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Abstract
The AMP-activated protein kinase in yeast, Snf1, coordinates expression and activity of numerous
intracellular signaling and developmental pathways, including those regulating cellular
differentiation, response to stress, meiosis, autophagy, and the diauxic transition. Snf1
phosphorylates metabolic enzymes and transcription factors to change cellular physiology and
metabolism. Adr1 and Cat8, transcription factors that activate gene expression after the diauxic
transition, are regulated by Snf1; Cat8 through direct phosphorylation and Adr1 by
dephosphorylation in a Snf1-dependent manner. Adr1 and Cat8 coordinately regulate numerous
genes encoding enzymes of gluconeogenesis, the glyoxylate cycle, β-oxidation of fatty acids, and
the utilization of alternative fermentable sugars and nonfermentable substrates. To determine the
roles of Adr1, Cat8, and Snf1 in metabolism, two-dimensional gas chromatography coupled to
time-of-flight mass spectrometry and liquid chromatography coupled to tandem mass
spectrometry were used to identify metabolites whose levels change after the diauxic transition in
wild-type-, ADR1-, CAT8-, and SNF1-deficient yeast. A discovery-based approach to data
analysis utilized chemometric algorithms to identify, quantify, and compare 63 unique metabolites
between wild type, adr1Δ, cat8Δ, adr1Δcat8Δ, and snf1Δ strains. The primary metabolites found
to differ were those of gluconeogenesis, the glyoxylate and tricarboxylic acid cycles, and amino
acid metabolism. In general, good agreement was observed between the levels of metabolites
derived from these pathways and the levels of transcripts from the same strains, suggesting that
transcriptional control plays a major role in regulating the levels of metabolites after the diauxic
transition.

© Springer-Verlag 2011

Correspondence to: Robert E. Synovec, synovec@chem.washington.edu.

Electronic supplementary material The online version of this article doi:10.1007/s00216-011-4800-2) contains supplementary
material, which is available to authorized users.

NIH Public Access
Author Manuscript
Anal Bioanal Chem. Author manuscript; available in PMC 2013 July 11.

Published in final edited form as:
Anal Bioanal Chem. 2011 November ; 401(8): 2387–2402. doi:10.1007/s00216-011-4800-2.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://dx.doi/org/10.1007/s00216-011-4800-2


Keywords
GC×C–OFMS; Chemometrics; PARAFAC; Snf1 protein complex

Introduction
Metabolomics studies are capable of offering a unique, and complementary, perspective on
cellular processes [1–3]. The complex chemical nature of cellular metabolite extracts
requires powerful instrumentation to isolate and identify specific analytes (i.e., metabolites)
[4–6]. Additionally, powerful data analysis techniques are often necessary in order to glean
the most useful information from the complex data these instruments generate. A
“discovery-based” approach can be particularly useful to draw out specific chemical
differences between samples in hypothesis-driven studies, thus providing insight into
cellular physiology [7–13].

AMP-activated protein kinase (AMPK) has been referred to as the energy sensor of the cell
and can have a large impact on cellular physiology, thus is a good subject for metabolic
studies. AMPK responds to a variety of internal and external signals to balance anabolic and
catabolic processes and ensure that a constant supply of glucose is available to maintain
metabolic homeostasis. Changes in AMPK activity allow the cell to modulate its use and
production of energy stores, changing from an energy consuming to an energy producing
state as conditions necessitate [14, 15]. AMPK controls the activity of metabolic enzymes at
two levels [16]. An immediate consequence of AMPK activation is phosphorylation of
metabolic enzymes. A longer-lasting effect on metabolism is brought about by
transcriptional changes induced by AMPK, of which there are many examples [17–19].

Snf1 is the AMPK homolog in the budding yeast, Saccharomyces cerevisiae. Its trimeric
structure, consisting of an activating γ subunit (Snf4), alternative regulatory scaffolding β-
subunits (Sip1, Sip2, and Gal83) and a catalytic α-subunit (Snf1) is similar to that of the
mammalian AMPK [15]. Snf1 is regulated in an analogous manner to mammalian AMPK
via activation by upstream kinases that phosphorylate the α-subunit and inactivation by
dephosphorylation. Snf1 controls the response of many enzymes to glucose starvation,
allowing yeast cells to shift from fermentative to aerobic metabolism during the diauxic
transition [20]. During fermentation, glucose is metabolized through the glycolytic pathway
to produce ATP inefficiently but abundantly as long as a fermentable substrate is present.
When glucose is depleted, metabolism is adjusted to utilize previously secreted by-products
of fermentation such as ethanol and glycerol, as well as fatty acids stored as membrane
lipids. The acetyl CoA produced from these pathways enters the tricarboxylic acid (TCA)
cycle in the mitochondrion to be oxidized via the respiratory chain, producing ATP and
reduced NAD for energy-requiring processes. At the same time, gluconeogenesis and the
glyoxylate cycle are activated to produce intermediates for the biosynthesis of proteins,
carbohydrates, and nucleic acids.

