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The purpose of this study was to generate a basis for the
decision of what protein quantities are reliable and find a
way for accurate and precise protein quantification. To
investigate this we have used thousands of peptide mea-
surements to estimate variance and bias for quantifica-
tion by iTRAQ (isobaric tags for relative and absolute
quantification) mass spectrometry in complex human
samples. A549 cell lysate was mixed in the proportions
2:2:1:1:2:2:1:1, fractionated by high resolution isoelectric
focusing and liquid chromatography and analyzed by
three mass spectrometry platforms; LTQ Orbitrap Velos,
4800 MALDI-TOF/TOF and 6530 Q-TOF. We have investi-
gated how variance and bias in the iTRAQ reporter ions
data are affected by common experimental variables such
as sample amount, sample fractionation, fragmentation
energy, and instrument platform. Based on this, we have
suggested a concept for experimental design and a meth-
odology for protein quantification. By using duplicate
samples in each run, each experiment is validated based
on its internal experimental variation. The duplicates are
used for calculating peptide weights, unique to the exper-
iment, which is used in the protein quantification. By
weighting the peptides depending on reporter ion inten-
sity, we can decrease the relative error in quantification at
the protein level and assign a total weight to each protein
that reflects the protein quantitation confidence. We also
demonstrate the usability of this methodology in a cancer
cell line experiment as well as in a clinical data set of lung
cancer tissue samples. In conclusion, we have in this
study developed a methodology for improved protein
quantification in shotgun proteomics and introduced a
way to assess quantification for proteins with few pep-
tides. The experimental design and developed algorithms
decreased the relative protein quantification error in the
analysis of complex biological samples. Molecular &
Cellular Proteomics 12: 10.1074/mcp.M112.021592, 2021–
2031, 2013.

Recent developments in methods and instruments for mass
spectrometry enable quantitative proteomics analysis of com-
plex samples with good coverage (1–4). Several techniques
for quantification by mass spectrometry exist, both using
isotopic labeling and label free methods (5, 6). Quantification
by isotopic labeling can be done on precursor ion level or by
quantifying isobaric label fragments in fragment spectra. Iso-
tope-coded affinity tag (7), isobaric tags for relative and ab-
solute quantification (iTRAQ)1 (8), and stable isotope labeling
by amino acids in cell culture (SILAC) (9) are among the most
commonly used labeling methods based on stable isotopes.
iTRAQ allows for simultaneous relative quantification of up to
eight samples within a single run. Quantification by mass
spectrometry is however a challenge, and several factors
contribute to the uncertainty in the quantitative estimate; dif-
ferences in labeling efficiency, protein digestion, precursor
mixing, ion suppression, peak detection, data preprocessing,
and data analysis (10). The quality of quantitation methods
can be measured in terms of precision and accuracy. Preci-
sion is affected by random errors, that is, random fluctuations
around the true value (variance). Lack of accuracy is caused
by systematic errors, that is, differences between true and
observed values (bias).

Several studies have shown that iTRAQ labeling is associ-
ated with bias; fold changes are compressed toward one
(11–14). It has been suggested that this underestimation of
fold change is caused by co-eluting peptides with similar m/z
values that are isolated together, creating mixed iTRAQ inten-
sities in complex samples (14). Concerning precision, iTRAQ
data has been reported to exhibit variance heterogeneity. The
coefficient of variance (CV) of the signal depends on the
intensity, with larger CV for low intensity peaks (11, 12, 15,
16). Measurements of iTRAQ intensities for quantification are
made in the MS/MS spectra of the peptides, and thereafter

From the ‡Cancer Proteomics Mass Spectrometry, Department of
Oncology-Pathology, Science for Life Laboratory and Karolinska In-
stitutet, Box 1031, 171 21 Solna, Sweden

Received June 21, 2012, and in revised form, December 12, 2012
Published, MCP Papers in Press, March 7, 2013, DOI 10.1074/

mcp.M112.021592

1 The abbreviations used are: iTRAQ, isobaric tags for relative and
absolute quantification; SILAC, stable isotope labeling by amino acids
in cell culture; CV, coefficient of variance; PSM, peptide spectrum
match; HCD, higher-energy collisional dissociation; CID, collision in-
duced dissociation; FDR, false discovery rate; PQPQ, protein quan-
tification by peptide quality control; RMSE, root mean square error;
RMSEs, scaled root mean square error; RSD, relative standard
deviation.

Technological Innovation and Resource
© 2013 by The American Society for Biochemistry and Molecular Biology, Inc.
This paper is available on line at http://www.mcponline.org

Molecular & Cellular Proteomics 12.7 2021



combined to calculate a summarized relative protein quantity.
There are several different approaches for combining the
iTRAQ peptide data to compute a reliable protein ratio. Meth-
ods to improve the protein quantification by addressing the
variance heterogeneity have been based on excluding low
intensity peptide data (17, 18), weighting the peptide data
according to intensity (18–21) or stabilizing the variance (12).

