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Abstract
Current literature is insufficient to make causal inferences or establish dose-response relationships
for traffic-related ultrafine particles (UFPs) and cardiovascular (CV) health. The Community
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Assessment of Freeway Exposure and Health (CAFEH) is a cross-sectional study of the
relationship between UFP and biomarkers of CV risk. CAFEH uses a community-based
participatory research framework that partners university researchers with community groups and
residents. Our central hypothesis is that chronic exposure to UFP is associated with changes in
biomarkers. The study enrolled more than 700 residents from three near-highway neighborhoods
in the Boston metropolitan area in Massachusetts, USA. All participants completed an in-home
questionnaire and a subset (440 +) completed an additional supplemental questionnaire and
provided biomarkers. Air pollution monitoring was conducted by a mobile laboratory equipped
with fast-response instruments, at fixed sites, and inside the homes of selected study participants.
We seek to develop improved estimates of UFP exposure by combining spatiotemporal models of
ambient UFP with data on participant time-activity and housing characteristics. Exposure
estimates will then be compared with biomarker levels to ascertain associations. This article
describes our study design and methods and presents preliminary findings from east Somerville,
one of the three study communities.
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Introduction
Exposure to airborne particulate matter (PM) is linked to increased mortality and morbidity
(1 – 4) due largely to cardiovascular (CV) effects (3, 5). Ultrafine particles (aerodynamic
diameter <0.1 μm) are a by-product of combustion and comprise approximately 80% – 90%
of particle number concentration (PNC) in urban areas (6). Thus, many epidemiology
studies use PNC as a surrogate for UFP because size fractionation is often not possible on
the scale of monitoring needed for health studies (7). The ability of UFP to penetrate deeply
into the lungs combined with their large surface areas appear to cause disproportionately
more damage than larger-sized particles per unit mass (5, 8, 9).

Unlike fine PM (PM2.5 aerodynamic diameter < 2.5 μm), which exhibits relatively uniform
concentration distributions in urban areas, UFP tend to exhibit large spatial and temporal
variations, particularly near busy roadways (10 – 12). Highways, due to traffic loads and
congestion, are important determinants of elevated local concentrations of mobile source
pollutants including UFP (10, 13). UFP levels are highest near highways and major
roadways and rapidly decrease with distance (10, 11, 13, 14). A recent meta-analysis
characterized a spatial gradient for UFP that extended from 100 to 300 m (15). However,
gradients of up to 2000 m have been reported, depending on time of day, atmospheric
conditions, and local meteorology (14, 16). Elevated UFP levels near roadways may result
in an increase in exposure for the estimated 30% – 45% of people in urban areas of the USA
who live within 500 m of a highway or major road (17).

Three principal pathways have been proposed to explain the adverse CV effects of
inhalation of PM (5). The first pathway begins with pulmonary inflammation, which results
in a systemic inflammatory state consisting of oxidative stress, endothelial dysfunction, and
accelerated atherosclerosis. Supporting this pathway are observations of associations
between PM and markers of systemic inflammation (18, 19). In the second pathway,
reflexes in the lung trigger stimulation of the autonomic nervous system causing problems
with repolarization and heart rhythms. This pathway is consistent with reports of
associations between PM and changes in heart rate variability (20, 21). A third pathway is
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the direct interaction of PM (or its soluble components) with the CV system resulting in
abnormal function (22, 23).

Several epidemiologic studies that used distance to highways and busy roads as proxies for
chronic air pollution exposures have reported associations between mortality and CV disease
with proximity (24 – 27). Fine PM is an unlikely candidate for near-roadway effects because
it shows minimal variation near roadways; UFP, however, are more plausible, due to their
spatial distribution. Studies that measured UFP directly have shown acute effects of ambient
UFP on biomarkers of CV disease including tumor necrosis factor α receptor II (TNF-RII)
(18, 28), interleukin 6 (IL-6) (18, 28, 29), C-reactive protein (CRP) (18, 29), and fibrinogen
(30). Other pollutants exhibiting spatial distribution similar to UFP include nitric oxide
(NO), carbon monoxide (CO), and, to a somewhat lesser extent, black carbon (BC) and
nitrogen dioxide (NO2). However, toxicologic evidence is stronger for the association of
UFP with CV endpoints than for these co-pollutants (31 – 35). Other potentially
confounding conditions include sound and socioeconomic status (SES), which may also be
associated with distance to highways and major roadways.

The majority of epidemiologic health studies of air pollution exposure have relied on central
site measurements, interpolation, or land use regression using central site data to construct
ambient annual averages assigned to residential address (36 – 38). These studies probably
provide insufficient spatial resolution to accurately assign near-highway exposures. In
addition, most studies [with a few exceptions, like the study of Delfino et al. (18, 28)]
assume that pollutant levels do not vary significantly between indoors and outdoors and,
additionally, that non-residential exposures are uncorrelated with residential exposures.
However, accounting for participant time-activity is likely important for accurate exposure
assessment, especially for near-highway exposures with substantial geographic variability
(39).

