Squares show
the distance of two conditions in Euclidean space, ranging from exactly the same profile (black) to completely different (yellow). Ratios of
phosphorylated and nonphosphorylated peptides were determined by mass spectrometry and restricted to peptides with a ratio �2 or �0.5
for one condition (528 peptides final). C, Kinase enrichment analysis of the liver phosphoproteome from HFD-fed mice with or without A1
preventive treatment versus healthy LFD-fed mice. Measured kinase substrates were distinguished between dephosporylated peptides and
phosphorylated peptides on treatment. Displayed differential phosphorylation is the difference between hyper- and hypophosphorylation. Only
kinase families with an enrichment p value � 0.01 are shown. D, Mass spectra from a phosphorylated BAD peptide (Uniprot ID: Q61337).
Differentially down-regulated phosphorylation of BAD at Ser-155 during HFD could be reversed by amorfrutin supplementation leading to
phosphorylation levels similar as during LFD feeding. The light peak at m/z 706.78 is originated from the unlabeled mouse, whereas the heavy
peak at m/z 715.79 represents the 13C-lysine labeled reference mouse. Thus, ratios between LFD/HFD and HFD�A1prev/HFD could be
calculated.
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In summary, in liver RSG and A1 feeding to obese mice had
no significant impact, but strikingly preventive A1 substitution
saved the liver from developing HFD-induced steatosis.

DISCUSSION

Protein Set Analyses—Gene set enrichment analysis is
based on the concept that changes in gene expression man-
ifest at the level of coregulated or interacting genes, rather
than individually. This functional genomics concept proved to

be very powerful, as it is based on a fundamental principle of
biological organization. Single-gene or as shown here single-
protein events are rather important when the individual gene
effect is strong and the variance is small across individuals,
which is rarely the case in robust homeostatic or physiological
systems, or in many common disease states. In these cases,
complex disorders typically result from slight variation in the
expression of activities of multiple genes or proteins. PSEA as
applied in this study, provides an adequate framework to

FIG. 7. Effects of HFD feeding and
treatment on different metabolites. A,
Expression of proteins involved in oxida-
tive phosphorylation in liver after treat-
ment of mice with low-fat diet (LFD) or
high-fat diet (HFD) with rosiglitazone
(HFD�RSG) or amorfrutin A1 after HFD
feeding (HFD�A1) or amorfrutin A1 dur-
ing HFD feeding (HFD�A1prev) as dis-
played in Fig. 6A. B, Effect of HFD feed-
ing and treatment on liver triglycerides.
Data are expressed as mean � S.E. (n �
6–7 each group). *, p � 0.05 versus HFD.
C, Effect of HFD feeding and treatment
on plasma alanine transaminase (ALT)
levels. D, Effect of HFD feeding and
treatment on liver TNF� protein concen-
tration (n � 6–7 each group). E, Effect of
HFD feeding and treatment on liver gly-
cogen (n � 7–12). Data are expressed as
mean � S.E. * p � 0.05, ** p � 0.01,
*** p � 0.001 versus HFD.
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investigate protein state changes operating at a higher level of
organization. PSEA in combination with quantitative mass
spectrometry is an adequate tool to describe functional links
or causality of complex physiological crosstalk in an in vivo
context. Moreover, the method provides unbiased insights to
pinpoint to pathways underlying physiological changes. The
integration of multiple proteins in coregulated sets further
provides diagnostic robustness for preclinical evaluation of
drug candidates. In contrast to GSEA, PSEA has the advan-
tage to detect expression changes on the protein level, which
in general provides (more) relevant information with regard to
functional outcomes. Second, as shown in our study, protein

expression change analyses can be complemented by anal-
yses of post-translational modification to extract regulated
signaling pathways.

The observed subtle expression patterns of proteins, and
additionally the consistence of RNA and protein expression on
the pathway, but not necessarily on the individual gene protein
level, support the hypothesis that physiological effects
emerge as a new, partly unpredictable property of the con-
text-specific interaction of various biomolecules in vivo (43).
Moreover, the detected characteristic stability of regulation on
the level of functionally defined protein sets renders the meth-
odology to predict physiological changes unbiased and ro-

FIG. 8. Enrichment of hyper- and hypophosphorylated peptides in the ERK/MAPK signaling pathway in the phosphoproteome of
murine liver on treatment with high-fat versus low-fat diet. Proteins with phosphopeptide ratios �0.75 or �1.33 were marked in gray. The
ERK/MAPK pathway includes the apoptosis initiating BAD protein (Fig. 6D). Enrichment analysis and visualization were performed with
Ingenuity Pathway Analysis (IPA).
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bust against nondetected proteins or still missing information
on the function of particular proteins or genes.

Conclusions and Outlook—Quantitative protein set analysis
including comprehensive protein expression and post-trans-
lational modification data revealed disease-relevant physio-
logical pathways in DIO mice and demonstrated significant
differences in the outcomes of treatment with two different
PPAR� activators, the full agonist RSG and the partial agonist
A1. We treated our mice with RSG for 3 weeks only, which
was already predictive for potential systemic cardiovascular
complications. In humans, these side effects occurred after
several years of treatment. Further increase of sample
throughput and detection sensitivity of mass spectrometry
analysis using for example new benchtop orbitrap mass spec-
trometers for combining single-shot proteome and metabo-
lome analyses (44), and/or applying alternatively targeted pro-
teomics approaches (45), will enable even more detailed
insight into the actual proteomic state of, in the best case, all
organs of a diseased organism (46). Using isotopically la-
belled human reference cells or label-free quantitative mass
spectrometry approaches, protein set analysis can be ex-
tended for clinical applications including disease and treat-
ment monitoring in human patients.

Physiology relies on robust and redundant systems to react
to environmental changes to sustain homeostasis. Although
the various underlying molecular processes may interact de-
terministically, these systems are by no means linear. Physi-
ological outcomes of differential drug treatments as shown
here depend on interconnected protein pathway regulation in
various tissues, which can, only in the case of highly con-
nected “hub” genes or proteins, be adequately reduced to
simple molecular mechanisms of action, for example by ap-
plying knock-down or over-expression experiments. Our ap-
proach is in concordance with genome-wide association
meta-analyses, which correlated and grouped a number of
genetic variants to various genes with subtle effects to path-
ways that were implicated in complex diseases (47). We thus
argue for differential functional protein network analyses to
capture the underlying biology of complex disease processes
and their treatments to complement reductionist experimental
approaches.

Protein sets can be used to functionally describe complex in
vivo effects such as drug treatment or multifactorial disorders.
Such phenomena emerge on a higher level of biological orga-
nization, and may for example be efficiently captured by apply-
ing information or pattern recognition theory. In other words,
protein sets can generate causative links to explain physiolog-
ical phenomena based on the properties of molecular networks.
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