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Abstract
Cerebral cavernous malformations (CCM) are divided into sporadic and familial forms. For
clinical imaging, T2-weighted gradient-echo sequences have been shown to be more sensitive than
conventional sequences. Recently more advanced imaging techniques such as high-field and
susceptibility-weighted magnetic resonance imaging has been employed for the evaluation of
CCMs. Furthermore, diffusion tensor imaging and functional magnetic resonance imaging have
been applied to the preoperative and intraoperative management of these lesions. In this paper, the
authors attempt to provide a concise review of the emerging imaging methods utilized in the
clinical diagnosis and treatment of CCMs.
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Cerebral cavernous malformations (CCM) are present in roughly 0.5% of the
population17,44. These lesions are made up of clusters of deformed vessels, lined by
endothelium and filled with blood at various stages of thrombosis12,20. The annual risk of
hemorrhage ranges from 0.7 to 1.1% per lesion per year44. Typically, patients with single
lesions have a sporadic form of the disease, while those with multiple lesions (10–31% of all
cases) often have an autosomal dominant form localizable to the CCM1, CCM2 or CCM3
gene loci7,18,28,32,45. The hallmark of familial CCM is the presence of multifocal lesions
throughout the brain with the appearance of new lesions over time26. The sporadic form of
CCM is often characterized by a solitary lesion (or a cluster of lesions) in association with a
DVA3.

Prior to the widespread use of MR imaging, CCMs were thought to be rare entities. Modern
MR imaging sequences are highly sensitive for detecting CCMs as well as associated
hemorrhage at various stages of thrombosis and reorganization30. Typically, T2-weighted
sequences portray these lesions as areas of mixed signal intensity, with a central complicated
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core and a peripheral rim of decreased signal intensity9,16. T2-weighted gradient-echo
(T2*GRE) imaging has been promoted as the gold standard MR imaging sequence for both
sporadic and familial CCMs30,54. In the current study, we review the current literature and
describe the use of emerging imaging techniques being utilized for the diagnosis and
treatment of this entity.

Methods
The PUBMED and MEDLINE databases were searched for publications from 1966 to the
present using MeSH terms “cavernoma”, “cavernous malformation”, “imaging”, “diffusion
tensor imaging”, “susceptibility weighted”, “gradient echo”, “functional MR imaging”,
“Tesla” and “High field MR imaging”. The search was limited to articles in the English
language and relating to human subjects. Reference sections of recent articles and reviews
were reviewed and pertinent articles identified. Initially, relevant articles were retrieved in
abstract format. Full-text manuscripts were subsequently obtained for all original articles
applicable to the current review. The review was supplemented by work currently in
progress at the authors’ institutions.

Results and Discussion
Conventional MRI Features of CCM

Conventional MRI sequences (T1- and T2-weighted imaging) have been associated with the
ability to identify clinically symptomatic CCM lesions with a specificity and sensitivity
nearing 100%42. Many CCMs have a characteristic MR imaging appearance which includes
a peripheral ring of hypointensity secondary to hemosiderin deposition in the surrounding
parenchyma from repeated micro-hemorrhages43. Some authors describe this manifestation
as an imaging appearance associated with a limited differential diagnosis19. A classification
system based on imaging and pathologic features has been reported to stratify these
heterogeneous lesions54. Type I lesions are characterized by hyperintensity on both T1- and
T2-weighted images (depending on the state of methemoglobin) which is consistent with
subacute hemorrhage16. In Type II malformations, loculated regions of hemorrhage are
surrounded by gliosis and hemosiderin-stained brain parenchyma. These CCMs exhibit a
mixed-signal intensity core on both T1- and T2-weighted images, with a well-circumscribed
hypointense rim on T2-weighted imaging, and are the classic CCM with a “popcorn”
appearance and a predilection to produce recurrent symptoms11. Type III lesions
demonstrate a core that is iso- or hypointense on T1-weighted sequences and hypointense on
T2-weighted sequences as well as a rim that is hypointense on T2-weighted sequences,
compatible with chronic resolved hemorrhage or hemosiderin within and surrounding the
lesion. Type IV malformations are minute lesions often seen as punctate hypointense foci on
GRE MR images. Pathologically, Type 4 lesions may represent capillary telangiectasias or
early stage CCMs seen frequently in the familial form33,43,54. The appearance of CCM may
vary by MR imaging sequence as a result of differential magnetic susceptibility of blood
products at different ages within the lesion, and the surrounding hemosiderin ring (Fig. 1).