The goal of our project is to evaluate the association of near-highway UFP with biomarkers
of CV disease in people > 40 years who were not selected on the basis of preexisting illness.
Except for Hertel et al. (40), many past studies comprised subjects with CV conditions and
may not be generalizable to a broader population. We hypothesize that higher chronic
exposure to near-highway UFP will be associated with elevations in biomarkers of
inflammation, coagulation, and blood pressure and decreases in ankle brachial pressure
index (ABI). We seek to develop accurate estimates of UFP exposure by combining
spatiotemporal models of ambient UFP with data on ambient UFP infiltration into homes
and information on participant time-activity.

Our approach is innovative in several respects. First, we are modeling near-highway UFP
with fine-grain spatial and temporal resolution, something that has not yet been widely
reported in the epidemiologic literature. Second, we are assigning individual exposures to
near-highway UFP, based on time-activity and other factors. Third, we are using structural
equation modeling (SEM) as our primary analytic tool, something that has not been applied
widely to the study of ambient PM. Finally, we utilize a community-based participatory
research (CBPR) framework in carrying out this research, an approach rare in ambient air
pollution studies. This article presents the approach and methods for our study along with
preliminary findings from the first of three neighborhoods in which we are working and
some early insights into the potential of our approach.
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Methods
Study design

The Community Assessment of Freeway Exposure and Health (CAFEH) is a 5-year cross-
sectional study of the impact of near-highway air pollution on CV health, specifically blood
markers of inflammation, including high-sensitivity CRP (hsCRP), IL-6, TNF-RII, and
fibrinogen; brachial blood pressure; and ABI. A diagram showing the key study design
elements is presented in Figure 1. The highway of interest is Interstate 93 (I-93), and
communities were selected based on distance to the highway, including parts of the cities of
Somerville and Malden and the Boston neighborhoods of Chinatown, South Boston, and
Dorchester. The communities comprise a wide range of sociodemographics, race/ethnicities,
and built environments. We collected human data through the administration of
questionnaires, collection of biomarkers from clinical examinations, and laboratory analyses
of blood samples. We have extensively monitored UFP and other traffic-related air
pollutants, and we are developing an exposure assessment model to test our hypothesis using
SEM (41). All participants provided written informed consent; the study was approved by
the Institutional Review Board at the Tufts University School of Medicine. Reported here
are data from Somerville.

Community-based participatory research
CAFEH uses a CBPR framework, which combines traditional scientific methods with
community engagement. Government agencies, like the NIEHS (National Institute of
Environmental Health Science), have integrated CBPR into their models of disease
prevention and have created specific funding streams for CBPR initiatives (42). CBPR has
been used in the areas of environmental health promotion (43), environmental monitoring
(44, 45), and children’s environmental health (46), among others. There is increasing
evidence that CBPR can enhance the relevance of research to the community, enrich the
quality of data collected, inform findings by incorporating community insight into
interpretation, and facilitate translation of results into practice and policy (47, 48).

Details of the CBPR process of CAFEH are published elsewhere (49). Briefly, CAFEH was
developed as a direct response to community concerns about air pollution generated from
cars and trucks that use I-93 daily. Our community partner, the Somerville Transportation
Equity Partnership (STEP), was first formed to advocate for local transportation
improvements, including light rail transit and improved walking and bicycling. A related
community group, the Mystic View Task Force, working with two Massachusetts firms,
Environmental Health & Engineering and Aerodyne Research, conducted preliminary
research by monitoring the fate and transport of pollutants from the highway into local
residential areas (14). STEP approached Tufts University to conduct a research study of
health impacts of near-highway exposures, and the resulting partnership invited similarly
impacted groups in Boston to participate.

The CAFEH project includes Tufts University as the lead academic partner, four community
partners based within Boston and Somerville (STEP, the Committee for Boston Public
Housing, the Chinese Progressive Association, and the Chinatown Residents Association),
and researchers at Harvard, Brown, and Boston Universities. Each community partner
represents populations living near I-93 in the Boston metropolitan area and brings skills to
the project pertaining to public health research, coalition building, recruitment, and
education. Community and academic partners are represented in all levels of planning, data
collection, and analysis through participation in a steering committee and subcommittees.
Community partners were most active during data collection in their neighborhood. An
external advisory board of academic institutions, government agencies, health organizations,
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community members, and elected officials provide input and feedback particularly with
regard to policy and practice (49).

Recruitment
The study area for each neighborhood was defined as a 400-m buffer along the highway and
an urban background area more than 1000 m from the highway. Our goal was to use
highway proximity to recruit a sample that would ultimately have a wide range of UFP
exposure levels. One year was spent on data collection in each community. In Somerville,
city records were used to create a list of housing units in the study area that were checked
via door-to-door enumeration. Each housing unit was linked to a parcel spatial data set
obtained from the Harvard Geospatial Library (Harvard University, Cambridge, MA, USA)
that included coordinates corresponding to parcel centroids. Recruitment was stratified
based on distance to the highway with the goal of increasing exposure contrast. A third of
the addresses were drawn from < 100 m (near highway), 100 – 400 m (intermediate
highway), and > 1000 m (urban background). A list of random numbers was created in
Microsoft Excel (Microsoft, Redmond, WA, USA), which was used to extract the stratified
random sample of parcels. The study moved to South Boston/Dorchester in year 2 and
Chinatown and Malden in year 3 (details not reported here).