Quantitative studies of complex human samples are subject
to even more challenges related to large biological variation,
large and unknown complexity of the human proteome and a
large concentration range of proteins. This in turn results in
many peptides and a large variety of peptides that can cause
interference and related problems in the mass spectrometry
analysis. In, for example, biomarker discovery research the
goal is to measure quantitative changes or differences in
protein levels between two or more clinical conditions. It is
therefore crucial to achieve as accurate and precise quanti-
tative information from the data as possible as well as to
correctly estimate the limitations of the quantification. Setting
adequate standards for quantitative proteomics analysis is
hence essential for being able to detect relevant changes in
protein abundance, select important proteins, and further use
those proteins to interpret the biological and clinical meaning
(10, 22). Selecting a protein as significant and taking it to
further validation in other clinical material using complemen-
tary techniques is time consuming and costly (23). For suc-
cessful use of iTRAQ labeling in biomarker discovery, and to
avoid false discoveries, it is hence essential to assess the
accuracy and precision of the methodology.

A common approach to study variance and bias in mass
spectrometry based protein quantification is to spike a set of
standard proteins into a sample and then measure the CV and
bias of the intensities of those peptides. Spike-in of proteins
has the benefit of looking at a small controlled set of peptides
and how they behave in the studied system. This strategy has
been used in several of the previously mentioned papers that
address iTRAQ quantification (11–14). However, the number
of data points studied may be unlikely to represent the com-
plexity of a real biological sample, which often contains thou-
sands of proteins (24). In the current study, all peptides de-
tected in a complex human cell line sample (A549) are used to
get an estimate of the quantitative accuracy and precision.
This experimental setup is hence more similar to a real bio-
marker discovery study with high complex human proteome
samples. The quality of the protein quantifications is com-
pared among several different mass spectrometers in this
work; also the influence of different loaded peptide amounts
and the use of different methods for sample separation are
examined. Factors such as variance and bias of peptide
quantification by iTRAQ are systematically evaluated in those
high complex samples. Further, methods for improving
the protein quantification are investigated; by filtering on the
peptide level to remove low quality intensities and by weight-

ing the peptide values to account for the higher risk of errors
at low intensities (20).

We have described the factors contributing to bias and
variance in protein quantification by iTRAQ labeling. This has
generated guidelines for how to estimate the accuracy of
protein quantities, which will be an essential tool in both
biomarker discovery and studies of biological systems. Based
on the results, we suggest an experimental design where each
labeling set (e.g., iTRAQ) includes duplicate samples, and we
describe how these duplicates are used for calculating pep-
tide weights that can be used in addressing the accuracy of
protein quantities. This novel approach is shown to improve
protein quantification by iTRAQ in six data sets of A431 cell
line samples treated with drug and a clinical data set of lung
cancer tissue samples.

EXPERIMENTAL PROCEDURES

Experimental Design–Several mass spectrometry experiments
were performed as outlined in Fig. 1. Different loaded peptide
amounts were compared as well as different sample separation meth-
ods. Mass spectrometry data was acquired using three different
instruments (LTQ Orbitrap Velos (Thermo Scientific), 4800 MALDI-
TOF/TOF (Applied Biosystems/Sciex, Foster City, CA) and 6350
QTOF (Agilent, Santa Clara, CA). Further, different settings for colli-
sion energy for HCD and fragmentation time, as well as the number of
target ions, were investigated for the Orbitrap MS setup. Detailed
information on experimental procedures is available in supplementary
File S1.

Cell Line Sample Preparation–Lysates of lung cancer cell line A549
were reduced by dithiothreitol and alkylated by iodoacetamide fol-
lowed by overnight trypsinization (Promega, Charbonnières, France).
Different amounts of peptides at 2:2:1:1:2:2:1:1 ratios were labeled
with iTRAQ 8plex tags according to the manufacturer’s protocol
(Applied Biosystems). iTRAQ labeled peptides were separated by two
different methods: a long reverse phase liquid chromatography (LC)
gradient or by two dimensional fractionation by immobilized pH gra-
dient - isoelectric focusing (IPG-IEF) on a narrow range pH 3.7–4.9
strip followed by reverse phase LC as described previously (25).

Mass Spectrometry Analysis–A mix of all peptides or extracted
peptide fractions from the IPG-IEF were analyzed on three different
LC-MS platforms; Thermo Scientific LTQ Orbitrap Velos, ABI 4800
MALDI TOF/TOF and Agilent 6530 QTOF.

Before analysis by LTQ Orbitrap Velos (Thermo Scientific), peptides
were separated using an 1200 nano-LC system (Agilent) by a reversed
phase C18 column, NTCC-360/100–5-153 (Nikkyo Technos., Ltd).
The LTQ Orbitrap Velos was operated in a data dependent manner,
selecting five precursors for sequential fragmentation by CID (collision
induced dissociation) and HCD (higher-energy collisional dissocia-
tion), and analyzed by the Linear iontrap and Orbitrap, respectively.
Proteome discoverer 1.1 with Mascot 2.2 (Matrix Science) was used
for peptide and protein identifications.

For Nano-LC-MALDI MS/MS analysis on ABI 4800 MALDI-TOF/
TOF, peptides were separated on an Ultimate 3000 LC system con-
trolled by Chromeleon software version 6.8 (Dionex/LC Packings,
Sunnyvale, CA) coupled to a Probot MALDI spotting device. Peptide
identification from the MALDI-TOF/TOF data was carried out using
the Paragon algorithm (26) in the ProteinPilot 2.0 software package
(Applied Biosystems).

Nano-LC-ESI MS/MS analysis on Agilent 6530 QTOF was carried
out using an Agilent 1200 nano-LC system coupled to an Agilent 6530
QTOF equipped with a Chip-Cube controlled by the Masshunter
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Acquisition software. Peptide identifications from the QTOF data were
carried out using the Spectrum Mill Protein Identification software
(Agilent).

