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Abstract

Olfactory-discrimination learning was shown to induce a profound long-lasting enhancement in the strength of excitatory
and inhibitory synapses of pyramidal neurons in the piriform cortex. Notably, such enhancement was mostly pronounced in
a sub-group of neurons, entailing about a quarter of the cell population. Here we first show that the prominent
enhancement in the subset of cells is due to a process in which all excitatory synapses doubled their strength and that this
increase was mediated by a single process in which the AMPA channel conductance was doubled. Moreover, using a
neuronal-network model, we show how such a multiplicative whole-cell synaptic strengthening in a sub-group of cells that
form a memory pattern, sub-serves a profound selective enhancement of this memory. Network modeling further predicts
that synaptic inhibition should be modified by complex learning in a manner that much resembles synaptic excitation.
Indeed, in a subset of neurons all GABAA-receptors mediated inhibitory synapses also doubled their strength after learning.
Like synaptic excitation, Synaptic inhibition is also enhanced by two-fold increase of the single channel conductance. These
findings suggest that crucial learning induces a multiplicative increase in strength of all excitatory and inhibitory synapses in
a subset of cells, and that such an increase can serve as a long-term whole-cell mechanism to profoundly enhance an
existing Hebbian-type memory. This mechanism does not act as synaptic plasticity mechanism that underlies memory
formation but rather enhances the response of already existing memory. This mechanism is cell-specific rather than
synapse-specific; it modifies the channel conductance rather than the number of channels and thus has the potential to be
readily induced and un-induced by whole-cell transduction mechanisms.
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Introduction

The increase in synaptic strength that mediates memory

formation through Hebbian-type learning is traditionally thought

to be synapse-specific, where mostly the synapses that connect a

subset of active neurons are enhanced [1]. Taken together with the

notion that learning involves both potentiation and depression of

synaptic strength [2], the overall increase in excitatory synaptic

strength into any particular cell should be relatively small. Indeed

several studies which reason that Hebbian learning underlies the

increase in synaptic strength demonstrate a small increase in the

total synaptic strength following learning [3–8].

However, recently, a growing body of evidences demonstrates

large overall increase in synaptic strength (.50%) following

various training paradigms, in different brain structures [9–15].

Such enhanced synaptic transmission is transient, returning to

baseline few days after training termination [9,12]. The function-

ality of this increase is yet to be described; its magnitude and its

transient nature do not agree with the principle of classical

Hebbian learning.

We have previously shown that acquiring the skill to perform in

a particularly difficult olfactory-discrimination task [15–20] results

with a robust enhancement of excitatory as well as inhibitory

synaptic connectivity to and within the piriform cortex that lasts

for days after learning [15–18]. Recently we showed, using whole

cell patch clamp recordings of miniature post synaptic currents

(mPSCs) from pyramidal neurons, that olfactory discrimination

learning-induced enhancement of synaptic transmission in cortical

neurons is mediated by a robust increase of post synaptic

modulation of AMPA receptor-dependent currents, and balanced

by enhancement of post-synaptic GABAA receptor-mediated

currents. The synaptic enhancement was observed few days after

the rats were last trained and thus indicates a long term induced

synaptic modifications. Moreover, while an increase in excitatory

and inhibitory mPSCs amplitude was evident in most of the

recorded neurons, a subgroup that entailed a quarter of the cells

showed an exceptionally great increase in the amplitude of

spontaneous events [17]. In this sub group of neurons, most

recorded synapses were strengthened after learning. While these

results are in line with previous findings they are also incompatible

with the expected from Hebbian learning.

The aim of the present study was to further describe

quantitatively how synaptic weights are modified by complex

learning and to explore the functional significance of such

modulation to the cortical network activity, with the ultimate

goal of describing the mechanism underlying long-term memory of

elaborated performance capabilities. We show how long-lasting

synaptic modifications are combined at different levels, from single

synapses, through whole-cell modifications and to the network

level, to enable the enhancement of high-skill memory.
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Results

Synaptic enhancement is dominated by multiplication of
AMPAR-mediated currents

We have shown recently [17] that learning induces a robust

increase in the averaged mEPSC’s amplitude following learning.

In this study, the averaged mEPSC amplitude in neurons from

trained rats was 64% higher compared to averaged value in

neurons from naı̈ve and pseudo-trained rats which did not differ

(Averaged mEPSC amplitude 14.366.3 pA in neurons from

trained rats, 8.463.3 pA in neurons from naı̈ve rats, and 8.761.8

pA in neurons from pseudo-trained rats). As was shown previously

[17] while the increase was evident in most recorded neurons, a

sub-group of cells exhibited an exceptionally large increase in

averaged events amplitude. Moreover it was shown that in this

group of cells almost all synapses had increased their strength [17].

To further explore the nature of synaptic modifications,

normalized amplitude-distribution histogram of previously mea-

sured [17] miniature events was constructed for each neuron, and

then averaged for each group. The difference between groups is

apparent in figure 1A were the distribution curves of the neurons

from the same group were averaged. While the amplitude

distribution curves of the pseudo-trained and the naı̈ve groups

were similar, the amplitude distribution curve of the trained group

was markedly different. After learning, the fraction of events with

smaller amplitudes (around 8pA) was considerably decreased while

the number of events with big amplitudes (.15pA) had increased

which resulted with a slower decay of the amplitude distribution

curve of the trained group.