Recognizing the challenges of recruitment, particularly within diverse neighborhoods, we
developed a program to increase awareness including the following activities: leafleting all
addresses in the study area, obtaining and distributing letters of support from the mayor and/
or other local elected officials or prominent community representatives, meeting with
community leaders and stakeholders, airing public service announcements on local radio
stations, and having articles published in community newspapers and the Boston Globe (50).

We assembled and trained a diverse team of field surveyors to recruit participants and
administer the in-home questionnaire, which was available in English, Spanish, Portuguese,
Haitian Creole, Chinese (mostly Cantonese, some Mandarin), and Vietnamese. For each
target language, we hired two translators who were fully bilingual in English and the target
language. The first translator translated from English into the selected language, which was
then back-translated by the second, independent translator who was blinded to the original
English version to assure accuracy. The majority of the field surveyors lived in the local
area. Each surveyor underwent 20 h of training on subject matter and survey techniques
followed by field practice. As the study moved from community to community, the
composition of the field team changed in terms of age, race/ethnicity, and language to reflect
each new community. The field surveyors recruited participants from the random sample by
door-knocking. Up to five attempts were made at each address. Eligibility required age > 40
years (because people with greater CV risks have usually been found to have larger
responses to PM exposure) and the ability to complete the questionnaire in one of the six
languages. When an eligible person agreed to participate, the field surveyors administered
the questionnaire in their home or other convenient location. After the completion of the
questionnaire, those who agreed to provide biomarker data visited a clinical site within the
community. In addition to the random sample, a convenience sample of participants was
recruited in each neighborhood to boost numbers. The eligibility for the convenience sample
was identical for age and language but required only residence within the study area
boundaries. Participants were compensated for completion of the in-home questionnaire and
for each clinic visit. In Somerville, the convenience sample included residents of two
assisted-living facilities as well as interested residents who contacted CAFEH staff. As a
result of these efforts, we enrolled more than 700 residents across the three communities.
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Air pollution monitoring
Mobile laboratory—Monitoring was conducted for 12 months in each study area using a
mobile platform. Details of data collection, quality assurance, instrument calibration, and
data processing methods are provided by Padró-Martínez et al. (51) and are summarized in
this article. Mobile monitoring was conducted with the Tufts Air Pollution Laboratory
(TAPL), a converted recreational vehicle equipped with fast-response air pollution
instruments. A list of the equipment in the TAPL is shown in Table 1. The main pollutant of
interest was UFP, measured as the number concentration of particles in the 6- to 3000-nm-
size range. In addition, we measured the mass concentration of PM2.5, NO, nitrogen oxides
(NOx), CO, particle-bound polycyclic aromatic hydrocarbon (pPAH), and BC.

Mobile monitoring was performed at different times of the day (high and low traffic
periods), days of the week (weekdays and weekends), and seasons (winter, spring, summer,
fall). The TAPL was driven at 15 – 40 km/h (9 – 25 mph) along fixed routes that were
designed to maximize spatial coverage of the neighborhoods in which the study participants
lived. In Somerville, the monitoring route consisted of both the near-highway area < 400 m
from the highway (on each side) and the urban background area > 1000 m from the west
side of I-93 (note that one third of the study participants lived < 100 m from the highway,
another third within 100 – 400 m, and the remainder > 1000 m) (Figure 1). It took ~ 1 h to
complete a circuit of the monitoring route; thus, on each monitoring day, five to six circuits
were completed. Particle size distribution measurements were also made, but not regularly.
Measurements were matched with locations using GPS data collected at 1-s intervals. At the
start of each monitoring session, all air pollution instruments and the GPS unit were
synchronized by setting the instrument clocks to match the GPS time.

Data processing consisted of several steps. First, measurements associated with instrument
errors, as noted in the daily log, were removed. Next, the timestamps for measurements from
each instrument were corrected for the time lag between entry of air into the inlet and the
time when concentrations were recorded by the instrument. The final step was to remove
data that reflected self-sampling of exhaust from the TAPL. Based on our self-sampling
decision rules, we removed data if the TAPL speed was < 5 km/h – this usually happened at
traffic signals.

Fixed sites—In addition to mobile monitoring, we also collected environmental
measurements at fixed sites within each community. In Somerville, two fixed sites were
established on either side of the highway (see Figure 2): one was located on the roof of the
Mystic Activity Center (MAC) and the other on a ground-level patio at the Blessing of the
Bay Boathouse (BBB). Details of data collection, quality assurance, and data processing are
provided by Fuller et al. (52). The monitoring equipment at each fixed site was housed in a
stainless steel box that contained heating and ventilation to maintain the interior temperature
within an appropriate range. Each unit used a water-based condensation particle counter
(CPC, Model 3781; TSI, Shoreview, MN, USA) to measure particles in the 6- to 3000-nm-
size range as our measure of UFP (Table 1) and a photoelectric aerosol sensor (PAS 2000 or
PAS2000CE; EcoChem Analytics, League City, TX, USA) to measure pPAHs. The MAC
site also recorded meteorologic variables including wind speed, wind direction, temperature,
and relative humidity using a Vantage Pro2 weather station (Davis Instrument, Hayward,
CA, USA). UFP was recorded as 1-min averages, pPAHs as 2-min averages, and
meteorology as 5-min averages according to the data-storage capacity of each instrument.