Evidence of changes related to the available carbon source can be observed at the metabolite
level [7]. The same discovery-based metabolomics approach was also used to illuminate
differences between a wild-type strain and a snf1Δ strain. Studying the role of Snf1 was
initiated by analyzing the time dependence of Snf1-dependent changes in metabolite levels
during the transition from fermentation to respiration by comprehensive two-dimensional
gas chromatography coupled to time-of-flight mass spectrometry (GC× GC–TOFMS) [8].
Expanding upon these observations, metabolite data from a separate snf1Δ study was
incorporated with transcriptome and proteome data to begin highlighting the regulatory
network [21]. Some differences were found between the two studies, likely due to the
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difference in growth conditions: batch culture [8] as compared with steady-state chemostat
cultivation [21].

The influence of Snf1 on metabolism is brought about by both phosphorylation of metabolic
enzymes and by transcriptional reprogramming during the diauxic transition. Little is known
about the role of enzyme phosphorylation by Snf1 [22, 23] but its control of transcription
factors has been studied extensively [24–26]. The best-studied transcription factor target of
Snf1 is the DNA binding repressor, Mig1. Snf1 phosphorylates and inactivates Mig1 when
glucose is depleted, allowing glucose-repressed genes to be activated. One of these is the
transcriptional activator, Cat8, whose expression is repressed by Mig1. Upon glucose
depletion, Snf1 phosphorylates and activates Cat8, which in turn binds to and activates
genes encoding enzymes in the gluconeogenic and glyoxylate cycle pathways. Snf1 also
activates Adr1, a transcription factor necessary for expression of genes encoding enzymes
required for the utilization of alternative carbon sources such as ethanol, glycerol, lactate,
amino acids, and fatty acids [27], by promoting dephosphorylation of Ser98 in the DNA
binding domain [28] and Ser230 in the regulatory domain [29].

Transcriptomics studies are very powerful for providing insight into biochemical processes,
especially when augmented with metabolomics studies. A global analysis of the yeast
transcriptome in wild-type, snf1Δ, cat8Δ, adr1Δ, and adr1Δcat8Δ mutants allowed the
contribution of the two transcription factors to Snf1-dependent gene expression to be
distinguished. Many of the affected genes were shown to be direct targets of Adr1 and Cat8
[27, 30]. A major question raised by these transcriptional studies is to what extent mRNA
levels accurately reflect the activity of the pathways downstream of the encoded enzymes.
This question is particularly important because many enzymes of intermediary metabolism
are encoded by multiple isozymes whose individual contributions to metabolite levels are
unknown. Investigating downstream effects with proteomics or metabolomics are
approaches to answer this question. Integrating metabolomics with other global analyses,
such as genomic, transcriptomic, or proteomic studies, presents a broad and ultimately
comprehensive picture of cellular physiology [2, 3, 31–35]. When metabolomics is
combined with analysis of the transcriptome, specifically, the influence of regulatory
pathways on these two mechanistically different aspects of metabolic control can begin to be
teased apart.

Discovery-based metabolomics is well suited to address this question because specific
metabolite differences in various strains can be determined. A global approach to study
metabolism in AMPK-deficient cells requires powerful instrumentation, such as GC×GC–
TOFMS [36–40] that is well suited for separating complex samples [7, 8, 11–13, 41– 44].
Chemometric data analysis algorithms are useful in order to draw information out of the
large amount of data generated by this instrumentation [7, 8, 11–13, 45]. The discovery-
based approach utilizes the separation and the mass spectral information in the raw data
cube to find specific analyte differences between sample classes. This often provides the
most insight into how those sample classes (i.e., mutant strains) differ overall. The analytes
that differ between classes can then be identified and quantified with another software
algorithm, parallel factor analysis (PARAFAC), which isolates the pure analyte signal from
background noise and any overlapping peaks [46–49]. The combination of these
chemometric data analysis tools provides a powerful approach in mutant studies as
differences between strains are readily identified and quantified for further interpretation.

Because the metabolome contains molecules having a wide range of chemical properties,
these studies can benefit from using more than one complementary instrumentation
approach. In fact, there is currently no single chemical analysis method available to study all
metabolites simultaneously [4–6]. GC is more amenable to smaller volatile analytes or those
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that can be made volatile with a chemical derivatization step while liquid chromatography
(LC) is better suited for the larger, less volatile, compounds. The combination of these
complementary approaches offers greater metabolite coverage than either one
independently. If enough metabolites are detected, the compilation of the information can be
used to determine how mutations impact functionality and the activity of specific metabolic
pathways.