For comparison between platforms, peptide identifications were
performed using Mascot Daemon 2.3.2 with Mascot 2.4 for fractions
32 to 36 from IPG-IEF with 400 �g loaded peptides.

Database and False Discovery Rate–Searches were performed
against the IPI database (build 3.64) limited to human sequences
(84032 protein entries), allowing two missed cleavages. False discov-
ery rate (FDR) was estimated by searching the data against a data-
base consisting of both forward and reversed sequences and set to
�1% at the protein level using MAYU (27). Peptides corresponding to
a �1% protein FDR rate were used in the calculations of quantities.
iTRAQ reporter ions were corrected for isotope distribution by stand-
ard correction factors. For simplicity, iTRAQ reporter ion intensity is
referred to as peptide intensity from now on.

Data Preprocessing–All the following data analysis steps were per-
formed in the R programming language (28). Box plots of log2 peptide
intensities were established to assess data distribution and global
biases between iTRAQ channels. The distributions of missing values
over the iTRAQ channels were also investigated. Peptides from ker-
atins were removed, because they might reflect contaminations and
thus will have outlying intensities. The peptides were further filtered to
include only those with reporter ions present in at least 75% of
samples at both ratio levels (2 and 1). The remaining peptide inten-
sities were then used to assess the quantitative accuracy and
precision.

Estimating Bias and Variance–The error of peptide quantification
was evaluated by root mean square error (RMSE). RMSE reflects a
weighted average of the differences between the measured values by
mass spectrometry (y2) and the ideal values (y1). To make RMSE
independent on signal intensity, the measured values were scaled to
be on the same level. The scaling was done by dividing the measured
values with the slope of the regression line of measured values versus
ideal values. The slope was established by robust linear regression, a
regression method not so sensitive to outliers, and called scaling
factor.

RMSEs � � 1
n �� y2i

scaling factor
� y1i�2

The resulting scaled RMSE value (RMSEs) can be seen as quanti-
fication error in percent, including both variance and bias.

To be able to study the variance only, not including the bias, all
peptide intensity data was normalized so that the median peptide
intensity was equal between samples. The standard deviation then
reflected only the variance in quantification. Relative Standard Devi-
ation (RSD) was calculated as the standard deviation of peptide
measurements over all samples divided by the minimum peptide
intensity.

The bias was investigated by plotting the iTRAQ peptide ratios
against the minimum peptide intensity.

RMSEs was selected for the calculations on the peptide level,
calculated over all iTRAQ channels, because we do not want to select
a certain iTRAQ channel to create the ratios from, in comparison to
the “relative error” which is calculated based on each ratio individu-
ally. On the protein level on the other hand, the ratios were already
calculated and thus we used the relative error for evaluation of the
protein quantification. The relative error was calculated as the devi-
ation of the observed protein ratio from the expected protein ratio
divided by the expected ratio. To calculate ratios the intensities were
divided by the mean of 113 and 114, the expected ratios are thus 1,1,
0.5, 0.5, 1, 1, 0.5, 0.5 for the 113, 114, 115, 116, 117, 118, 119, and
121 iTRAQ channels respectively. For the evaluation of the cell line
data set, duplicate ratios were calculated, for the clinical data set the

ratio of internal standards was calculated, and compared with the
expected ratio of one.

Protein Quantification–The relative protein quantification was esti-
mated by two methods. Either the peptide values were filtered to
remove low peptide intensities, or all peptide values were used and
weighted according to their uncertainty (determined by their inten-
sity). Those two methods were also compared with calculating a
regular mean or median of all the relative peptide intensities that had
been mapped to the same protein.

The weighted mean approach is based on the method developed
by Onsongo et al. (20), with some adjustments. This method accounts
for the larger variance of low intensity peptides by giving them a
smaller weight in the protein quantification according to:

Protein ratio �

�
j � 1

N Peptide ratioj � Peptide weightj

�
j � 1

N Peptide weightj

Here N is the number of peptides identifying a protein. To deter-
mine the peptide weights, the peptide ratios were sorted from lowest
to highest minimum intensity and grouped into bins (supplementary
Fig. S1). For each peptide, the deviation of the peptide ratio to
expected ratio was calculated, here called error. The weights for the
bins were then calculated as one divided by the median error of the
peptide ratios within that bin. In the original method by Onsongo et al.,
the peptide ratios are sorted based on the product of reporter ion
intensities and the weight is calculated as one divided by the mean
error within each bin. The peptide data used to calculate the weights
was from two technical replicates within the iTRAQ setup, and is
referred to as the training data. To make sure that the selected
training data did not bias the resulting protein quantities, weights
were calculated based on all possible ratios of the samples in the
iTRAQ setup. Different bin sizes were also compared. The accuracy of
the resulting relative protein quantities was evaluated by the relative
error.