Subtraction of the averaged amplitude distribution curve of the

pseudo group from the one of the trained group yields the curve

that describes the averaged difference between the pseudo and the

trained groups (figure 1B). If there is a consistent difference

between cells in the pseudo and the trained groups, then the

difference between groups as described by this curve should

dominate the within-group differences.

The largest difference between the distribution curves could be

obtained by applying to the set of all curves a model-free analysis,

principal component analysis (PCA, see Methods). This analysis

calculates a number of arbitrary components that best portray the

differences between all curves. The first principal component

accounts for as much of the variability in the data as possible, and

each succeeding component accounts for as much of the

remaining variability as possible. In addition, for each distribution

curve PCA assigns a set of weights, where each weight represents

the relative power of its corresponding component in the

distribution curve.

The first component (figure 1B) could explain more than 50% of

the variance of all distribution curves; the second component could

describe 15% of the variance while the third and higher

components could explain less than 3% (figure 1C). Post-hoc

examination of each group (figure 1D) revealed that the weights of

the first component in cells from the trained group

(20.04260.062, n = 22) was significantly different (P,0.0003)

from the pseudo-trained group (0.05760.079, n = 14). However

the weights of the second and higher components were similar

between groups (P,0.7, figure 1D). This led us to assume that the

first component captures most of the inter-group differences.

If most of the variance in the data set results from the differences

between groups, the inter-group variance should dominate the

within-group variance for all amplitude. Following this, the curve

that describes the differences between groups’ averages should

closely resemble the first PCA component. A set of simulations

(table S1, table S2, and table S3) demonstrates that when the

difference between groups is moderate (65% in the data; 75% in

the simulations), the difference between group averages tends to

closely resemble the first principal component if one process

dominate the differences between groups. This can be explained as

follows: If one process is dominant in creating the difference

between groups, it will create a coherent difference between

groups and thus enable the inter-group variance to dominate the

within group variance for all amplitudes.

We found that the curve that describes the differences between

groups averages closely resembles the first PCA component

(R = 0.81, figure 1B), thus indicating that one process might

underlie the difference between groups. Moreover we found that

the within group variability can be mostly described by one linear

combination of the second and the first component (figure S1).

Together with the observation that the weights of the second

component are similar between groups, this indicates that the first

component is sufficient to describe most of the difference between

distribution curves of the pseudo and trained groups, and thus

further strengthening our hypothesis that one process dominates

this difference.

We next aimed to reveal which process underlies the difference

between the two groups by examining how the difference we had

observed may be induced. Two different types of processes can

underlie a robust post synaptic enhancement: an additive model in

which the synaptic current is increased by a constant and a

multiplicative model in which the synaptic current is multiplied by

a constant. We showed that one process should dominate the

difference between groups and that this constant should have

roughly the same value for all synapses, and thus that the same

calculation can be applied on all events. For each of the models we

varied the constant and calculated fraction of synapses that have to

be modulated in order to get the observed 64% difference in

averaged event amplitude (see methods). Using these two

parameters we could calculate a curve that describes the difference

between groups, assuming this model. The difference between

groups assuming an additive models did not match the observed

experimental difference (R = 0) for any constant. For multiplicative

models with multiplication factors between 2.3–2.5 the calculated

curve match well with the experimental curve (figure 1E).

Moreover, in neurons from trained rats, the increase in events

amplitude was accompanied by a significant similar increase in

their standard-deviation (the averaged SD in pseudo: 5.0861.88;

in trained: 8.1864.39; P,0.02), further indicating that synaptic

enhancement is obtained via a multiplicative, rather than an

additive process. These results are in agreement with previous

works which show a multiplicative increase of AMPAR-mediated

conductance by a similar factor of 2.2–2.5 following LTP

induction [21–23].

Further support for the observation that a two-fold multiplica-

tion process underlies the difference between groups is presented

in figure S1. We showed that the curve describing the main

differences between the different amplitude distribution curves in

the trained group is a two-fold expansion (in the X-axis) of the

curve describing the main differences within the pseudo group.

This observation further supports our hypothesis that a single

process in which the events amplitudes were multiplied by two

underlies the differences between groups.

Thus, our analysis indicates that the major process which might

underlie the difference between pseudo and trained group is a

multiplication of the events amplitudes by a factor of 2.3–2.5.

Whole Cell Synaptic Increase Enables Memory Gain
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In a sub-group of neurons all synapses double their
strength

Multiplication by a constant results in multiplication of the

average and standard deviation by the same constant. Indeed the

cells in the trained group exhibit an increase in standard-deviation

that is similar to the increase in average (figure 2A). As was noted

previously, not all cells exhibit a similar increase [17]. While the

majority of the cells exhibited a small increase and had averaged

amplitude values close to those in the pseudo group, a small group

of cells exhibited a prominent increase both in amplitude and in

standard deviation (figure 2A). Using hierarchical clustering

analysis [24] we divided the neurons in the trained group to two

distinct sub-groups that differ in their averaged amplitudes and

standard deviations (figure 2A). The first sub-group, termed

greatly-enhanced neurons, entails six cells (27% of the trained

group) with very large means (22.765.9 pA) and large standard-

deviations (13.864.9). Greatly-enhanced neurons are those in

which the vast majority of synapses are enhanced after learning

[17]. The second sub-population, termed moderately-en-
hanced neurons (all other 16 cells) had significantly (P,0.001)

smaller means and standard-deviations (10.561.3pA, and 6.061.1

respectively). These two sub-groups did not differ in their passive

properties, their kinetics or the RMS noise in the recording

(table 1). Moreover we show later that this division is kept when

these cells are characterized by a different independent measure.