In order to provide a more global investigation of metabolic pathways, in this report, both
GC×GC–TOFMS and liquid chromatography coupled to tandem mass spectrometry (LC–
MS/MS) were used to determine differences between wild-type yeast and four mutant
strains (snf1Δ, adr1Δ, cat8Δ, and adr1Δcat8Δ) grown in the absence of glucose.
Metabolites that differed between strains were identified based on information from
previous related studies [7, 8, 11] and from a feature selection algorithm, referred to as the
S-ratio method [12]. The S-ratio method refers to finding the locations in the 2D separation
space for GC×GC, where the signal ratio is significantly different than one (indicating an
up- or down-regulation of a particular metabolite). The metabolites located via the S-ratio
method were then quantified using PARAFAC. Principal component analysis (PCA) was
used as a comparison tool to attain a global view of metabolite information in these strains.
Additionally, statistical analyses were performed to determine metabolites that showed
significant changes between strains. To gain a better understanding of the different aspects
of metabolic control, the metabolite levels from this study were integrated with previously
published RNA data [27] for pathways containing statistically significant metabolites
(primarily the TCA cycle, glyoxylate cycle, and gluconeogenesis.) Good agreement was
found between mRNA and metabolite levels in these pathways, indicating that regulation at
the level of transcription is an important determinant of metabolic activity.

Materials and methods
Yeast cells and culture conditions

A wild-type yeast strain (CKY19-1) was compared with four mutant yeast strains. The
appropriate open reading frames were replaced with a kanMX gene cassette to create the
following mutations; adr1Δ (CKY13-1), cat8Δ (CKY15-1), snf1Δ (CKY17-1), and
adr1Δcat8Δ (CKY23-1). All strains were grown in fermentable (repressing) synthetic
complete (SC) medium containing 5% glucose as the carbon source. At time 0 h, the cell
cultures were collected by centrifugation at 4 °C and washed once with cold sterile synthetic
medium, (SC lacking amino acids or carbon source). A volume of medium corresponding to
1×107 cells (determined by O.D.) was then collected, centrifuged, and the cell pellet
suspended in nonfermentable (derepressing) medium, prewarmed to 30 ° C, containing 3%
ethanol and 0.05% glucose as carbon sources. Three biological replicates were analyzed for
each strain. Glucose consumption per strain was monitored over time by analyzing aliquots
of medium with a PGO enzymes kit (Sigma Aldrich, St. Louis, Missouri, USA).

Extraction of metabolites
Based on our previous time-course study, cells were incubated at 30 °C for 6 h [8]. The
metabolites, small polar molecules, were extracted from the cells using a previously
described protocol [50]. Briefly, 5 mL of each culture were rapidly diluted into 20 mL of
−40 °C quenching buffer (10 mM tricene, pH 7.4, in 60% methanol) and held at −40 °C for
5 min to halt metabolic activity. The cell suspensions were pelleted by centrifugation
(Sorvall RC-5B Plus) at 1,000×g for 3 min at −20 °C and washed once with 5 mL of −40 °C
quenching buffer. The pellets were resuspended in 1.67 mL of 80 °C extraction buffer (0.5
mM tricine, pH 7.4, in 75% ethanol), held at this temperature for ∼3 min, and then cooled on
ice for 5 min. The suspensions were spun twice at high speed in a microcentrifuge to remove
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large cellular debris. A volume of each ethanol metabolite extract, corresponding to 1×107

cells, was dried in a SpeedVac at room temperature and stored at −80 °C under argon.

Derivatization of metabolites for GC analysis
Any residual water condensate on the cold sample was removed by drying in a SpeedVac at
room temperature for 1 h immediately prior to derivatization. The metabolites were
derivatized using a previously reported two-step protocol [51]. Methoximation was
accomplished by adding 30 µL of a 20 mg/mL methoxyamine solution in pyridine to the
extracts and heating at 30 °C for 90 min. The samples were then trimethylsilyated by adding
70 µL of BFTSA/ TMCS (99:1) reagent to the methoximated extracts and heating at 60 °C
for 60 min.

GC instrument parameters
GC×GC–TOFMS instrumentation was used to analyze the yeast extracts. An Agilent 6890N
gas chromatograph (Agilent Technologies, Palo Alto, CA, USA) coupled to a LECO
Pegasus III TOFMS (LECO, St. Joseph, MI, USA) was upgraded with both an Agilent 7683
auto injector and the commercially available 4D thermal modulator (LECO, St. Joseph, MI,
USA). A nonpolar to polar column arrangement was used combining a 20m×250 µm
i.d.×0.5 µm RTX-5MS (Restek, Bellefonte, PA, USA) as the first column to a 2 m×180 µm
i.d.×0.2 µm RTX-200MS (Restek, Bellefonte, PA, USA) for the second. A constant He flow
of 1 mL/min was maintained at the head of the first column. The GC inlet and transfer line
were both set to 280 °C throughout the chromatographic run. A temperature program was
employed starting the first column at 60 °C and the second column at 70 °C for 0.25 min
and ramping at a rate of 8 °C/min to 280 °C where the columns were held at constant
temperature for 10 min. The effluent from the first column was modulated onto the second
column every 1.5 s with the modulator temperature maintained 40 °C higher than the first
column. The TOFMS ion source was set to 250 °C. After a 5-min solvent delay, mass
channels 40–500m/z were collected at 100 spectra/s. Three injections of 1 µL were made in
splitless mode for each sample (five strains×three biological replicates) for a total of 45
chromatographic runs.