Residential sites—Residential monitors were placed in 18 homes in Somerville to
measure both indoor and outdoor UFP and assess infiltration. Fuller et al. (53) provide the
details of residential monitoring in Somerville. Each monitor collected data for 1 – 2 weeks,
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which consisted of a water-based CPC (Model 3781, TSI) for the measurement of UFP, a
PAS (PAS 2000CE; EcoChem Analytics) for measurement of pPAHs, and a HOBO (Onset
Computer, Pocasset, MA, USA) for the measurement of temperature and humidity. Each
residential monitor contained indoor and outdoor sampling lines of similar length made of
stainless steel and flexible conductive Tygon® tubing (⅜ in. diameter). The indoor line was
located on the top of the box and the outdoor line ran through a specially designed window
guard and extended ~ 0.5 m from the side of the house. A solenoid valve switched the flow
of air between the two lines at approximately 15-min intervals. The monitor was placed in
either the living room or the bedroom. The flow rate was held constant at 0.12 L/min, and
sampling instruments were checked for adequate flows and functioning before and during
each monitoring session.

Human data collection
Survey instruments—Participants completed an in-home questionnaire and supplemental
questionnaires during their clinical visits. We describe the questionnaire items below.

Baseline demographics: Each participant provided information on age, sex, education
level, relationship status (54), number of people in the household, household income, race/
ethnicity, country of birth (55), prior residential location, type of employment, and
employment status (55 – 57).

Health status and medications: Participants were asked to self-report whether they had
been diagnosed with common CV diseases by a doctor and the year in which they were first
diagnosed using questions modified from the Nutrition, Aging, and Memory in Elders
project (58). Each participant was asked to show his/her prescribed medications to the
interviewing field team member, who in turn recorded the medication name and dosage
directly from the label. The supplemental questionnaire, administered at clinic visits,
recorded recent acute illnesses (e.g., influenza).

Health behaviors: Participants reported whether they smoked currently or in the past, the
amount they smoked, and the duration they had smoked (59 – 61). Physical activity was
recorded as light-moderate or vigorous, using questions from the National Center for Health
Statistics survey (NCHS) (54). Alcohol consumption was recorded in the supplemental
questionnaire including the number of years the participant had consumed alcohol, the
amount, frequency, and recent (past 24 h) consumption.

Social factors: Social stress was measured during the in-home questionnaire using a
validated 4-item perceived stress scale (62). The supplemental questionnaire included
questions on recent life events (e.g., loss of a job) and perceived discrimination (63, 64).

Diet: A set of 15 questions modified from the NCHS survey (54) was included in the in-
home questionnaire in which the participant described the type of foods eaten. The
supplemental questionnaire included similar questions as well as questions on portion size.
The aim of these questions was to group participants into broad dietary categories.

Time-activity: As part of the in-home questionnaire and second clinical visit, participants
reported their time-activity for one recent weekday/workday and one recent weekend/non-
workday. Participants reported their presence in the following microenvironments for each
hour out of the 24-h day: home (inside), home (outside), school/work, or other. Time spent
on a highway and use of specific modes of transportation, like walking or subway, were also
recorded. We sought highly accurate data on a small number of actual days rather than for
“typical” days as has been the approach in another study (61).

Fuller et al. Page 7

Rev Environ Health. Author manuscript; available in PMC 2013 July 11.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fifteen participants who were part of the residential sampling program also wore GPS
receivers during the course of monitoring to track their movements (GPSMap 60Csx;
Garmin, Olathe, KS, USA). The receiver was small and lightweight and could be clipped to
a belt or purse. Participants in the GPS substudy completed a daily record of locations,
including short- and long-distance travel away from their homes, for the duration of
monitoring in their home. GPS data were used to validate self-reported time-activity.

Combustion exposures: Questions covering potential exposures to combustion sources
were included in both the community and supplemental questionnaires. We asked
participants about home heating fuel, location of boilers, and use of space heaters or
fireplaces for secondary heating. In the supplemental questionnaire, we asked participants to
report recent use of a fireplace, grill, candles or incense, wood- or coal-burning stove, and
gasoline- or kerosene-powered equipment. Participants reported if they had cooked with oil,
burned trash, or traveled on a highway or busy city streets in the past week. We also
recorded if participants had smoked or been in specific locations (e.g., car) with a smoker to
understand exposure to direct and environmental tobacco smoke.

Other exposures: The in-home questionnaire included questions on household conditions
that might modify exposure to indoor and outdoor pollutants. We included questions
concerning the opening of windows and air-conditioning use. Occupational exposure to
sources of combustion and chemicals was also recorded in the inhome questionnaire (59–
61).