We compared the greatly-enhanced-trained sub-group to the 4

cells with the highest averaged amplitudes in the pseudo-trained

group (termed the large-pseudo sub-group) which composes the

same fraction of the pseudo population. The average (figure 2B)

and the standard-deviation (figure 2C) of miniature EPSCs

amplitudes in this sub-group of trained neurons were 2.2 and

1.9 times larger than those in the 4 top cells in the pseudo-trained

group. Given the multiplication factor of 2.3, as calculated above,

Figure 1. The learning-induced modulation of the excitatory unitary synaptic events amplitude is dominated by a single process in
which the events amplitude was doubled. A. For each neuron an amplitude distribution curve was reconstructed from the mEPSC amplitudes
and normalized (data taken from [17]). Averaged amplitude histograms, were calculated for all neurons from the three groups. Notably, a much more
significant portion of events in the trained group are of high values. B. The curve calculated by subtracting the averaged pseudo amplitude
distribution curve from the averaged trained amplitude distribution curve (red) match the first component calculated by PCA (black). The PCA
component was scaled in the Y-axis, such that the best fit is achieved. We reasoned that such scaling is valid since this component is used by the PCA
inside a linear combination. C. The first (major) component calculated by the PCA analysis. Inset: The first component accounts for 60% of the
differences between amplitude distributions of all cells. D. For each cell the weight for the first component (X-axis) was drawn against its weight for
the second component (Y-axis). Only the weights of the first component are significantly different between groups. E. For each multiplication factor a
different curve that describes the difference between groups assuming a multiplication model was calculated. The calculated curve assuming
multiplication factor of 2.2 (black) matched the curve that describes the main difference between groups (red). Inset: the correlation coefficient was
calculated for each multiplication factor (for calculation of r only amplitudes .7pA were used, since at lower amplitudes, multiplication factors bigger
than two requires unavailable data in amplitudes ,3pA, see Methods).
doi:10.1371/journal.pone.0068131.g001

Whole Cell Synaptic Increase Enables Memory Gain
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this suggests that virtually all excitatory synapses in these neurons

were multiplied by this factor.

A similar comparison between the moderately-enhanced-

trained-sub-group and the pseudo-trained group, yielded a small

but significant (P,0.01) increase in mean, that amounted to a

factor of 1.21 only. With the multiplication factor of 2.3 this result

suggests that only ,20% of the synapses in this sub-group of

neurons were multiplied by this factor after learning.

To confirm these calculations we constructed a calculated

amplitude distribution curve and compared it with the experi-

mental amplitude distribution curve: 100% of the events in the 4

cells with the highest averaged amplitude in the pseudo-trained

group and random 20% of the events in the rest of the pseudo-

trained cells were multiplied by 2.3. The resulting amplitude-

distribution curve matched (r = 0.93) the experimental distribution

curve of the trained group (figure 2D), confirming the validity of

the above results. In particular, we confirmed that the averaged

amplitude distribution curve of the greatly enhanced neurons can

be reconstructed by multiplying all events in the 4 neurons with

the highest averaged amplitudes within the pseudo cells group by a

factor of 2.3. The resulting amplitude distribution curve was

similar to the averaged amplitude distribution curve of the greatly

enhanced group (R = 0.73; figure 2E).

These data suggest that acquisition of a skill to perform

successfully in a particularly difficult task is accompanied by a

comprehensive change in the strength of all synapses in a sub-

population of neurons. Namely, all excitatory synapses in these

cells doubled their strength.

Figure 2. In a sub-group of cells from trained rats’ amplitudes of all excitatory miniature events is doubled. A. Each cell was plotted as
a function of its averaged event amplitude and standard deviation. Few cells from trained-group had exceptionally large averaged amplitudes and
Standard-deviations. Using hierarchical clustering analysis the cells were divided to two groups (separated by the dotted line). B. The averaged
amplitude of the greatly-enhanced-trained-group only is doubled to a value that is significantly higher than that observed for the three other
represented sub-groups. Note that while the average amplitude of the moderately enhanced group is significantly lower than that of the greatly
enhanced group, it is still higher that the averaged amplitude of the pseudo trained group. Values represent mean 6 SE (**, p,0.01 ***, p,0.001). C.
The standard deviation of the greatly-enhanced-trained-group is also doubled, compared to the other three sub-groups, which have all similar values.
Values represent mean 6 SE, (***, p,0.001). D. The distribution curve describing the trained neurons can be constructed from the events amplitudes
of the pseudo-trained neurons. The expected curve (black) calculated from pseudo events (green) overlaps (r = 0.96) the trained distribution curve
(blue). E. The distribution curve describing the greatly-enhanced trained neurons can be constructed from the events amplitudes of the large
pseudo-trained neurons. The expected curve (black) calculated from events of the 4 biggest cells in the pseudo group (green) is similar to the
averaged distribution curve of the greatly-enhanced-trained group (blue). (r = 0.73, both in D and in E only amplitudes .7pA were used, since at
lower amplitudes, multiplication factors bigger than two requires unavailable data in amplitudes ,3pA, see Methods).
doi:10.1371/journal.pone.0068131.g002
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Synaptic enhancement is mediated by doubling the
AMPA channels conductance