Contrast enhanced imaging is particularly useful in the diagnostic evaluation of CCM, and
in clarifying differential diagnosis. The presence of an associated DVA is more likely to
define the nongenetic nonfamilial form of the disease3,20. Also, the presence of an
associated DVA may influence surgical decisions, especially with regard to surgical
maneuvers aimed at avoiding injury to the DVA and consequences of venous ischemia. The
concept of lesion cure with surgical resection must be tempered when resecting a solitary
CCM but leaving behind an overt DVA (which could later contribute to CCM recurrence).
Contrast enhancement may delineate patterns of overt enhancement consistent with other
pathology than CCM, particularly tumors (homogeneous enhancement), or arteriovenous
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malformation (serpiginous enhancement). Finally, punctate enhancement in association with
CCM’s on enhanced T1 images, without hemosiderin “blossoming” on T2*GRE sequences,
has been suggested to represent capillary telangiectasia, most commonly reported in the
pons as well as in the bed of DVAs40.

Diagnosis of CCM - Gradient Echo
Areas of the brain containing hemosiderin-laden tissue demonstrate a more recognizable
hypointensity on T2-weighted GRE than either T2-weighted conventional spin-echo (SE) or
fast spin echo (FSE) MR sequences due to magnetic susceptibility effects4,8,21,23. As such,
T2*-weighted GRE imaging has been recommended as the most sensitive technique to
evaluate CCM lesions in both the sporadic and familial forms of the disease30,54. During an
in-depth evaluation of 57 French families with a history of familial CCM, Labauge et al27

found approximately 5% probability that conventional MR imaging, without a T2*GRE
sequence, would fail to spot a CCM. Furthermore, these authors reported mean number of
lesions per person was five on standard MR imaging, while on T2*GRE sequences, the
mean number of lesions detected was 16 (p<0.001)27. Other authors have reported a higher
sensitivity with T2*GRE when compared to other sequences as well10,39. In evaluating a 3
generation family with familial CCM, Lehnhardt et al.30 compared standard T1-weighted
and T2-weighted SE sequences to T2*GRE sequences and noted a dramatically improved
sensitivity with regard to lesion number and disease extension. When evaluating CCMs in
association with DVA, the T2*GRE sequences may exclude or better delineate associated
CCMs (Fig. 2).

The advantages of T2*GRE must be tempered by the effect of hemosiderin “blossoming”
which effectively increases the apparent size of the CCM lesion. Hence, lesions may appear
to extend to a pial or ependymal surface by T2*GRE, while in fact they are surrounded by
several millimeters of normal or simply hemosoiderin stained brain tissue. This is extremely
important to realize when planning surgical approaches to lesions in brainstem, or other
eloquent or deep-seated locations. Also, T2*GRE sequences often reveal multifocal lesions
in the setting of elderly patients with hypertension and history stroke, and the lesions often
are distributed in the same territory as hypertensive angiopathy, and should be differentiated
in clinical context from CCM (Fig. 3). Currently, T2*GRE sequences are considered an
essential adjunct to the MR imaging of CCM. They are the method of choice in the
sensitivity of detection and diagnosis of CCM, but should be supplemented by other
sequences for more precise lesion definition, and by careful differential diagnosis.