Biomarker data collection—Participants were asked to provide biomarker data at up to
two clinical visits. Venous blood samples were collected, fractionated into plasma, buffy
coat, and red blood cells, and frozen at − 80 °C for the analysis of inflammatory markers.
The stored samples were analyzed in batches for each neighborhood using immunoassay kits
for hsCRP (SPQ High Sensitivity CRP Reagent Set; DiaSorin, Stillwater, MN, USA),
fibrinogen (κ-Assay; Kamiya Biomedical, Seattle, WA, USA), TNF-RII (Quantikine; R&D
Systems, Minneapolis, MN, USA), and IL-6 (Quantikine HS; R&D Systems). Finger-stick
blood samples were analyzed for lipid profile [total cholesterol, low-density lipoprotein
(LDL), high-density lipoprotein (HDL), and triglycerides] on site using a CardioChek PA
device (Polymer Technology Systems; Indianapolis, IN, USA). Height and weight were
collected for the calculation of body mass index using a standard scale (Model 8761321009;
SECA, Hamburg, Germany) and stadiometer (Model # 905055; Shorr Productions, Olney,
MD, USA), respectively. Systolic and diastolic blood pressures were taken three times using
an automatic blood pressure machine (Model HEM711ACN2; Omron Healthcare, Kyoto,
Japan) with the participant seated, following a period of rest. The right arm was taken first,
followed by the left arm, and then the right arm again. The collection of blood pressure in
both arms allows for examination of interarm difference in blood pressure. For the purpose
of ABI, a Doppler probe (Model Pocket Dop II’ Cascade Healthcare, Portland, OR, USA)
was used to measure systolic blood pressure in the arms and ankles (posterior tibial artery
and dorsalis pedal artery) with the participant lying down.

Analytical approach
Air pollution modeling—Multivariable linear regression analysis is being used to
develop a model of UFP levels. This approach has been used for developing annual average
estimates of NOx (36), BC (65), and UFP (66). Modeling short-term (hourly) variation of
UFP measured by the TAPL poses a challenge due to the pronounced spatial variations in
the data. Variables in the models will include distance to the highway and major roads,
traffic volume, temperature, wind speed and direction, and road type where the measurement
was made, among others (65, 67, 68). Several parameterizations of wind speed and direction
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relative to the highway and other major roads will be explored to improve the physical
formulation of the model. The regression model will predict ambient UFP levels at an hourly
time step with continuous spatial variables. The address of each participant has been
geocoded to the parcel centroid and then corrected to the building footprint using aerial
Orthophotos obtained from MassGIS. Therefore, the location of each participant will be
related with high accuracy to the spatial contours produced by the model. Although the
model is being developed for UFP, other pollutants were measured and may also be
modeled.

Exposure assessment—An estimate of annual UFP exposure will be derived for each
study participant by using modeled ambient UFP concentrations at the residence, factors
affecting UFP infiltration into the residence, and personal time-activity data. The modeled
aggregate annual average UFP exposure value will be obtained and adjusted for seasonal
differences and time spent in hourly microenvironments.

The time spent outside at home will be assigned the UFP ambient concentration from the
UFP model at the residence. The time spent indoors will be assigned an adjusted residential
UFP corrected for factors affecting ambient particle infiltration (i.e., window openings and
air-conditioning usage). This residential penetration adjustment factor will be derived from a
subset of homes (see the subsection Residential sites) as well as the literature (69, 70) to
account for building characteristics and seasonal variation in adjustment factors.
Occupational exposures will be assigned a categoric variable (from 0 to 4) derived from
self-reported job title, occupational exposures to combustion sources, and school/work
proximity to highways. Participants’ in-vehicle highway microenvironment exposures will
be estimated based on highway-monitoring data obtained from CAFEH as well as
information obtained from the literature [73, 74].

Structural equation modeling—SEM is a powerful exploratory and explanatory method
that takes into account interactions, non-linearities, correlated independents, measurement
error, correlated error terms, and multiple latent independent variables, each measured by
multiple indicators. The method characterizes explanatory or causal pathways between
dependent and independent latent variables (41). We anticipate that our model will have one
endogenous latent variable, heart disease risk, and two exogenous latent variables, air
pollution and lifestyle. Measured biomarkers will contribute to the latent heart disease
variable. Covariates obtained from questionnaires and the air pollution model will be used to
estimate exposure. SEM will be conducted using Proc Calis in SAS v9.2® to determine path
loadings, p-values between latent variables, and between latent variables and the individual
variables contributing to the latent variables. We will validate the model by randomly
selecting a sample of study participants and then testing the derived SEM using the
remaining study participants.

Data imputation—We imputed missing data for several variables in the questionnaires. Of
the > 1000 variables collected, 44 had sufficient level of missing values to warrant
imputation. Imputation was stratified by study area and recruitment method (random or
convenience). Each of the 44 variables was categorized into one of three groups according to
the level of missingness. The mode or median were imputed for ordinal and continuous
variables missing 0% – 2.5% (n = 29) of the total within each stratified grouping.
Conditional regression was used to impute values for variables missing 2.5% – 5% (n = 13)
within each stratified grouping. Hot-decking was used to impute values missing >5% – 20%
(n = 9) (71). Variables missing > 20% (n = 3) in the stratified groupings were not included
in analyses. Imputed data are not reflected in the summary statistics of this report.
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Statistical analysis
Summary statistics were calculated for demographic information and self-reported
conditions. We used two-sample t-tests to evaluate the difference in means of biomarker
measures between distance categories. Biomarkers with log-normal distributions were
transformed to obtain approximately normal distributions before conducting the tests.