Does such a twofold increase in the synaptic strength result from

doubling the single channel conductance, or from doubling the

number of receptors? To address this question, we applied a

method that exploits the variability in event shape (non-stationary-

fluctuation-analysis, NSFA, [25–26]), to calculate both the average

single channel current and the average number of active AMPA

channels in each cell (figure 3A, see Methods). The averaged

calculated single channel current in the greatly-enhanced-trained-

sub-group (figure 3C) was twofold higher than that of the pseudo-

trained group (1.5760.45 pA; n = 5 for trained and 0.8160.32

pA; n = 9 for pseudo trained, P,0.0035) and was 59% higher than

the averaged single channel current in the moderately-enhanced-

trained-sub-group (0.9960.43pA; n = 8, P,0.042). The calculated

averaged number of active channels (figure 3D) did not differ

between groups (16.369.0 for greatly-enhanced trained neurons,

15.369.0 for pseudo trained and 16.565.1 for moderately-

enhanced trained neurons). The average single channel conduc-

tance (10 pS) calculated for the pseudo trained group is similar to

that reported for hippocampal cells [23].

These results imply that multiplicative increase in mEPSC’s

amplitude results from a twofold increase in the AMPA-channel

conductance. Furthermore, these results are in agreement with

twofold increase of all synapses in the greatly-enhanced-trained-

sub-group, and with a twofold increase of 20% of the synapses in

the moderately-enhanced-trained-sub-group.

We divided above the neurons from the trained group to

greatly-enhanced and the moderately enhanced sub-groups, based

on analysis of events amplitude. The same division holds using

NSFA, a method that testifies to the variability in events shape

rather than events amplitudes (figure 3E), further strengthening

this division.

Whole-cell synaptic modulation enables selective
memory enhancement

Calculation of the ratio of the averaged mEPSCs amplitudes

between the different groups, show that synaptic events recorded

only in the greatly-enhanced sub-group contribute two-third of the

total learning-induced increase in the averaged mEPSC ampli-

tude. We next examined the hypothesis that such a non-

discriminatory increase in synaptic strength, observed in a quarter

of the neurons in trained rats, can serve as a post-hoc mechanism

to enhance Hebbian memory.

Multiplying the strength of all synapses in a cell by a constant

factor has an important key feature; it does not change the relative

contribution of each of the synapses. Rather, it results in

multiplication of the standard-deviation of the single events

amplitudes by the constant factor, and thus with multiplication

of the difference between strong and weak synapses in this cell. It

was shown previously that the increase in excitation is paralleled

by an increase in inhibition [17]. If the averaged increase in

inhibition balances the averaged increase in excitation in manner

that maintains the averaged background activity unchanged, the

increase in excitation alongside with an increase in inhibition will

enhance the difference between strong and weak synapses without

affecting the averaged activity, and thus may be termed ‘‘contrast-

enhancement’’. Contrast enhancement will cause the neuron to

change its response to a given input such that only when the strong

excitatory synapses are mostly activated, the cell will increase its

firing frequency. Since activating a group of cells that form a

defined Hebbian-memory will activate a large proportion of their

strong excitatory synapses, contrast-enhancement will cause these

neurons to increase their firing in response to this memory only,

with a subtle effect on the response to partially overlapping

patterns of activation representing other memories.

Thus we suggest that a whole-cell multiplication of the strength

of all excitatory synapses parallel by balanced increase in

inhibition can function as contrast enhancement of the cell

response, and following that as a mechanism that underlies

memory enhancement.

This potential function of contrast-enhancement can be studied

with a biophysical neuronal network simulation. To that aim, we

constructed a neuronal network that entails 2800 excitatory and

inhibitory neurons, in which neurons exhibit background activity,

and memory is formed by additional activation of external inputs

on 28% of the cells in the network (see Methods). As first step, the

network ‘‘learned’’ 6 patterns by Hebbian-learning. Subsequently,

we selected a group of cells that exhibited a significant (P,0.02)

increased firing frequency in response to activation of one of the

input-patterns (designated as X-pattern). On all cells in this group

we applied contrast enhancement such that we multiplied the

strength of all excitatory synapses by a factor of 2.5 and multiplied

the strength of all inhibitory synapses by a constant factor such

that the background activity will maintain the same value. We

compared the response of these cells to the activation of each

pattern before and after contrast-enhancement. The response

induced by activation of the X-pattern was markedly enhanced by

the contrast-enhancement (figure 4A, C), while the response to

activation of other patterns was not significantly affected (figure 4B,

C).