GC data analysis
LECO’s ChromaTOF software v 3.32 (St. Joseph, MI, USA) was used to collect the
GC×GC–TOFMS data. Previous work performed in our labs, including studies on the snf1Δ
yeast strain, was utilized to generate an initial list of metabolites of interest [7, 8, 11]. The
discovery-based approach, outlined by the bolded arrows in Fig. 1, was then used to find
additional class distinguishing compounds within the GC data. In order to adequately mine
the data for the unstudied strains, the data were exported to Matlab v 7.0.4 (Mathworks,
Natick, MA, USA). The S-ratio algorithm [12] was used to identify the GC×GC
chromatographic locations of additional analytes that exhibited differences in signal
intensity between the various strains. These locations were then added to the initial list of
metabolite locations. The locations with the largest S-ratio values indicated GC×GC
retention times of analytes that differed between samples. These analytes were identified as
metabolites using the LECO ChromaTOF software to search the mass spectra at these
chromatographic locations against the National Institute of Standards and Technology
library and a standard metabolite library created in-house. Identification was determined by
match value and, in most cases, retention time confirmation with standards (as noted in
Table 2.) Relative quantification information was attained for the metabolites using the in-
house developed target-analyte PARAFAC GUI [47]. The algorithm mathematically
resolves (deconvolutes) the pure component chromatographic peak profile and the pure mass
spectrum of an individual component from overlapping peaks and background noise for
quantification and identification confirmation, respectively. This step of analysis
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accomplishes several important tasks: baseline correction as noise is factored out,
chromatographic peak profiles (for both GC columns) and m/z spectra are deconvoluted, and
integration as the dot product of the first column peak profile and the second column peak
profile provides a signal “volume” that is proportional to analyte concentration. The
PARAFAC signal volumes were normalized to the total ion current (TIC).

LC analysis
LC data were collected using an Applied Biosystems 3200 Q TRAP hybrid triple quadrupole
linear ion trap LC–MS/ MS, as previously referenced [45]. Briefly, metabolite extracts were
suspended in ∼30 µL of 0.1% formic acid (or 5 mM NH4OAc). Extracts were separated on a
C-18 column with polar embedded groups (Synergi Fusion, 150×2.0 mm×4 µm,
Phenomenex). Up to 150 multiple-reaction monitoring could be detected simultaneously
throughout the run, so parent/daughter pairs corresponding to metabolites previously run as
standards were monitored. Peak areas were quantified with Analyst software and normalized
to the TIC, as done in GC analysis.

Data interpretation
Each metabolite was normalized to its mean in order to focus on trends between strains
rather than intensity. PCA was then used as a comparison tool for the complete list of
metabolites from both GC and LC analyses, as in previous work [8, 12]. Statistical
significance of the metabolite differences in the strains analyzed was determined. An
analysis of variance (ANOVA) calculation was performed to identify statistically significant
differences in metabolite profiles between all five strains in a single test. The metabolites
found to have significantly different signals were correlated with previously published RNA
data and incorporated into pathways when possible [27]. For the pathway comparisons,
metabolite levels for the mutant strains were normalized to the wild-type strain and shown
as ratio to wild type, as noted. Additionally, a Student’s t test analysis was performed for all
possible pair combinations of the strains (a total of ten) in order to identify potentially
interesting metabolite differences between any two strains.

Results and discussion
Discovery-based approach to find metabolite differences in GC×GC–TOFMS data