Descriptive data for neighborhood 1: Somerville
Participant recruitment

In the Somerville study area, 261 of the 600 randomly selected households were eligible for
the study. Of this number, 139 completed the in-home questionnaire, with an acceptance rate
of approximately 50%. Eighty-eight (63%) of these provided biomarker data. In addition, 65
residents volunteered for the study and completed the in-home questionnaire. Fifty-seven of
these volunteers provided biomarker data. In total, 204 people were carried forward who
completed an in-home questionnaire. A total of 145 participants attended the first clinic
visit, providing 142 valid blood samples for analysis, and 127 participants returned for a
second clinic visit. Selected data from the in-home questionnaire and first clinical visits in
Somerville are presented in this article.

Characteristics of study participants
The demographic information on study participants from Somerville is presented in Table 2.
In Somerville, demographic factors differed between areas of recruitment. The urban
background had a higher percentage of Whites (93%). The intermediate highway group (100
– 400 m) had the highest percentage of current smokers (30%), whereas the highest number
of former smokers (49%) was in the urban background group. The urban background group
had higher incomes and education than the other two groups, which is a demographic trend
that could cause confounding. In subsequent neighborhoods, we sought urban background
areas with greater demographic overlap with corresponding near-highway areas.

Self-reported diagnosed illnesses and conditions are presented in Table 3. A substantial
percentage of participants reported a doctor diagnosis of chronic illness including
hypertension or high blood pressure, high LDL cholesterol, or diabetes. Descriptive statistics
for blood biomarkers and clinical blood pressure measurements taken at the first clinic are
given in Table 4. Three biomarkers (hsCRP, IL-6, and TNF-RII) were log-transformed to
obtain approximately normal distributions. There were statistically significant differences
between the mean levels of several biomarkers, including hsCRP, between near- and
intermediate-highway groups, as compared with the urban background. The intermediate
group had more significant differences (n = 4) than did the near-highway group (n = 1).

A high proportion of clinical session participants had elevated blood pressure corresponding
to systolic blood pressure ≥ 140 mm Hg, diastolic blood pressure ≥ 90 mm Hg, or pulse
pressure ≥ 50 mm Hg. There was no statistical difference between blood pressure values by
distance groups. However, ABI was statistically lower in the near-highway and intermediate
groups compared with the urban background.

Participant time activity, presented in Figure 3 (n = 204, all Somerville survey completers),
showed differences in travel patterns according to type of day and employment status. Non-
working participants had a similar profile between weekday/workday and weekend/non-
workdays and spent more time indoors at home when compared with working participants.
For working participants, the time inside and outside at home was higher on weekend/non-
workdays as compared with weekday/workdays. These time-activity profiles suggest that
there could be differences in exposure to ambient UFP estimated at the residence between
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working and non-working participants and that characterization of time-activity profiles has
the potential to reduce exposure misclassification.

Preliminary air pollution results
A total of 55 mobile monitoring shifts of 4 – 6 h each were conducted in Somerville. In
addition, 3 full days of monitoring were completed with the TAPL parked at fixed locations
to capture diurnal variations in pollutant levels. Figure 4 shows the spatial variation in UFP
concentration for a single hour of mobile monitoring (05:30 – 06:30 a.m. on January 6,
2010), which demonstrates our ability to capture UFP variations geographically. During this
run, winds came predominately from the west at approximately 2.5 m/s and the temperature
was −4.5 ° C. The predominant wind direction for the entire monitoring period in Somerville
was from the northwest with typical speeds of < 1 – 8 m/s. The figure shows that
concentrations at the time of monitoring were generally higher downwind (i.e., to the east)
of the highway and that UFP were lowest in the background neighborhood. On the upwind
side of the highway, relatively high UFP were also measured at intersections and when
diesel trucks passed the mobile laboratory. Summary figures for the other pollutants are
provided by Padró-Martínez et al. (51).

Data were collected at the MAC site on 347 days in Somerville, including the majority of
days during which mobile monitoring was performed. UFP data from January 14, 2010, a
day of particularly sharp contrasts in wind direction, are shown in Figure 5. The figure
illustrates that, at least at certain times, UFP levels change dramatically in short time frames.
One-minute-averaged UFP concentrations ranged from approximately 10,000 to > 100,000
particles/cm3. UFP levels were highest during periods when the MAC site was downwind of
the highway.

Preliminary air pollution modeling results
We have evaluated > 50 potential explanatory variables related to meteorology (wind,
temperature, and precipitation), time (linear and sinusoidal functions of year, day, and hour),
and highway traffic and distance in models predicting UFP concentration. In models
developed to date, variables related to seasonality, wind speed and direction, and congestion
on the highway were found to be the most significant predictors of ln(UFP) (overall R2 =
0.45). However, higher R2 values were obtained with models that excluded measurements
greater than two standard deviations above the mean (R2 = 0.50). These results show that
our UFP models are highly sensitive to spatial and temporal variations in UFP
measurements made near highways. Our findings are consistent with Larson et al. (65), who
developed regression models for BC based on measurements collected using a mobile
monitoring platform and a data collection strategy similar to ours.