In our model we increased the inhibition by a multiplication

process in which the strength of all synapses in all selected cells was

multiplied by the same constant. Such a multiplication process is

simple since unlike an additive process it does not require

knowledge of the total strength of the excitatory synapses and of

Table 1. Neurons from the greatly-enhanced and the moderately-enhanced trained groups did not significantly differ in their
membrane properties and recording conditions.

moderately-enhanced (n = 16) Greatly enhanced (n = 6)

Event rise time (ms) 1.3260.29 1.4660.50

Event decay time (ms) 4.1161.33 5.4261.66

Response to 25mV step (pA) 219.3569.68 218.7664.69

RMS noise (pA) 1.2660.49 1.3160.26

Rise-time was measured for each detected event from baseline to peak. Decay time was measured for each detected event from peak to 1/3 the amplitude of the event.
The current response was evoked at 0.16 Hz by 200 ms voltage step of 25 mV.
RMS noise was measured from 750 ms period of baseline in which no miniature events were detected.
doi:10.1371/journal.pone.0068131.t001

Whole Cell Synaptic Increase Enables Memory Gain
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the inhibitory synapses. We found that in order to maintain the

resting activity of the cells after contrast enhancement, the

multiplication constant averaged over the whole sets of simulation

was amounted to 2.260.3. Indeed the same multiplication factor

for the inhibition and excitation will not modify the synaptic

reversal potential, and thus will allow the same resting activity.

A memory enhancement that is based on a contrast enhance-

ment mechanism in which the strength of all excitatory synapses

and inhibitory synapses is multiplied by a constant does not have a

synaptic specific memory and thus it can be applied as a whole cell

process that can be switched on and off when necessary.

Model predictions
Our whole-cell memory enhancement model leads to several

testable predictions;

1. Contrast-enhancement requires that both excitation and

inhibition should be simultaneously enhanced. Moreover inhibi-

tion should be enhanced predominantly in the greatly enhanced

group in order to balance the predominant increased excitation in

this group. We previously showed that following learning the

increase in excitation is paralleled by an increase in inhibition and

that the inhibition is predominantly increased in a sub-group of

cells [17].

2. Contrast-enhancement requires that the increase in excita-

tion will be balanced by an increased inhibition such that the cell

response during background activity will not be modified by

contrast-enhancement. Keeping the cell in a balanced state would

enable the cell to continue generating memory-relevant patterns of

activation. Thus the model predicts that the increase in inhibition

will be to the same degree as the increase in excitation.

3. A mechanism that does not require a synaptic specific

memory does not require synaptic tagging and thus can be readily

switched on and off when necessary. We showed that the increased

excitation does not require a synapse specific memory since it is a

whole cell process that acts uniformly on the cell’s excitatory

synapse population by multiplication of the strength of the synapse

by the same constant. We predict that in order to remain synapse

unspecific and in order to maintain the balance between excitation

and inhibition the increase in inhibition should be also mediated

Figure 3. The average AMPAR-mediated conductance is doubled in the greatly-enhanced-trained-group. A, B. Events were peak
scaled (A) and only events with rise-time ,1.5 ms were used for the NSFA analysis. Variance between these peak scaled events was calculated at
different time points. Current-variance plot extracted from the peak scaled mEPSC’s using the NSFA analysis could be well fitted with the parabolic
current-variance equation (see Methods), allowing the extraction of the averaged single channel conductance and averaged number of active AMPA
channels. Examples from a pseudo-trained cell (green) and from a cell in the greatly-enhanced-trained-group (blue) are shown (B). C. The averaged
AMPA single channel conductance in the greatly-enhanced-trained-group was doubled compared with the pseudo-trained group, and is 59% bigger
than in the moderately-enhanced-trained group. Values represent mean 6 SE, (**, p,0.01. *, p,0.05). D. The number of active AMPA channels does
not differ between groups. E. The greatly enhanced group shows distinct values of averaged AMPAR conductance as compared with the moderately
enhanced group.
doi:10.1371/journal.pone.0068131.g003

Whole Cell Synaptic Increase Enables Memory Gain
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by a whole-cell process in which the GABAA synaptic strength is

doubled.

4. Multiplication of the synaptic strength in each synapse can be

mediated through an increase of the number of channels or

through an increase of the channel conductance.

Increasing the inhibition through multiplication of the number

of channels would require knowledge of the number of channels in

each synapse. A process that acts directly on the synaptic channel

conductance is simpler, since it does not require knowledge of the

number of channels. We indeed had shown that contrast

enhancement acts through doubling the AMPA channel conduc-

tance and predict that the increased inhibition will also be

mediated by a multiplicative process in which the GABAA channel

conductance is doubled.

To test these predictions we had analyzed TTX-insensitive pure

GABAA-mediated miniature-inhibitory-post-synaptic-currents

(mIPSCs) that were recorded from layer II pyramidal neurons

4–5 days after learning-set.

Synaptic enhancement is dominated by doubling of
GABAA-mediated currents

We recently showed [17] that the increase in excitation was

paralleled by a robust increase in the amplitude of miniature

IPSC’s (35%), and that the increase in inhibitory events amplitude

was predominant in a sub-group of cells, were virtually all

inhibitory events increased their strength (Averaged mIPSC

amplitude 23.867.0 pA in neurons from trained rats, 20.962.9

pA in neurons from naı̈ve rats, and 18.263.9 pA in neurons from

pseudo-trained rats). Here we examined the other prediction of the

models, namely that in these cells the increase is controlled by a

uniform all-cell process in which the conductance of the GABAA

channel is doubled.