Applying the discovery-based approach for data analysis allows for focusing on the analytes
most responsible for differentiating the sample classes (i.e., the metabolites that differ
between strains). As outlined in Fig. 1, this approach combines ChromaTOF, the data
analysis software available from LECO for GC×GC–TOFMS data, with further processing
of the raw data in Matlab. The standard ChromaTOF approach follows the outline on the left
of Fig. 1. The raw data are collected; then, peaks are found, identified, and quantified to
generate a peak table. The discovery-based approach applied herein, instead exports the raw
GC×GC–TOFMS data into Matlab where peak finding and feature selection are performed
to identify which analytes distinguish the classes. These analytes are then initially identified
with ChromaTOF software, with refined mass spectral identification and further
quantification by PARAFAC in Matlab. Another option is to bypass the initial ChromaTOF
identification and perform PARAFAC in a nontargeted way, as shown with the dotted arrow
[52]. Using nontargeted PARAFAC, refined mass spectral identification and quantification
is provided directly from the raw data. Using these analysis tools, the metabolites that differ
between these strains were readily found, identified, and quantified.
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Similar metabolites pools in snf1Δ and cat8Δ
Snf1 controls the activity of the transcriptional activators, Adr1 and Cat8, allowing
transcriptional activation of dependent genes [53, 54]. Adr1 and Cat8 act both cooperatively
and independently to activate numerous genes encoding enzymes of alternative carbon
metabolism. However, the relative contribution of Adr1 and Cat8 to metabolite pools during
nonfermentative growth is unknown. Snf1 could also impact metabolite levels directly by
phosphorylating and influencing specific enzyme activities, in addition to the activation of
Adr1 and Cat8. The discovery-based approach found the metabolite differences between the
mutant strains to help discern the specific impact of the regulatory factors Snf1, Adr1, and
Cat8.

A representative GC×GC chromatogram for the wild-type strain is shown in Fig. 2. From
this chromatogram, it is possible to note the complexity of this sample type and the benefit
of the second separation dimension. There are many analytes that would be overlapped if
only a single dimension were used that can be separated into the 2D space. The additional
dimension makes it possible to isolate more metabolites from the complex sample. This
wild-type chromatogram could be compared with the chromatograms of other strains by eye,
but the chemometric tools in the discovery-based approach are better suited to do so with
confidence. The GC data was supplemented with an LC method to allow greater metabolite
coverage. Hence, these yeast extracts were analyzed with both LC–MS/MS and GC×GC–
TOFMS approaches. In this study, 50 unique metabolites were identified with GC and
another 15 with LC. A total of 63 unique metabolites were identified as there were two
metabolites, threonine and asparagine, that were observed in both methods. Comparing these
two metabolites, the trends in the data are consistent between the two methods. Table 1
shows that the comparative data for these two metabolites are in good agreement. It should
be noted that LC analyses do have the potential to provide greater metabolite coverage than
is shown here. We have included this representative LC analysis to demonstrate the type of
data that can be generated with LC and the complementary nature of these instrumentation
approaches.

PCA was used to obtain a global picture of how various metabolites and strains relate to
each other [8, 12]. PCA is commonly used as a classification tool to determine evidence for
class assignment for a set of samples. This application of PCA provides comparison
information showing which metabolites behave similarly to each other in the context of
yeast strain and which strains are similar to each other in the context of the metabolites
analyzed. The 65 metabolites (63 of which are unique) identified in this study are listed in
Table 2. In addition to retention time and match value information for each metabolite, the
relative amounts normalized to the average for each metabolite are also shown. When these
metabolites are treated as samples for PCA analysis, the loadings plot provides information
on which strains are most similar to each other, as shown in Fig. 3a. The samples, shown in
Fig. 3b, spread out across the PC space based on the patterns between the strains. This
global approach shows that the adr1Δ metabolome, as defined by our analysis, is similar to
the wild-type metabolome while the cat8Δ, snf1Δ, and adr1Δcat8Δ metabolomes have
reduced levels of many metabolites. Previously published gene expression data has also
shown that there are fewer Adr1 dependent genes (∼100) than Snf1 (>400) or Cat8 (>200)
[27]. The metabolites in Table 2 are listed in the order of their scores on PC1. This facilitates
observing the patterns and trends that are responsible for the distribution on PC1 and also
determining which metabolites are similar to each other as determined by PCA. From the
quantification values, relative amounts normalized to mean for each metabolite, i.e., the
columns of Table 2, it can be noted that the metabolites close to each other on PC1 have
similar patterns or trends between the strains, as expected.
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To further focus on the metabolites that change the most between strains, the statistical
significance of these differences were determined with ANOVA analysis. The ANOVA
calculation provides an F value (a statistic) for each metabolite that can be compared with
the threshold values. A calculated F value larger than the threshold indicates a metabolite
with a statistically significant difference across all five strains. By comparing F values, the
metabolites that most significantly differ between strains can be readily determined.
ANOVA results for the five strain comparison are listed in Table 3. The number of
metabolites with significantly differing levels between the strains was 19 at a 95%
confidence level (F> 2.58) and 23 at a 90% confidence level (F>2.09).

Most of the metabolites found to be statistically different between wild-type and mutant
strains are in one of several related pathways; gluconeogenesis, TCA cycle, glyoxylate
cycle, or pathways using or providing TCA cycle intermediates. However, not all of the
significantly changing metabolites are associated with these pathways, and Tables 2, 3, 4, 5
contain complete data for all metabolites detected in this study. A more thorough analysis of
these specific metabolic pathways along with the incorporation of gene expression data is
instructive for gaining a better understanding of these differences and determining how
closely transcriptome data predicts metabolic activity.