Emerging Concepts in CCM Imaging
High Field MR Imaging—At present, low-flow vascular malformations, such as CCMs,
are most frequently evaluated with standard 1.5 Tesla MR imaging based upon hemosiderin-
induced susceptibility effects, which cause signal cancellations visible on T2*GRE
sequences29. With standard imaging techniques, roughly 30% of epilepsy patients are not
found to have an underlying lesion; some authors have posited an improved detection of
CCMs could aid in the identification of CCMs (causing cryptogenic seizures) not visualized
at 1.5 T22,46. Several authors have investigated the imaging effects of high field MRI in both
experimental and clinical settings36,38,46,48,49. Shenkar et al.48,49 evaluated ex-vivo human
CCMs and murine CCMs by high-resolution MRI at 9.4 or 14.1 T. The results obtained by
using high-field MR imaging correlated with the histopathological findings using confocal
microscopy, confirming angioarchitecture of CCMs at near histological resolution48,49.
Novak et al.36 reported a case of a 55 year old with a frontal hemorrhage, although at 1.5
Tesla the CCM was not apparent. When closely analyzed, the CCM appeared larger and
signal loss was several times greater on 8 T MR images than on 1.5-T images36. Schlamann
et al.46 performed imaging on 10 consecutive CCM patients at 1.5 and 7 T. These authors
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found one additional hypointensity which was not visible in the 1.5 T examination, and
multiple new small hypointense lesions were detected at 7 T in a patient with familial CCM.
However, because of increased susceptibility artifacts, these lesions appeared on average
11% larger in the 7 Tesla images46. Given that magnetic susceptibility artifact is known to
increase with the field strength and is readily captured by T2*GRE, CCMs not readily
apparent on 1.5-T MR imaging may become more decisively detectable with higher
magnetic field strengths1,2. Furthermore, these authors assessed lesion prevalence at high
field using SW imaging, and at lower field using GRE sequences46. As a result, it remains
unknown if the increased sensitivity reported by those authors is attributable to high field
per se, or to SW imaging sequences as discussed below.

Susceptibility-Weighted MR Imaging—The CCM lesions contain deoxyhemoglobin
and hemosiderin, which causes susceptibility effects and a decrease in signal intensity on
T2-weighted sequences. Susceptibility weighted imaging provides a new mode that is
particularly suited for imaging vascular malformations as it is very sensitive to
deoxyhemoglobin and iron content6,53. This sequence is assembled from both magnitude
and phase images from a high-resolution, 3D velocity-compensated GRE sequence41.
Currently, this method is believed to be the only imaging method capable of appropriately
detecting nonhemorrhagic cavernomas and telangiectasias38. Lee et al.29 were the first to
describe the use of SW imaging for imaging cavernomas. These authors presented a series of
10 patients who underwent both T2-weighted and SW MR imaging and found that not only
were the margins of the CCMs better delineated, by SW imaging also revealed 2 additional
lesions that were not seen on T2-weighted images29. Cooper et al.15 reported a case of a 59
year-old familial CCM patient in which SW imaging detected nearly triple the number of
lesions compared to the T2*GRE sequences. Pinker et al.38 evaluated 17 patients harboring
CCMs with a standard 1.5 T MR imaging in comparison to a 3-T MR imaging which
included the SW imaging sequences. In this series, the 3-T SW MR imaging found an
additional 7 lesions in 6 patients; however, it is unclear whether these patients had sporadic
or familial CCMs. In a recent study, based on 15 subjects with familial CCMs and a mean
age of 34 years old, de Souza et al.16 found the following average number of lesions per
patient: 5.7 on T2-weighted imaging; 26.3 on T2*GRE imaging and 45.6 on SW imaging.
Thus the number of lesions seen on SW imaging was 1.7 times higher than that of T2*GRE
(p=0.001)16. In the largest study to date, 23 cases were assessed by the senior author (IAA)
and colleagues in Montpellier, France, which confirmed nearly twice the number of lesions
detected by SW imaging as compared to T2*GRE sequences; however, this phenomena was
only observed in the 14 familial cases. In none of 9 cases with solitary CCM or clustered
lesions in the bed of a DVA did the SW imaging recognize additional lesions other than
those noted on T2*GRE images (Menjot, et al., manuscript in preparation). Hence, SW
imaging seems to increase the sensitivity of lesion detection in familial multifocal CCM
lesions, it does not per se appear to reveal lesion multiplicity that had not been already
demonstrated by T2*GRE (Figs. 4 and 5). The SW images are highly sensitive to
delineation of associated venous anomalies, and possibly telangiectasias, without the need
for contrast enhancement. This feature may be a significant advantage in pregnant patients,
those with renal impairment and patients with allergic reactions to Gd-based contrast agents.