Discussion
The findings made thus far in this project indicate that blood biomarkers of inflammation
and coagulation are higher in participants that live closer to an interstate highway when
compared with those that live further away. Lower ABI was also identified for participants
that lived closer to the highway. There were indications in our first study population
(Somerville) that people living 100 – 400 m from the highway had worse biomarker
measures (Table 4) and that this group was of lower SES than those living immediately next
to the highway (< 100 m). A substantial percentage of participants self-reported
hypertension, diabetes, and high blood pressure. Further, many participants had measured
systolic blood pressure > 140 mm Hg, pulse pressure > 50 mm Hg, or ABI < 0.9. Previous
studies have suggested that these conditions increase vulnerability to air pollution (40, 72).
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The time-activity patterns of participants differed between people who worked and those
who were not employed.

We have collected data from two additional communities along the I-93 corridor:
Chinatown/Malden and South Boston/Dorchester, which enhance socioeconomic, racial, and
ethnic diversity in our sample. Because confounding, especially for SES, is such an
important concern for near-highway studies, we have collected extensive data on factors
including income, education, smoking, diet, physical activity, stress, and obesity. We
supplemented the random sample with a convenience sample to increase the number of
participants in the study. There is a potential for selection bias based on the participation
rates that we achieved, which could affect the generalizability of our findings. There is also
the potential for confounding due to differences in demographic variables between the
background and near-highway populations in Somerville. We will consider this possibility
in the analyses and have sought to improve the demographic overlap between distance
groups in communities following Somerville. Through the selection of three separate near-
highway communities, we also have a variety of characteristics, like building type, and age,
which should give us some insight about variability of near-highway UFP profiles in
different geographic locations. Because of the detailed data collection and available
resources, we are limited to a small number of study areas and a modest sample size (n >
700 for questionnaires and n > 440 for blood samples). However, these data and the multiple
causal pathways that we expect to be operating to affect CV disease make the data set well
suited for analysis using SEM.

It is possible that time-activity may modify individual exposure estimates based on modeled
ambient UFP levels. For those residents living near the highway, where UFP levels are
expected to be higher, this could translate into higher exposures for people who spend more
time at home relative to those who spend more time away from home. The CAFEH study
seeks to reduce exposure misclassification by modeling near-highway UFP with high
temporal and spatial resolution and then modifying the assigned exposure at the residence by
time-activity patterns and infiltration of UFP into the homes. Our efforts are in contrast to
larger studies that generally rely on annual averages of pollutants (NO2, BC) that do not
include fine-grain temporal and special variation in the pollutant (73). For health data, these
studies typically use secondary data from health records, which are limited in terms of
individual confounders as well as time-activity and information on infiltration into the home.
The MESA study is another study, besides ours, that aims to integrate temporal variation in
pollution with time activity data from the study population (61).

Monitoring of UFP concentrations from the city of Somerville near I-93 resulted in a dense
environmental data set of > 1 million data points. Preliminary data show a gradient of UFP
concentration extending from the highway and short-term fluctuations due to wind direction.
Early modeling efforts suggest that season, wind speed and direction, and traffic volume are
important predictors of UFP levels.

The methods and approach that we have used have several strengths. Primary among them
are that we collected objective measures of both exposure (UFP) and response (blood
markers), that we have extensive data on individual factors for participants, that we have a
very dense environmental near-highway data set, and that we are conducting careful
exposure assessment that will apply individual doses to each participant. There are,
however, some significant limitations. The study is cross-sectional and therefore unable to
show causal links between exposure and outcome. Additionally, our modest sample size
prompted us to supplement our random sample with a convenience sample, and our study
areas and sample will have limited generalizability.
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In summary, central to our effort is to progress beyond measurement of proximity and time
series and to utilize collected data and a detailed analytic approach to assess chronic
exposure to UFP elevated near highways and markers of CV health risk. Our preliminary
results summarized here lead us to believe that our study design and methods are well
matched to our overall goal.

Sidebar
Risk perception substudy

The in-home questionnaire included a substudy to investigate community and cultural
understanding of the health effects of air pollution. Scientists generally interpret risk as the
probability of an adverse event, associated with some index of its severity. However, most
people use heuristics – readily available decision rules – to interpret risk, and the
characteristics of risks other than scientific calculations are key to people’s willingness to
accept them (74, 75). Cultural theories of risk attempt to explain how risk perception and the
response to risk is shaped by the characteristics of ethnic cultures and institutions. A central
tradition in this field is built upon a two-dimensional classification of cultural propensities,
labeled “group” and “grid” (76). “Group” (solidarity) refers to the degree to which the
individual’s life is absorbed in and sustained by group membership. “Grid” (hierarchy)
refers to the extent to which people endorse status differences, whether of gender, race, or
class as opposed to favoring equality.