Quantitative Proteomics Data Set to Test Method–The weighted
mean method was evaluated on six data sets of A431 cell line sam-
ples treated with drug. The data sets were time series of whole cells
and the different subcellular fractions light, medium, and heavy. At
each time point, and fraction, there are two replicates. The 113/114
ratio was used as internal training data to calculate the weights in all
the data sets. The resulting protein quantities were evaluated based
on the relative error of duplicate ratios (expected ratio one). The
method was further evaluated on a clinical data set consisting of lung
cancer tissue samples (Ethical approval Institut Gustave Roussy,
Paris, France, 10 September 2008). The samples were analyzed in
three iTRAQ runs; two internal standards were included in two of the
runs, four internal standards in one run. The internal standards were
used to calculate weights and evaluate the protein quantities.

Algorithm and Data availability–All programs were written in R
version 2.14.1. The R code for calculating weights based on dupli-
cates and apply those weights to calculate weighted proteins quan-
tities, as well as the code for generating Fig. 6 and corresponding
excel Table is available in supplementary File S7. The next version of
PQPQ (protein quantification and peptide quality control) (29) will in-
clude the option to calculate weighted protein quantities according to
the herein described method. The MS raw data files from the standard
dataset (Fig. 1) may be downloaded from ProteomeCommons.org
Tranche using the following hash:

cMuJmOgapaGcyIVZJZ4Wdcf9cfWx/ab2IPNISd1e3RyCQo6e4
PMwvpqRZ2BSgoHN7Iiq6nm6YYX8pHAdKX3UDhZnzvIAAAAAAAb0 �
g � �
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RESULTS

Peptide and Protein Identification–The experimental outline
for the standard data set can be seen in Fig. 1 and the results
from the LC-MS/MS analysis of all the samples and instru-
mental setups are reported in Table I and supplementary
Table S1. Table I presents the number of peptide and protein
identifications for the three instruments by using the Mascot
search engine. The corresponding numbers generated by
using the MS vendor provided search engines are presented
in supplementary Table S1. Peptide and protein data for all
experiments can be found in supplementary Files S3, S4, and
S5. Increasing the amount of loaded peptides fourfold in-
creased the number of identified peptides and proteins in all
settings except for the long LC gradient (240 min) on Orbitrap.
Analyzing five fractions out of the 72 from IPG-IEF with a 45
min gradient yielded more identifications than running a 240
min LC-gradient. This data shows that generally, increased
sample amount and fractionation enable a more diverse set of
potentially low abundant peptides to be identified. The num-
ber of identified peptides varied largely with the mass spec-
trometry instrument, the Orbitrap generated more than five
times as many identifications as the MALDI and QTOF. The
approach resulting in the largest number of identifications and
quantifications was the 400 �g loaded peptide amount, IPG-
IEF prefractionated samples ran on the Orbitrap. In the fol-
lowing sections, the results will first be presented for that
setup, followed by a comparison to the other approaches.

RMSEs of Peptide Quantification–The quality of the peptide
quantification was evaluated by scaled root mean square

error (RMSEs). The RMSEs includes both bias and variance
and measures the average magnitude of the error per peptide
over all eight iTRAQ channels. The RMSEs values were plotted
against the reporter ion with the smallest signal intensity of the
eight iTRAQ channels, see Fig. 2. The complete scatter in gray
shows the full spread of RMSEs values related to intensity,
highlighted in black, are the values at the 95% upper limit of
RMSEs. Each black highlighted point is calculated from the
RMSEs values within intervals of 2% of the intensity values
(intensity percentiles). Hence, each highlighted point is based
on the same number of RMSEs measurements. A running
median LOESS (locally weighted polynomial regression)
smoother (30) of the highlighted values was used to plot the
smoothed curves. The results were evaluated at the 95%
upper limit of RMSEs rather than the mean. The mean reflects
the full spread of errors for certain intensity and is not so
informative for setting the lower intensity limit of quantifica-
tion. By using the 95% upper limit, most RMSEs values are
included while still excluding the most outlying measure-
ments. As seen by the smoothed RMSEs curves in Fig. 2, the
error in quantitation is intensity dependent and decreases as
the peptide intensity increases.

Variance of Peptide Quantities–The measurements of error
estimated by RMSEs include both variance and bias. If no bias
exists, the RMSEs will match the standard deviation. To be
able to study only the variance in the peptide quantifications,
the peptide intensities were normalized to equal sample me-
dian. Normalization of the samples to equal median results in
a loss of the 1:2 relations between iTRAQ channels in this
setup. For the normalized data, the RSD per peptide over the
eight iTRAQ channels was calculated. RSD was plotted
against the minimum signal intensity (supplementary Fig. S2).
The RSD was overall smaller than RMSEs showing that we
have a bias in the un-normalized data. RSD and RMSEs

shows the same trend with decreasing RSD when intensity
increases.

Bias of iTRAQ Peptide Ratios–To assess bias of iTRAQ
ratios, all possible iTRAQ ratios of high versus low level (2:1)
were related to minimum signal intensity. There was a slight
bias in all ratios, independent on intensity level. The bias
seems to be stabilizing at around �-5% from the expected

FIG. 1. Experimental outline for standard data set. Tryptic pep-
tides from A549 cells were labeled with iTRAQ in 2:2:1:1:2:2:1:1 ratio.
Peptides were analyzed by LC-MS alone or prefractionated before
LC-MS using narrow range IPG-IEF, pH 3.7–4.9 strip fractionated into
72 fractions. A mix of all peptides or extracted peptide fractions from
the IPG-IEF were analyzed on three different LC-MS platforms. Five
fractions out of the 72 were used for the different runs, one fourth of
each of the five fractions were injected to the LC. IPG-IEF: immobi-
lized pH gradient isoelectric focusing, pH range 3.7–4.9, peptide �g
in parentheses denotes Orbitrap loads.