While SW imaging is not yet widely available it is possible that, given the early clinical data
suggesting its effectiveness, it may be added into the routine imaging assessment of vascular
malformations as improvements in software technology allow its acquisition and
dissemination. These sequences might provide endophenotypic markers of disease burden in
familial CCM that should be correlated with disease penetrance and aggressiveness in
different individuals and kindreds, and with the response to potential therapeutic
interventions.
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The ultimate applicability of SW imaging is limited by several factors. First, as with
T2*GRE, it is difficult to differentiate small venous structures from small hemorrhage and
thrombosis. However, sequential SW imaging before and after Gd administration, could
ameliorate this deficiency31. As previously noted, the higher sensitivity of SW sequences
may not apply to sporadic or solitary CCMs, or CCM clusters associated with DVA. While
SW imaging has shown greater ability to identify lesions in familial CCM, the necessity to
apply this imaging modality to sporadic CCMs has yet to be demonstrated. We are not
aware of a case in which a solitary lesion was detected on T2*GRE that was later found to
be associated with occult lesion multiplicity on the more sensitive SW imaging (Fig. 5). As
such, future studies should specifically address SW imaging sensitivity in cases of sporadic
CCM, those associated with DVA and radiation induced CCMs.

Finally, the nature of those lesions which are delineated on SW imaging and remain occult
on T2*GRE remains unclear (Fig. 4). Some may be better resolved in the 3D sequence
acquisition of SW imaging, while they may have been diminished by “volume averaging” in
the typically 2D acquisition of T2*GRE images. The occult punctate lesions may also
represent non-hemorrhagic capillary telangiectasias, often reported in conjunction with
CCM, which could also represent precursors to more mature CCMs5.

Imaging in Intraoperative Management
The Use of Diffusion Tensor Imaging—Diffusion tensor imaging is an MR imaging
technique that may be effectively used to visualize the directionality and orientation of white
matter tracts in the brain37. Diffusion tensor tractography has been effectively used to
evaluate the charactericstics of the hemosiderin rim surrounding CCMs as well as in surgical
planning for the resection of CCM in eloquent areas11,13,14,35. Cauley et al11 performed DT
tractography on 18 patients with solitary CCMs and found that white matter tracts deviated
around the center of CCMs, often passing through the hemosiderin rim. Niizuma et al35

successfully utilized DT with fiber tracking to determine the location of the displaced
corticospinal tract in the removal of a paraventricular CCM. Chen et al13,14 have reported
the used of DT imaging for the removal of several brainstem lesions including a CCM. They
reported DT fiber tracking revealed the anatomical relationship between the local eloquent
tracts and the CCM, thus altering their approach and preventing patient morbidity14. Several
authors speculate DTI may be a useful preoperative imaging evaluation for patients with
deep-seated lesions impinging upon white matter tracts14,35. Thus, the use of DTI may
enhance the decision making process in the selection of surgical approaches by providing an
enhanced understanding the relevant functional tracts.

Use of fMR Imaging—Functional MR imaging has the ability to integrate anatomic and
functional information. Preoperatively, this imaging technique has the capacity to provide a
useful representation of both task-related hemodynamic changes in the associated cortical
area as well as the pathology through a single imaging modality25. An early case report
described the successful use of fMR imaging in the preoperative assessment of a left central
CCM34. Thickbroom et al52 evaluated blood-O2-level-dependent contrast fMR imaging in 3
CCM patients and noted some difficulty in correctly isolating the critical regions of eloquent
cortex secondary to the associated susceptibility effect. Schlosser et al47, working with the
senior author (I.A.A.), did not report any such difficulty. These authors continue to utilize
fMR imaging in clinical practice, even in cases with recent bleeding (Fig. 6). The data from
fMR imaging is often supplemented by intraoperative mapping of sensorimotor sulcus by
reversal of evoked potential amplitude or direct cortical stimulation55. Zotta et al.56 used
traditional MR imaging and fMR imaging fusion to aid in preoperative planning as well as
intraoperative guidance. In this series, the authors achieved greater rates of seizure freedom
in the group of CCMs in eloquent areas operated with the aid of fMR imaging as compared
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to the group without this modality56. While fMR imaging has demonstrated a clear benefit
over other modalities such as brain mapping or somatosensory evoked potentials for tumors
located in primary motor cortex, more comprehensive studies to evaluate this technique in
the setting of CCMs are needed50. Specifically, an improved outcome may be attributed to
fMR imaging information, while in fact it was achieved because of a combination of
information modalities. In CCM, functional data may affect the surgical route chosen to a
lesion, and also the extent of resection of perilesional epileptogenic brain in cases with
intractable epilepsy24,51,56.