We characterized the process that underlies the increased

inhibition by analyzing the amplitude distribution curves of the

previously measured [17] inhibitory events. The averaged

amplitude distribution curves of neurons from trained rats picked

at higher amplitudes and decayed at lower rates, compared with

the averaged values for neurons in the pseudo trained group

(figure 5A).

We next examined the process that underlies the increased

averaged amplitude of inhibitory events. We Applied PCA on all

distribution curves from pseudo and trained groups. The first

component could explain 38% of the difference between all

distribution curves; the second component could explain 10% of

the differences while the third and higher components could

explain less than 4%. Post-hoc examination of each group revealed

that the weights of the first component in cells from the trained

group (20.0660.17, n = 20) was significantly different (P,0.008;

figure 5B), compared to the pseudo-trained group (0.1260.13

n = 10) while the weights of the other components did not differ

significantly between groups (P,0.7). Together this suggests that

the first component describes the main difference between the

Figure 4. Contrast-enhancement causes selective memory enhancement. Cells in the network were arranged in a matrix in which the
intensity level corresponds to the change in the number of spikes during memory activation compared to background. Cells that responded to an
arbitrary input-X were arranged in T-shape. A. Contrast-enhancement applied to neurons constructing pattern X, substantially increased their
response intensity to the input-X, but activity did not spread to neurons out of this pattern (the same neurons are activated before and after contrast
enhancement is applied). B. Contrast enhancement of pattern X did not affect the intensity of another memory-pattern induced by a different input,
although the two memory-patterns had a considerable overlap (correlation of 0.74). Notice the vague shape of the T pattern. C. The ratio between
the number of spikes before and after contrast-enhancement in response to different inputs. Only the response to input-X (red) was considerably
enhanced. Pattern #6 is shown in figure 4B.
doi:10.1371/journal.pone.0068131.g004
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groups while the other components describes within group

differences. Moreover, the first component well matched the

curve describing the averaged difference between groups

(R = 0.93, figure 5C) suggesting that one process dominates the

difference between the two groups.

Subsequently, we tested whether the process underlies the

difference between group is multiplicative or additive, as shown for

excitatory synaptic transmission. With multiplication factors

between 1.8–2, the curve that describes the main difference

between the groups well matched the calculated curve assuming a

multiplicative model (figure 5D, see also Methods). An alternative

model, assuming a process of addition rather than multiplication

(in which all synapses are increased by a constant), resulted in poor

fit (R = 0) for all constants.

In a sub-group of neurons the strength of all inhibitory
synapses is doubled

The increase in mIPSC amplitude and in SD was not

homogenous and some neurons showed a particular strong

increase both in amplitude and SD [17]. The increase in standard

deviation in the trained group was similar to the increase in

amplitude (figure 6A). Using hierarchical analysis [24], the

neurons in the trained group could be segregated into two distinct

sub-groups (figure 6A). The first sub-group, the greatly-enhanced

neurons, entails six cells (30% of the trained group) with very large

means (31.662.8 pA) and large standard-deviations (17.962.0).

The second sub-population, the moderately-enhanced neurons (all

other 15 cells) had significantly (P,0.004) lower means and

standard-deviations (19.862.3pA, and 11.461.6 respectively).

The cells in the greatly enhanced group are those in which most

of the synapses showed an increase [17]. We compared the

greatly-enhanced-trained sub-group to the cells in the pseudo-

trained group. The average and the standard-deviation in this sub-

group of trained neurons were 1.79 and 1.69 times larger than

those in the pseudo-trained group. Given the multiplication factor

of 2, calculated using the PCA component, this suggests that

virtually all inhibitory synapses in these neurons were multiplied

by this factor.

The averaged amplitude of events in the moderately enhanced

sub-group was not significantly different than the averaged

amplitude in neurons from the pseudo group (19.862.3pA, and

18.263.9 pA respectively increase of 1.1; P,0.2). Calculation of

the ratio of the averaged mIPSCs amplitudes between the different

groups, show that synaptic events recorded only in the greatly-

Figure 5. The learning-induced modulation of the inhibitory unitary synaptic events amplitude is dominated by a single process in
which the events amplitude was doubled. A. For each neuron an amplitude distribution curve was reconstructed from the mIPSC’s amplitudes
and was normalized (data taken form [17]). Averaged amplitude histograms, were calculated for all neurons from the three groups. Notably, a
significant portion of events in the trained group are of higher values. B. For each cell the weight for the first component (X-axis) was drawn against
its weight for the second component (Y-axis). Only the weights of the first component are significantly different between groups. C. The curve
calculated by subtracting the averaged pseudo amplitude distribution curve from the averaged trained amplitude distribution curve (orange) match
the first component calculated by PCA (black). D. For each multiplication factor a different curve that describes the difference between groups
assuming a multiplication model was calculated. The calculated curve assuming multiplication factor of 2 (black) matched the curve that describes
the main difference between groups (orange). Inset: the correlation coefficient was calculated for each multiplication factor (for calculation of R only
amplitudes .13pA were used, since at lower amplitudes, multiplication factors bigger than two requires unavailable data in amplitudes ,6pA, see
Methods).
doi:10.1371/journal.pone.0068131.g005
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enhanced sub-group contribute more than two-third of the total

learning-induced increase in the averaged mIPSC amplitude.