TABLE I
Comparison of instruments. The table presents the number of PSMs,
unique peptide readings, and number of proteins identified with the
different instruments using Mascot search engine at 1% protein FDR.
IPG-IEF, immobilized pH gradient isoelectric focusing; PSM, peptide
spectrum match; The table is based on IPG-IEF using 400 �g loaded
peptide amount, analyzing fractions 32–36 with a 45 min LC gradient

Identification Quantification

Instr. PSM PSM Peptides Proteins

Orbitrap 19512 11022 4153 2453
MALDI 1074 1039 816 620
QTOF 1818 1765 290 238
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ratio of two. For ratios with 115, 116, and 119 as denomina-
tors (113/115, 114/115, 117/115, 118/115, 113/116, 114/116,
117/116, 118/116, 113/119, 114/119, 117/119, and 118/119)
the mean ratio is 1.9. For ratios with 121 as denominator
(113/121, 114/121, 117/121, and 118/121) the mean ratio is
2.1. The fold change for all peptides was calculated and
related to minimum peptide signal intensity (supplementary
Fig. S3). A bias toward one can be seen independent on
intensity level; the mean fold change is stabilizing at around
1.9, which is 5% under the expected fold change of two. What
also can be seen from the ratio and fold change plots is that
the upper limit of detection (saturation) is not reached in this
experiment; the intensity is still linear at the maximum
measurements.

Comparison between Experiments on Peptide Level–
RMSEs was calculated to compare instruments, loaded
peptide amount, and separation method. The resulting
RMSEs values can be seen in Figs. 3 and 4 as well as in
supplementary Fig. S4. In Fig. 3, comparing instrument data
processed by Mascot search engine, the peptide quantities
from the Orbitrap and MALDI have rather similar RMSEs

values, whereas QTOF peptide quantities have much higher
RMSEs values. Fig. 4 reveals that the RMSEs values are
improved for Orbitrap and QTOF by using higher peptide
amount and prefractionation by IPG-IEF. In contrast, MALDI
is not so dependent on loaded peptide amount and sepa-
ration method.

To study the dependence of iTRAQ quantification on pep-
tide fragmentation, normalized collision energy (NCE) and
fragmentation time was varied in the Orbitrap (supplementary
Tables S2, S3, and supplementary Fig. S5). Optimal setting of

NCE is a tradeoff between RMSEs for peptide quantities and
number of identifications. In our view, for our instrument, NCE
of 37.5 seems to give a good balance. Increasing the frag-
mentation time from 30 ms to 100 ms results in a slight
decrease in the number of peptide spectrum matches (PSMs)
for identification and similar RMSEs for quantification.
Stepped fragmentation was recently introduced, enabling
separate fragmentation at different collision energies and then
combined analysis in the Orbitrap. Based on the above re-
sults, 35 and 50 was chosen to represent optimal NCE for
identification and quantification respectively. Results from the
stepped HCD are presented in supplementary Table S4 and

FIG. 2. RMSEs is dependent on peptide intensity. RMSEs values are plotted against the reporter ion with the smallest iTRAQ signal intensity
of the eight channels. All RMSEs measurements are shown in gray, the 95% upper limit of RMSEs values are highlighted in black and a running
median LOESS smoother for the highlighted values is shown by the black solid line. A running median LOESS smoother for the mean values
is shown by the black dotted line. In A the x axis is proportional to the raw intensity values, in B the x axis is scaled according to the data
distribution. Intensity percentile 50 represents 50% of the data points, regardless of the raw intensity at that point.

FIG. 3. Comparison of RMSEs for instruments. RMSEs values
are plotted against minimum iTRAQ reporter intensity for the differ-
ent instruments used in this study. In A, the x axis is proportional to
the raw peptide intensity values, in B, the x axis is scaled according
to the data distribution. Intensity percentile 50 represents 50% of
the data points, regardless of the raw intensity at that point. Lines
represent smoothed 95% upper limit of RMSEs, see Fig. 2 for
definition. Data from all three instruments are processed by Mascot
search engine.
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supplementary Fig. S6. Stepped HCD slightly decrease
RMSEs but it also decrease the number of identified HCD
spectra, by �10–15%, compared with our standard method
of using NCE 37.5.

Protein Quantification Method–In this study, two alternative
approaches for combining the iTRAQ peptide data to com-
pute a reliable protein ratio were compared: a weight ap-
proach based on peptide intensity and a filtering approach
excluding low intensity peptides before calculation of protein
quantities. The weights were calculated based on an internal
training data and then applied to calculate weighted protein
ratios in the standard data set; 113/mean(113,114), 114/
mean(113,114), 115/mean(113,114), 116/mean(113,114), 117/

mean(113,114), 118/mean(113,114), 119/mean(113,114), and
121/mean(113,114). To rule out possible bias depending on
which iTRAQ channels that were chosen for the weight cal-
culation, all possible iTRAQ ratios were used as training set to
calculate weights. The resulting protein quantities were inde-
pendent on which training ratios that was used (supplemen-
tary Figs. S7 and S8). Because no difference was seen be-
tween the training data, the following weight calculations were
based on using 113/114 as an internal training set. The effect
of the size of the peptide intensity bins used for weight cal-
culation was also analyzed. The results showed that the bin
size 100 to 1000 peptide measurements in each bin does not
affect the quality of the resulting protein quantities (data not