Conclusions
Prior to the advent of MRI, evaluation of CCMs was limited to diagnostic angiography and
CT. Currently, MR imaging is the best imaging method to evaluate CCMs, with T2*GRE
sequences being described as the “gold standard.”10,30,54 As the use of more advanced
imaging techniques continues to achieve widespread distribution, high-field MR imaging
and SW MR imaging are likely to become commonplace for the diagnosis and follow-up of
these lesions. Additionally, applications such as DT imaging and fMR imaging may achieve
more relevance as intraoperative navigational modalities for deep-seated lesions in eloquent
areas.

Abbreviations used in the paper

CCM cerebral cavernous malformation

DT diffusion tensor

DVA developmental venous anomaly

GRE gradient echo

fMR functional MR

SW susceptibility weighted

T2*GRE T2-weighted GRE
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Fig. 1.
Subtle changes in appearance of solitary CCM with different MR imaging sequences,
reflecting differential sensitivity of blood breakdown products at different ages, and low
flow in dilated cavernous channels. The MR imaging appearance of human CCM lesions,
including high field ex-vivo image correlations with confocal microscopy are presented in
detail by Shenkar et al49.
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Fig. 2.
Multiple MR imaging sequences in a patient presenting with temporal lobe seizures. The
T2-weighted sequence (A) illustrates subtle abnormality in the left posterior mesiotemporal
region, consistent with non-specific hemosiderin deposition. The Gd-enhanced T1-weighted
image (B) delineates a prominent venous structure with “caput medusae” pattern, associated
with the T2-weighted signal, likely suggesting an associated DVA. The T2*GRE image (C)
reveal much better delineation of multiple foci of CCM.
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Fig. 3.
A T2*GRE MR image showing multifocal hemorrhagic lesions in an elderly patient with
previous strokes, including recent intracerebral hemorrhages associated with untreated
hypertension. The T2*GRE MR imaging sequences revealed multifocal occult tiny
hemorrhagic lesions, interpreted as hypertensive angiopathy. These are differentiated from
familial CCM disease by the clinical setting and by the clustering of lesions in
periventricular areas most vulnerable to hypertensive angiopathy. Conversely, CCM disease
is associated with lesions in a volume distribution throughout the brain.
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Fig. 4.
Representative T1-weighted (A), T2*GRE (B), and SW (C) MR images obtained in a patient
with a family history of familial CCM disease, who presented for routine MR imaging
screening. The T2 sequences (A) reveal 2 suspected CCM lesions, which were better
delineated on T2*GRE sequences The T2*GRE sequences (B) also suggesting perhaps 1 or
2 additional subtle lesions. The SW images (C) reveal many additional lesions throughout
the brain.
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Fig. 5.
Representative T1-weighted (A), T2*GRE (B), and SW (C) MR images obtained in a patient
with a solitary sporadic CCM that was discovered incidentally in the workup of an unrelated
neoplasm. The T1-weighted contrast-enhanced images (A) revealed a suspected CCM in the
right frontal cortex (left), and subtle abnormal venous prominence in superior and medial to
the lesion (not shown). The T2*GRE images (B) better delineated the same lesion. The SW
sequences (C) revealed no additional lesions, although they also demonstrate the suspected
venous anomaly.
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Fig. 6.
Representative CT scan an T2-weighted (B), T1-weighted (C), and functional (D) MR
images obtained in a patient who presented with acute onset of left arm and hand paresis.
The CT examination (A) revealed focal hemorrhage in the rolandic region. T2-weighted
images (B) revealed a hemorrhagic lesion with surrounding edema, consistent with acute
hemorrhage. The T1-weighed images (C) did not clearly clarify the location of sensorimotor
structures in relation to the lesion. These were easily outlined by functional MR imaging
(D), with zones of activation in response to left hand movement shown in red-orange. The
region of functional activation on fMR imaging corresponded to reversal of somatosensory
median nerve evoked sensory potential recording on the cortical surface, confirming the
location of the rolandic sulcus. A more posterior sulcus was chosen for image-guided
transsulcal microsurgical resection of the lesion (blue arrow), which proved to be a CCM,
and the resection was accomplished without worsening in motor or sensory function.
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