The questionnaire operationalizes items that encompass the grid/group construct, which
have been shown to be associated with sociodemographic characteristics (77). Pilot testing
was conducted with these items with an ethnically diverse convenience sample. The in-home
questionnaire also includes a short version of the Multidimensional Health Locus of Control
Scale (78), a psychologic dimension likely to be associated with risk perception.
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Figure 1.
Process diagram of the CAFEH Project.
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Figure 2.
Map of southeast Somerville, MA, USA, showing I-93, roadways, fixed monitoring sites,
and approximate locations of study participants.
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Figure 3.
Summary of time-activity data for all participants from Somerville (n = 204) according to
employment status and type of day: (A) weekday/workday for employed participants; (B)
weekday/workday for unemployed participants; (C) weekend/non-workday for employed
participants; (D) weekend/non-workday for unemployed participants.

Fuller et al. Page 20

Rev Environ Health. Author manuscript; available in PMC 2013 July 11.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 4.
Mobile monitoring data showing UFP concentrations in the 6- to 3000-nm-size range in east
Somerville from 5:30 to 6:30 a.m. on January 6, 2010.
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Figure 5.
Time series of UFP concentration measured at the MAC site on January 14, 2010.
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Table 1

Instrumentation used during environmental monitoring.

Parameter Equipment Averaging time

TAPL

 UFPa TSI CPC, Model 3775 1 s

 PM2.5 TSI Sidepak, Model AM510 10 s

 Particle size distribution TSI SMPS, Model 3936L75 120 s

 NO/NOx ThermoElectron, chemiluminescence analyzer, Model 42i 20 s

 CO ThermoElectron gas filter correlation analyzer, Model 48i-TLE 10 s

 pPAH Ecochem PAS, Model 2000CE 8 s

 BC Magee Scientific Aethalometer, Model AE-16 60 s

Fixed site (Somerville)

 UFPa TSI CPC, Model 3781 60 s

 pPAH Ecochem PAS, Model 2000CE
Ecochem PAS, Model 2000

120 s

 Meteorology Vantage Pro2 5 min

a
PNC is measured as the proxy for UFPs.
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Table 2

Demographic characteristics of Somerville participants in the CAFEH study.

Characteristic All participants (n =
204)

Within 100 m (n =
58)

100 – 400 m (n =
103)

> 1000 m (n = 43)

Age, mean (range) 59 (40 – 89) 56 (40 – 85) 60 (40 – 85) 60 (40 – 89)

Female, n (%) 134 (66) 35 (60) 68 (67) 31 (73)

Race/ethnicity, n (%)

 White 162 (79) 42 (72) 80 (78) 40 (93)

 Non-White 38 (19) 13 (22) 22 (21) 3 (7)

 Hispanic 23 (11) 11 (21) 12 (12) 0 (0)

Smoking, n (%)

 Current 44 (22) 10 (17) 31 (30) 3 (6)

 Former 73 (49) 13 (22) 40 (39) 20 (46)

 Never 75 (51) 28 (50) 28 (27) 19 (42)

 Missing 12 (6) 7 (12) 4 (4) 1 (2)

Annual household income, n (%)

 < $ 24,999 72 (35) 16 (27) 50 (48) 6 (14)

 $ 25,000 – 74,999 65 (32) 25 (43) 29 (28) 11 (25)

 $ 75,000 or more 37 (18) 6 (10) 13 (13) 18 (42)

 Do not know/refused 25 (12) 10 (18) 9 (9) 6 (14)

Terminal degree, n (%)

 Less than high school diploma 54 (21) 11 (19) 27 (26) 6 (14)

 High school diploma 86 (43) 28 (50) 50 (50) 6 (16)

 Undergraduate (including junior college) 43 (21) 14 (24) 13 (13) 16 (37)

 Graduate 28 (14) 3 (5) 11 (10) 14 (32)

Employment, n (%)

 Working full or part time 92 (45) 30 (52) 37 (36) 25 (58)

 Retired, disabled, or unemployed 106 (52) 26 (45) 63 (61) 17 (39)

Note: The percentages for each characteristic may not total 100% due to missing data.
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Table 3

Self-reported diagnosed illnesses and conditions for Somerville participants in the CAFEH study.

Condition All participants (n = 204) Within 100 m (n = 58) 100 – 400 m (n = 103) > 1000 m (n = 43)

Congestive heart failure 12 (6) 2 (3) 9 (9) 1 (2)

Myocardial infarction 12 (6) 2 (3) 8 (8) 2 (5)

Hypertension or high blood pressure 94 (46) 23 (38) 55 (53) 16 (37)

High LDL cholesterol 84 (41) 24 (40) 48 (47) 12 (28)

Stroke 6 (3) 1 (2) 4 (4) 1 (2)

Angina 8 (4) 1 (2) 6 (6) 1 (2)

Diabetes or high blood sugar 38 (19) 9 (15) 25 (24) 4 (9)

Rheumatoid arthritis 19 (9) 5 (9) 11 (11) 3 (7)

Asthma 42 (20) 11 (19) 20 (19) 11 (25)

Data are n (%).
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