FIG. 4. Comparison of RMSEs for
loaded peptide amount and separa-
tion method. RMSEs values are plotted
against minimum iTRAQ reporter inten-
sity for the different experimental set-
tings tested in this study. Black lines rep-
resent pre-fractionation by narrow range
IPG-IEF, pH 3.7–4.9, solid lines are for
100 �g loaded peptide amount and dot-
ted lines for 400 �g loaded peptide
amount. Five of the 72 fractions ex-
tracted from the IPG-IEF strip were an-
alyzed using 45 min gradients. Gray lines
represent long LC gradient (240 min),
solid lines are for 1 �g loaded peptide
amount (0.5 �g for Orbitrap) and dotted
lines for 4 �g loaded peptide amount (2
�g for Orbitrap). In A, are results from
Orbitrap, in B from MALDI and in C from
QTOF. In the left panel the x axis is pro-
portional to the raw intensity values, in
the right panel the x axis is scaled ac-
cording to the data distribution. Intensity
percentile 50 represents 50% of the data
points, regardless of the raw intensity at
that point. Lines represent smoothed
95% upper limit of RMSEs, see Fig. 2 for
definition. Data is processed by the MS
vendor provided search engines.
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shown). The largest bin size (eight bins in total, around 1000
peptides in each bin) was selected to speed up calculations
as well as to make sure experiments with fewer peptides
identified will have enough number of peptides in each bin.
For the filtering approach the threshold was set at 10,000 raw
peptide intensity signal to exclude peptide measurements
with more than 40% RMSEs (25% RSD) (Figs. 2 and supple-
mentary Fig. S2).

Evaluation of Protein Quantities–The weighted mean
method was compared with filtering out low intensity peptides
before calculating a regular mean, as well as to using all
peptides for the calculation of a regular mean. Moreover the
method was compared with the weighted mean method in
Mascot. The measured protein ratios were compared with the
expected ratios and the relative error was calculated for all
protein quantification approaches (Fig. 5). The weighted mean
method shifts protein quantities to lower errors and generate
more accurate protein quantities than the regular mean/me-
dian and filtered mean/median does (Fig. 5). It can be seen in
Fig. 5 that more proteins are calculated with a lower relative
error when using the weighted mean as compared with the
other methods. In Fig. 6, the relative error of protein quantity
is related to protein weight (calculated as the mean of peptide
weights) for proteins with different number of peptides. Seen
in the figure, the relative error of the protein quantity is very
much dependent on the number of peptides used for quan-
tification of the protein. For proteins with few peptides, the
intensity of the peptides (visualized by protein weight) influ-
ence the relative error strongly, while for proteins with large
number of peptides the intensity of the peptides has smaller

impact on error. Even at low protein weight the relative error is
rather small for proteins with multiple peptides for quantifica-
tion. The results from Fig. 6 could be used to set a lower
threshold on protein weight for accurate protein quantifica-
tion. The same kind of plot was generated for ratios 117/114
and 118/114 (same level as 113). The resulting figure (supple-
mentary Fig. S9) confirms that 113/114 have a behavior sim-
ilar to the other ratios at the same level, 117/114 and 118/114,
and is hence representative for the relationship between rel-
ative error and protein weight in this data set.

For assessment, the weighted mean method presented in
this study was compared with the weighted mean method
described by Onsongo et al. (20), which revealed no differ-
ence between the methods when applied to the standard
dataset in this study (data not shown), but a slight improve-
ment when applied to the clinical lung cancer dataset (sup-
plementary Fig. S10). The approach of using an internal train-
ing set to calculate weights was furthermore compared with
training the weights on an external dataset (supplementary
Fig. S10).

Comparison between Experiments on Protein Level–
Because it was confirmed that the 113/114 ratio is repre-
sentative for the other ratios in the experiment, the 113/114
ratio was used to calculate weighted protein ratios for all the
other experimental settings. The relative error for protein
ratios were calculated and compared between settings. The
results mainly confirm the results from the comparison on
the peptide level; the Orbitrap performs best followed by
MALDI, and then QTOF (Fig. 7 and supplementary Fig. S11).

FIG. 5. Comparison of methods to calculate protein quantities
based on peptides. The bars represent percentage of protein ratios
passing different relative error thresholds, for weighted protein mean,
regular protein mean/median, filtered protein mean/median, and Mas-
cot weighted protein mean. Proteins with one peptide are excluded
from the comparison because weighting will not affect those proteins.

FIG. 6. Impact of the number of peptides per protein on quan-
tification. The relative error of weighted protein quantity in percent-
age is plotted against protein weight for proteins with different num-
ber of peptides. The figure is based on Orbitrap data using 400 �g
loaded peptide amount and prefractionation by IPG-IEF. Lines rep-
resent smoothed 95% upper limit of relative error, see Fig. 2 for
definition. The protein weight is calculated as the mean of peptide
weights.
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When it comes to loaded peptide amount and separation
method, the Orbitrap performs best with the largest loaded
peptide amount and prefractionation by IPG-IEF, the same
is true for the QTOF, whereas the MALDI seem to perform
slightly better with the smallest loaded peptide amount and
a long LC gradient instead (Fig. 8). Once again the number
of proteins quantified is very different for the three instru-
ments, more than 2400 proteins were quantified by the

Orbitrap whereas only around 600 proteins were quantified
by MALDI and 240 by QTOF (Table I).