TCA cycle intermediates
Because these strains were grown in a nonfermentable carbon source, the TCA cycle is
expected to be active in the cells showing wild-type behavior. As expected, several TCA
cycle intermediates were identified in extracts from wild-type cells (Table 2). Under these
growth conditions, the Snf1 protein kinase is required for maximal expression of a number
of genes involved in the TCA cycle [27]. Five of the TCA intermediates were detected and
are shown in Fig. 4 along with stearic acid that has previously been observed to change very
little between strains and conditions [8]. It should be noted that the error bars (average
standard deviation=0.19 for these six metabolites) incorporate the variance from both
injection replicates and from biological replicates of each strain. As three different cultures
were prepared for each strain, there is good agreement in the data. All of the TCA
intermediates fall at the most positive end of PC1 on the scores plot while stearic acid falls
at the least positive end. At the 90% confidence level, only citrate was not statistically
different, by ANOVA, due to the larger error bars and relatively smaller differences between
strains. The trend of adr1Δ showing wild-type levels for many metabolites is consistent with
what was observed with PCA (and can be observed in Table 2). The metabolite and RNA
levels (normalized to wild type) for snf1Δ are shown in Fig. S1a in the Electronic
supplementary material. The same information is shown for adr1Δ, cat8Δ, and adr1Δcat8Δ,
respectively, in Fig. S1b–d in the Electronic supplementary material. As already
demonstrated by PCA, adr1Δ behaves like wild type for these metabolites while the levels
in the other three mutant strains are severely reduced.

The RNA expression levels also roughly correlate with the metabolite levels for all four
strains, demonstrating that in this system transcript data was a good predictor of metabolic
activity. For the three strains showing a reduction in metabolite levels, the citrate to
succinyl-CoA portion of the TCA cycle appears to be less affected with an approximate 4-
fold decrease while the succinate to malate portion of the TCA cycle shows a 10- to 50-fold
decrease. These data suggest that the major defect in the TCA cycle in the snf1Δ and cat8Δ
mutants may be attributed to MLS1 and ICL1 expression, which is also more severely
reduced in the transcriptome data than IDH, KGD, and LSC in the same mutant strains [27].
This suggests that in the wild-type strain more carbon flows through the glyoxylate shunt
(catalyzed by isocitrate lyase and malate synthase, encoded by ICL and MLS isozymes,
respectively) than the portion of the TCA cycle catalyzed by isocitrate dehydrogenase, α-
ketoglutarate dehydrogenase, and succinate dehydrogenase, encoded by IDH, KGD, and
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LDH, respectively. Indeed, growth on ethanol has been shown to activate the enzymes of the
glyoxylate cycle over those in the TCA cycle [55]. The glyoxylate shunt bypasses the TCA
cycle steps in which CO2 is lost by going directly from isocitrate to malate through
glyoxylate. Sending carbon along this route generates extra TCA intermediates to be shunted
off to gluconeogenesis rather than continuing on to regenerate intermediates, particularly
oxaloacetate for the TCA pathway. While further investigation of this observation is beyond
the scope of this study, the results reported herein suggest both that the glyoxylate shunt is
an essential part of switching between glucose and ethanol and that the absence of Adr1 has
little effect on this mechanism while a defect in Cat8 or Snf1 prevents carbon from moving
into gluconeogenesis. Consistent with these trends, as carbon levels are decreased in these
strains there are fewer intermediates to be shunted off to the related pathways. In particular,
metabolites in glutamate metabolism (produced from α-ketoglutarate) and aspartate
metabolism (produced from oxaloacetate) were found to have statistically significant
differences and also show decreased levels in snf1Δ, cat8Δ, and adr1Δcat8Δ.

Gluconeogenesis
An overview of the metabolites and RNA in the gluconeogenesis pathway is shown in Fig.
S2a–d in the Electronic supplementary material. Again, pathway metabolites in the adr1Δ
strain are present approximately at the wild-type levels. The TCA cycle intermediates that
feed into gluconeogenesis are less affected in this strain and levels comparable to wild type
are observed through the rest of the cycle as well. Most of the metabolites detected in the
three remaining strains (snf1Δ, cat8Δ, and adr1Δcat8Δ) are detected at lower relative levels
compared with the wild type, similar to those observed for fumarate and malate. This may
suggest that the starting amount of oxaloacetate limits the carbon that can travel through
gluconeogenesis, but that there is not a further defect in this pathway. The major exceptions
to the “TCA trend” are glucose and glycerate-3-phosphate in the snf1Δ strain where much
higher levels are observed as compared with the wild type. This may be related to the
availability of glucose after 6 h of growth. The glucose consumption from the medium is
shown in Fig. 5 and the snf1Δ strain has very low levels of glucose remaining after 6 h. The
other strains all consume the small amounts of glucose (0.05%) within the first 2 h. The
glucose uptake mechanism is likely altered in the snf1Δ strain but not in the other strains.
There is evidence in the literature that Snf1 is important for glucose sensing and uptake [56–
58]. The upregulated expression of glycolytic enzymes [35] concurrent with down-
regulation of pathways exiting glycolysis in the snf1Δ strain may account for the elevated
glucose and glycerate-3-phosphate. Upregulated RNA levels through the glycolytic pathway
in the snf1Δ strain [27] may serve as a compensatory mechanism for the disruption in
glucose uptake.