We tested the hypothesis that in the greatly enhanced group all

inhibitory events were doubled by comparing the calculated curve

with the experimental curve: all events in the pseudo-trained

group were multiplied by 2, and an amplitude distribution curve

was calculated. The resulting amplitude-distribution curve

matched (r = 0.85) the experimental distribution curve of the

greatly enhanced trained group (figure 6B), confirming the validity

of the above results.

These data suggest that acquisition of a skill to perform

successfully in a particularly difficult task is accompanied by a

comprehensive change in the strength of all inhibitory synapses in

a sub-population of neurons. Namely, all inhibitory synapses in

these cells doubled their strength.

Synaptic enhancement is mediated by doubling the
GABAA channels conductance

To determine whether the twofold increase in the synaptic

strength result from doubling the single channel conductance or

from doubling the number of receptors, we applied the NSFA

analysis method. As shown for excitatory synaptic transmission,

the averaged calculated single GABAA channel current in the

greatly-enhanced-trained-sub-group (figure 6C) was twofold high-

er than that of the pseudo-trained group (5.4660.74 pA; n = 5 for

greatly enhanced trained and 2.4860.41 pA; n = 9 for pseudo

trained, P,0.00001) and was 82% higher than the averaged single

channel current in the moderately-enhanced-trained-sub-group

(2.9961.07pA; n = 11, P,0.0003). The calculated averaged

number of active channels (figure 6C) did not differ between

groups (6.360.4 for greatly-enhanced trained neurons, 8.662.8

for pseudo trained and 7.862.5 for moderately-enhanced trained

neurons). These results imply that multiplicative increase in

mIPSC’s amplitude results from a twofold increase in the

GABAA-channel conductance. Furthermore, these results are in

agreement with twofold increase of all inhibitory synapses in the

greatly-enhanced-trained-sub-group. As for excitatory synapses,

the division between greatly enhanced and moderately enhanced

groups was kept when taking the single channel conductance as a

parameter (figure 6D).

Discussion

We have previously shown that complex odor-learning is

accompanied by pronounced, wide spread, enhancement of

excitatory and inhibitory synaptic transmission within the piriform

cortex mediated by post synaptic modulation of AMPA receptor

and GABAA receptor mediated currents [17]. Here using in-depth

analysis, we show that the increase of the post synaptic currents is

due to increase in the receptors channels conductance and suggest

that most of the increase is attributed to doubling the strength of

all synapses in a sub-group of cells. This large scale synaptic

modulation may be instrumental for enhancing long-term

Figure 6. In a sub-group of cells from trained rats, amplitudes of all inhibitory miniature events are doubled. A. Each cell was plotted
as a function of its averaged event amplitude and standard deviation. Few cells from trained-group had exceptionally large averaged amplitudes and
Standard-deviations. Using hierarchical clustering analysis the cells were divided to two groups (separated by the dotted line; the same division was
obtained for all the methods that were implemented). B. The distribution curve describing the greatly-enhanced trained neurons can be constructed
from the distribution curve describing the pseudo-trained neurons. The expected curve (black) calculated from pseudo events (green) overlaps the
averaged distribution curve of the greatly-enhanced-trained group (blue). (r = 0.85, only amplitudes .13pA were used, since at lower amplitudes,
multiplication factors bigger than two requires unavailable data in amplitudes ,6pA, see Methods) C. The averaged GABAA single channel
conductance in the greatly-enhanced-trained-group was doubled compared with the pseudo-trained group, and is 82% bigger than in the
moderately-enhanced-trained group. Values represent mean 6 SE, (***, p,0.001). The number of active GABAA channels does not differ between
groups. D. The greatly enhanced group shows distinct values of averaged GABAAR conductance as compared with the moderately enhanced group.
doi:10.1371/journal.pone.0068131.g006

Whole Cell Synaptic Increase Enables Memory Gain

PLOS ONE | www.plosone.org 9 July 2013 | Volume 8 | Issue 7 | e68131



Hebbian-memory of highly-complex skills. Such memory en-

hancement does not require synapse-specific memory and is

independent of the number of channels and thus can be readily

switched on and off when necessary.

Using network simulations, we show how such whole-cell

modification in excitatory synaptic transmission sub serves as a

transient mechanism for selective memory enhancement. Using

the model we show that learning-induced modifications in

inhibitory synaptic transmission must exist alongside with changes

in synaptic excitation. Moreover, the mechanism underlying

modulation of inhibitory spontaneous synaptic events is predicted

accurately by model.

Excitatory synaptic enhancement is mediated by post
synaptic modulation of the AMPAR conductance

We show, using the PCA analysis, that most of the differences

between the pseudo and trained groups are caused by doubling the

event size. We validated this using the NSFA and further showed

that the two-fold increase of the AMPA channel conductance, and

not a change in the averaged number of active channels per

unitary synaptic event, underlies the two-fold increase in the event

size. We claim that a modification in the channel conductance and

not in the number of channels can serve as a transient mechanism

that does not require knowledge of the synaptic strength and thus

can be served as a mechanism that can be readily switched on and

off. Interestingly, it was found that phosphorylation of ser-831 site

of the AMPA receptor causes doubling of the AMPA channel

conductance [27] and that this increase follows synaptic stimula-

tion and returns to baseline values after depotentiation [21,22].