Application of the Method to Independent Data Sets–The
method of calculating weights based on an internal training
set was also applied to independent data sets of A431 cell line
samples and lung cancer tissue samples. The weights were
used to calculate weighted protein ratios of all duplicates in
the A431 experiment, as well as to calculate weighted protein
ratios of internal standards in the lung cancer experiment. The
relative error of the weighted protein ratios were calculated
and compared with using a regular mean over the peptides for
calculating the protein ratio (Fig. 9 and supplementary Fig.
S12). As seen in the figures, the weighted mean performs
slightly better than the regular mean for the tested data sets,
confirming the results from the original standard data set. To
further facilitate the use of protein weights to evaluate and
filter the protein ratio data, a table containing the weighted
protein ratios, protein weights, number of peptides, and the
relative error was created (see example output table from the
A431 data set in supplementary File S6). The relative error
estimation was based on the smoothed LOESS curves in
supplementary Fig. S12. The relative error can thus be used
as a guide to assess protein quantification reliability, and
corresponding protein weight can be applied to filter proteins.

DISCUSSION

Reliable quantitative data is essential in biomarker discov-
ery and to interpret proteome biology. The purpose of this
study was to generate a basis for the decision of what protein
quantities are reliable and find a way for accurate and precise
protein quantification by isobaric labeling. To investigate this
we have used thousands of peptide measurements to esti-
mate variance and bias for quantification by iTRAQ mass

FIG. 7. Comparison of relative error for instruments. The bars
represent percentage of weighted protein ratios passing different
relative error thresholds, for the different instruments used in this
study. The amount of loaded peptides is 400 �g and samples are
prefractionated by IPG-IEF for all the three instruments. Data from all
instruments are processed by Mascot search engine.

FIG. 8. Comparison of relative error for loaded peptide amount and separation method. The bars represent percentage of weighted
protein ratios passing different relative error thresholds, for the different experimental settings tested in this study. Fig. A depicts results from
Orbitrap, B from MALDI, and C from QTOF. Data is processed by the MS vendor provided search engines.
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spectrometry in complex human cell line samples. Based on
the results, we have suggested a concept for experimental
design and a methodology to assess protein quantification.

In MS based proteomics experiments, it is beneficial to
have as good protein coverage as possible for robust identi-
fication. For quantification, only identified peptides with ac-
curate quantitative measurements should be included. Vari-
ance stabilizing methods might give peptides a more
homogeneous variance but the actual uncertainty in the quan-
titative measurement remains (12). Further, a constant vari-
ance across all proteins can probably not be expected in a
complex human sample. A filter can be used to exclude
peptides with intensity below certain threshold, regarded as
more uncertain in terms of quantification (17, 18). However,
filtering out low intensity peptides will decrease the number of
proteins analyzed, by �20% in the current data set. On the
other hand, it is crucial for the results that the quantitative
information on the peptide level is correct when summarizing
to protein level quantity. We have in this study evaluated two
alternative methods to improve protein quantities: either by
removing low intensity peptides before summarizing to pro-
tein quantity or by using all peptides but weight them accord-
ing to their uncertainty (determined by their absolute intensity)
when summarizing to protein quantity.

The weighted mean method, which accounts for errors
introduced by low intensity peptides, was adopted from On-
songo et al. (20) with some changes. In the original method,
the weight of a bin is calculated as one divided by the mean
error for peptides within that bin. In our study, the median
error of peptides in the bin is instead used to calculate the
weight, because the median is less sensitive to outlying mea-
surements than the mean. In the current study, the weight is
related to the minimum peptide intensity, instead of the prod-
uct of reporter ion intensities, because this represents the
most uncertain measurement in the ratio. The changes in the
method improved the protein quantities when applied to an
independent clinical data set of lung cancer tissue samples. In

the current study, the weight is calculated based on an inter-
nal training set (technical duplicate) for each run rather than an
external training set. An internal training set for the weights is
to prefer, according to our results, because different experi-
mental settings for the MS analysis will affect the data quality
differently, as is clearly shown in this study. The intensities
and RMSEs values differ between experimental runs, so
weights and limits on accuracy and precision based on one
study might not be transferable to the next study. As an
outcome of these results on experimental planning, we sug-
gest including one technical duplicate in each iTRAQ run so
weights can be calculated specifically for every new data set,
and then be applied to the remaining biological iTRAQ
samples.

The comparison of the performance of weighted mean,
regular mean and a filtered mean for protein quantification
revealed that the protein quantities calculated from weighted
mean have smaller relative error than protein quantification by
calculating the regular mean. The improvement is rather mod-
est, around 5% for the clinical data set of lung cancer tissue
samples. Still, we believe this is an important improvement, it
corresponds to around 90 more proteins in the clinical data
set with accurate quantification (�5% relative error), which
can be essential for discovering biomarkers. For protein quan-
tification by filtering out low intensity peptides, filtering out
almost half of the peptides with raw intensity below 10,000
(40% RMSEs), the relative error at the protein level is not
improved. It seems like even if low intensity peptides have
larger RMSEs values than high intensity peptides, they dis-
tribute around the true value and thus contribute to create a
stable protein quantity. The result also shows that the relative
error of protein quantity is largely dependent on the number of
peptides used for protein ratio calculation (Fig. 6). For proteins
with few peptides for quantification there is a strong depen-
dence on the peptide intensity level (reflected by the protein
weight). However, for proteins with many peptides the inten-
sity of the peptides has smaller impact on the error. Even at