Individual strain comparisons
While it is interesting to compare all of the strains simultaneously, it can also be informative
to compare individual strain pairs. For example, the identification of differences between
snf1Δ and cat8Δ or snf1Δ and adr1Δ helps to illuminate when Snf1 works directly through
the phosphorylation of enzymes and indirectly by regulating the activity of Adr1 and Cat8.
A comparison between adr1Δ and cat8Δ indicates the relative importance of these
transcription factors in different pathways. In this regard, the data indicate that deletion of
Cat8 is quite detrimental while a deletion of Adr1 is less so for the metabolites evaluated in
this data set. A comparison of adr1Δ and adr1Δcat8Δ identifies instances in which Adr1
plays a more major role in pathways that are coordinately regulated by both transcription
factors. In order to more easily make these observations from the large data set, a Student’s t
test analysis was performed between each strain pair (a total of ten pairs) with results
provided in Table 4. Within each strain pair, the calculated t value is provided when a
statistically significant difference was identified at the 99.0% confidence level (t>2.58). A t-
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value greater than 3.29 indicates significance at the 99.9% confidence level. A qualitative
screen was also done in conjunction with the t test and a > or < symbol indicates which
strain has higher levels if the single standard deviation error bars did not overlap between
the two strains in comparison. A complete set of strain pair ratios is also provided in Table
5. For this table, the ratio of the average PARAFAC signals between each strain pair is
calculated and provided. The statistical significance of these differences can be determined
with Table 4. Thus, these tables, together, provide a wealth of information from which
comparisons, such as those that have been highlighted, can be made.

The analysis of metabolite data with gene expression data provides useful information on the
impact of gene expression defects on metabolism. Overall, these results suggest that a defect
in Snf1 or Cat8 has broader effects on the metabolism of yeast cells grown in
nonfermentable carbon sources than a defect in Adr1. The metabolite isolation procedure
used in this study extracts primarily small polar analytes, thus it is possible that a nonpolar
extraction would illuminate other pathways, such as fatty acid synthesis and breakdown, in
which a defect in Adr1 would have a greater impact on metabolite levels.

It is noteworthy that the adr1Δ mutation had little effect on the level of most amino acids
and related metabolites. This is surprising because loss of Adr1 is associated with defects in
expression of many amino acid transporters [27]. In contrast, loss of Cat8 and Snf1 caused
large reductions of many amino acids and related products. Since Cat8 and Snf1 defects
would reduce amino acid precursors generated through the glyoxylate cycle, the abundance
of intracellular amino acids after the diauxic transition may be regulated primarily by
synthesis rather than uptake.

Conclusions
Correlating the RNA data with the metabolite data, provided via a state-of-the-art global
analysis approach, helped to discern the following trends related to the diauxic shift. For the
metabolites of gluconeogenesis and the TCA and glyoxylate cycles, the RNA data were a
good predictor of the metabolite levels measured in many cases. Furthermore, metabolic
pathways that were impacted by Snf1 but not by Cat8 were not detected. This could be
because the changes observed were due to long-term effects of Snf1 on metabolite levels.
More rapid, short-term responses to flux in carbon source may be required to observe rapid
responses that are due to direct Snf1 effects on the metabolic enzymes themselves rather
than transcriptional regulation. The selection of the 6-h time point was based on previous
observations [8], but it is possible that further insight could be gained from monitoring early
time points. More generally, it has been demonstrated that these data collection and
discovery-based data analysis approaches are useful for determining differences between
mutant strains and in pinpointing specific metabolic pathways influenced by regulatory
proteins.
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Refer to Web version on PubMed Central for supplementary material.
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ANOVA Analysis of variance