FIG. 9. Weighted mean method ap-
plied to biological data sets. In A is a
comparison of protein quantities for the
A431 cell line dataset calculated by
weighted mean and regular mean. The
results are from 0, 2, 6, and 24 h of whole
cell lysate of A431 cell line samples post
drug treatment. In B, the protein quanti-
ties for the lung cancer dataset are com-
pared. The bars represent percentage of
protein ratios passing different relative
error thresholds, for weighted protein
mean and regular protein mean. Proteins
with one peptide are excluded from the
comparison because weighting will not
affect those proteins.
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low protein weight the relative error is rather small for proteins
with multiple peptides for quantification. Hence, peptides with
low intensity can be important for creating a robust protein
quantity, this is another reason for not setting a peptide in-
tensity filter. At the peptide level, around 50% of the Orbitrap
data has a RMSEs of maximum 40%, this translates to an
error at the protein level below 5% for around 50% of all
protein ratios (Figs. 2 and 5). This is in line with our previous
observations when studying the distribution of ratios between
replicates (data not shown).

To assess the confidence of the quantification, we have
used RMSEs and relative error rather than CV used by many
others (11, 12). RMSEs and relative error includes both bias
and variance and thus reflects the full uncertainty in the raw
measurements. In our settings, the variance seems to be the
largest contributor to the error (Figs. 2 and S2). A small bias
(around 5%) toward one could be seen in this study, confirm-
ing the results of others (11–14). In a “real” biological study we
aim to even out the biases from sample preparation and
labeling by normalization to equal mean or median of peptide
intensities. This is based on the assumption that the samples
are similar in terms of protein distribution. This procedure also
evens out biases from the instrumental analysis to some
extent. Hence, we can assume that most contributions to the
bias are reduced in the standard data analysis workflow, and
the variance evaluated here represents the error also in a real
biological study.

A comparison between instruments revealed similar RMSEs

for Orbitrap and MALDI, whereas QTOF overall had higher
RMSEs for the peptide quantification. This result probably
reflects the energy regime used by the different instruments,
MALDI have a similar high energy regime for fragmentation as
the Orbitrap whereas the QTOF has a lower collision energy.
A large difference is also seen in the number of peptides and
proteins identified, Orbitrap identifies approximately four
times more proteins than the other instruments do. Increasing
the amount of loaded peptides as well as prefractionating the
sample by IPG-IEF results in the best performance for the
Orbitrap, both when it comes to error levels at the peptide and
protein level as well as number of identified peptides and
proteins. According to the results in this study, the suggested
optimal settings for the Orbitrap would be a normalized col-
lision energy of 37.5, a fragmentation time of 30 ms, and
50,000 as the number of target ions. These values may vary
between instruments but can serve as a starting point for
optimization.

In the original standard data set the peptide ratios are the
same over the iTRAQ channels, consequently even peptides
wrongly assigned to a protein will produce the correct protein
ratio. In a real biological data set this is of course not the case
because each iTRAQ channel represents a different biological
sample. For this reason we also evaluated the approach on
independent cell line and clinical data sets where protein

quantification was improved by using the internal duplicate to
calculate weights and relative error (Fig. 9).

The result from the current study is a guideline to assess the
quality of protein quantities. Because of the large variation
between different experimental settings, we suggest calculat-
ing the peptide weights and setting the limits in each study
individually, based on a technical duplicate within the exper-
iment. The protein ratios are then calculated based on the
weighed peptide intensities to generate more accurate protein
quantities (with smaller relative error). We suggest that a plot,
like the one in Fig. 6, and corresponding table (supplementary
File S6) are created for each data set based on the duplicate
in the experiment. The plot can, together with the table, be
used to set a threshold on protein weights to ascertain reliable
protein ratios. This will be especially important for proteins
with one or a few peptides for quantification. Generally, small
proteins with fewer peptides detected as well as low abun-
dant proteins have the largest relative errors and thus repre-
sent the biggest challenge when it comes to reliable protein
quantification. By this approach, the accepted level of relative
error can be set based on the experimental conditions and
biological questions asked. By setting a limit on the protein
weights rather than at the peptide intensity, we avoid the risk
of excluding peptides important for accurate protein quanti-
fication as well as the problem of adjusting to different inten-
sity ranges between experiments. Besides the possible appli-
cation to other data sets, the method should also easily be
transferred to both other labeling methods such as TMT as
well as to label free mass spectrometry methods. For label
free methods, the calculation of weights rely on good overlap
between duplicate runs. A recent study in our group has
shown around 84% overlap of peptide identifications and a
98% correlation of peptide quantities for technical duplicates,
Sandberg et al. manuscript in preparation.

We have in this study developed a methodology for improved
protein quantification in shotgun proteomics. The suggested
experimental design and developed algorithms decrease the
relative protein quantification error in the analysis of complex
biological samples. Further, this methodology allows quality
control of protein data and guide assessment of quantification
reliability for proteins with few peptides. This is highly important
in analyzing biological samples, as in biomarker discovery,
where we seek for quantitative differences between samples.
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