GC×GC– Two-dimensional (2D) gas chromatography

TOFMS coupled to time-of-flight mass spectrometry

GUI Graphical user interface

LC–MS/MS Liquid chromatography coupled to two-dimensional mass spectrometry

NIST National Institute of Standards and Technology

PARAFAC Parallel factor analysis

PCA Principal component analysis

TCAcycle Tricarboxylic acid cycle

TIC Total ion current
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Fig. 1.
Data analysis flow chart for GC×GC data. The discovery-based data analysis approach
utilizes ChromaTOF and Matlab to locate, identify, and quantify class distinguishing
compounds. The traditional ChromaTOF approach (thin arrows) follows the path on the left
while the discovery-based approach (thick arrows) applied herein follows the path on the
right incorporating some elements of ChromaTOF data processing. The discovery-based
approach could also be done in a nontargeted way as is demonstrated with the dotted arrow
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Fig. 2.
GC × GC–TOFMS chromatographic data for a wild-type strain. Metabolites from five yeast
strains (wild type, snf1Δ, adr1Δ, cat8Δ, and adr1Δcat8Δ) were extracted and derivatized
for GC analysis as described in “Materials and methods”. The derivatized metabolites were
analyzed via GC×GC–TOFMS, with a representative wild-type chromatogram provided
here. The complex samples benefit from 2D–GC as the peaks spread out in both GC
separation dimensions
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Fig. 3.
PCA of metabolites and strains. PCA was employed as a data classification tool. When
mean-centered metabolites are loaded as samples, the loadings (a) provide information on
which strains are most similar to each other, in the context of the analyzed metabolites. The
scores (b) provide information on which metabolites are similar to each other, in the context
of these strains. The metabolite levels spread out in the PC space based on the various
trends, which can be seen in Table 2
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Fig. 4.
TCA cycle intermediates. Five of the TCA cycle intermediates were detected with this
methodology and were quantified by PARAFAC analysis. The signal value for each
metabolite was averaged for each strain, incorporating injection variation and biological
variation, and then normalized to wild type. Stearic acid is also provided as a reference as it
has been observed to be relatively constant in different growth conditions and strains in a
previous study [8]. By ANOVA, α-ketoglutarate, succinate, fumarate, and malate all have
statistically significant differences
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Fig. 5.
Glucose consumption per strain. Glucose levels in the media were measured using a PGO
Enzymes kit for all five strains over the course of the experiment. Glucose was essentially
depleted in all strains by 2 h, except for snf1Δ in which glucose remained at low levels
throughout the experiment
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Table 1

Comparison between LC and GC approaches

Asparagine Threonine

LC GC LC GC

adr1Δ 0.95±0.25 1.03±0.61 0.76±0.50 0.82±0.19

cat8Δ 0.24±0.21 0.19±0.14 0.68±0.02 0.94±0.10

snf1Δ 0.29±0.13 0.07±0.12 0.52±0.48 0.64±0.26

WT 1.00±0.21 1.00±0.41 1.00±0.13 1.00±0.05

adr1Δcat8Δ 0.45±0.04 0.49±0.18 0.77±0.11 1.02±0.11

The signal averages and standard deviations, normalized to wild type, are provided for the two analytes that were detected with both LC and GC
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Table 3
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Statistical comparison by analysis of variance (ANOVA)

Metabolite ANOVA

90%>
2.09

95%>
2.58

F
value

Glucose x x 3.09

Alanine 0.53

Mannitol 0.79

Glycine 0.30

2-Monostearin 0.82

Stearic acid 0.48

Valine 0.41

Benzoic acid 0.30

Lysine 0.22

3-OH butyric x 2.17

Glycerol 1.02

Glucosamine 1.54

Glycerate 3 phosphate x x 3.16

CoA fragment 0.07

Pyruvate 0.40

CMP 0.52

NADP 0.79

FAD 0.20

Deoxyadenosine 0.58

Tyrosine 1.20

Glycolic 0.01

Uracil 0.04

TPP 0.48

3-OH propionic 0.04

Threonine 0.95

FMN 0.07

SAM 0.17

Ornithine 0.14

Isoleucine 1.25

Glycerol 3 phosphate x 2.11

Orotic 0.20

Cystathionine 0.96

Adenine 0.33

SAH 0.44

Leucine x x 2.68

Arabinose 0.29

ADP x 2.20

Threonine 0.30

Phenylalanine x x 4.85

Adenosine, 5′S-methyl 5′thio- 0.10

  N-

Lactic acid 0.58

G1P x x 2.83

Methionine sulfoxide 1.97

Methionine 1.90

Tryptophan 0.68

Citrate 1.52

Serine x x 3.39

UDP x x 4.20

Arginine 0.43

UDP-N-acetylglucosamine x x 7.00

Glutamate, 5-oxoproline x x 13.13

Asparagine x x 3.94

Glutamic acid x x 10.75

UDP/G1P x x 8.25

Proline x x 3.46

UDP-glucose x x 3.63

Aspartic acid x x 2.58

Asparagine 1.61

Alpha-ketoglutaric acid x x 5.91

G6P x x 4.31

Glutamine 1.17

Succinate x x 3.86

Malate x 2.18

Fumarate x x 4.50

Trehalose 1.97
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ANOVA provides information on which of the 65 metabolites have statistically significant differences in terms of all five strains, identified
collectively
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