The increase we observed in the averaged events amplitude could

not be explained by increase in the AMPA channel open time

since it did not resulted in differences in the events kinetics (table 1).

The conductance of an AMPA channel reflects the number of

sub-units that are simultaneously conducting. After phosphrilation

of ser-831 the relative proportion of simultaneously open sub-units

is increased and thereby increasing the averaged conductance of

the AMPA channel. The relative proportion of the sub-conduc-

tance’s is stable both before and after phosphorilation, leading to

two stable conductance states with the ratio of two [28]. As a

result, the scaling of the amplitude of a single excitatory event after

ser-831 phosphorilation should be maximum two. This together

with our observations that the events amplitudes and the average

channel conductance were also multiplied by two indicates that a

single multiplication factor of around two is indeed expected for all

events.

Greatly-enhanced versus moderately-enhanced neuronal
groups

Although learning-induced synaptic enhancement is apparent in

most recorded neurons, extensive changes are present in a sub-

group of neurons, termed the greatly-enhanced cells, in which

effectively all synapses doubled their strength.

Although the greatly-enhanced trained sub-group entails only a

relatively small fraction of the pyramidal cell population, it

contributes two-thirds of the total increase in the averaged mEPSC

amplitude.

The dominance of the greatly-enhanced cells, in which almost

all synapses double their strength, implies that the synaptic

connectivity in all the pathways to and within the piriform cortex

should all increase by a similar factor. Indeed, enhanced excitatory

transmission was observed after learning in the ascending and

descending fibers terminating on layer II pyramidal neurons [15],

as well as in the intrinsic fibers inter-connecting these neurons

[16,17,29]; This increase had a similar magnitude (,60%) in all

pathways. Moreover, the extent of increase observed in these

pathways (,60%) is similar to the extent of increase in synaptic

strength observed here. This consistency is mainly attributed to the

dominant contribution of the greatly-enhanced-trained-sub-group

to the synaptic responses evoked in all pathways.

Possible implications of whole-cell AMPAR conductance
multiplication

Since the enhancement we observed is cell-specific, rather than

synapse-specific, the conductance increase can be mediated by

whole-cell control mechanism(s). Several studies report a robust

long-term increase in the total synaptic strength following learning

[9–13,15]. The increase in excitation and in inhibition was

observed 4–5 days after training termination [17]. We previously

showed that the long term increase observed in our lab is

paralleled by only minor morphological modifications [18]. A

whole-cell transduction mechanism can indeed support the

observed long-term change without morphological support.

Moreover, the increase in synaptic strength was shown to be

transient, disappearing within eight days after training termination

[9,12]. Indeed, a whole-cell process that is meditated by

transduction mechanism and is not supported by morphological

modifications can be toggled off, and thus to cause the synaptic

strength to resume its baseline values.

Long-lasting enhancement of inhibitory synaptic
transmission

The validity of our computational model could be readily

examined by testing the four predictions it generates regarding the

learning-induced long-term modulation of synaptic inhibition: (1)

the increase in inhibition should be dominant in a sub-group of

cells. Indeed the predominant increased inhibition in the greatly-

enhanced group could explain two-third of the total increase in

inhibition. (2) The increased synaptic inhibition should be of the

same extent as synaptic excitation. Indeed, amplitude of both

miniature inhibitory and excitatory events was increased by

approximately two-fold both for inhibitory and excitatory events.

(3) The increased inhibition should be mediated by a whole-cell

process in which the increase is uniform over the synapse

population. Our data show, using different analysis methods, that

virtually the amplitudes of all inhibitory events in the greatly

enhanced group are doubled. (4) The mechanism that mediates

multiplication of the inhibitory synaptic strength should act on the

GABAA channel conductance rather than the number of channels.

Indeed, using NSFA analysis we showed that the average number

of GABAA channels per event was not modified while the channel

conductance was modified.

Contrast-enhancement
Pyramidal cells in the piriform cortex were found to be

electrotonically compact with space constant of current transmis-

sion that approximates 900 mm [30], thus enabling the quantifi-

cation of both proximal and distal generation sites.

We suggest that a multiplicative increase of all excitatory and

inhibitory synapses in the cell is a novel whole-cell mechanism for

selective enhancement of Hebbian memory, which is achieved

through a process we termed ‘‘contrast-enhancement’’.

Multiplication of the inhibition and excitation by the same

constant will amplify the net synaptic current without modifying its

reversal potential. This should cause a prominent increase in spike

rate mainly when the net synaptic is considerably depolarized, thus

mainly when the cell is part of a memory pattern. When the cell
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does not respond to the input, the net synaptic current is small and

thus the absolute change caused by contrast enhancement should

be minor. When the input has an inhibitory effect on the cell and

the net synaptic current is hyperpolarizing, contrast enhancement

will further hyperpolarize the cell voltage. This implies that a

multiplicative increase by the same constant of both inhibition and

excitation only scales the cell response without modifying its

quality and thus can be termed contrast enhancement.

Notably, contrast enhancement could not be mediated by an

additive process, in which all excitatory synapses are increased

rather than multiplied by a constant factor. Such an additive

process is expected to have a minor effect on the difference

between a responding state and non responding state.

Functional significance of contrast-enhancement
Using a neuronal network model, we showed that applying

contrast-enhancement on a group of cells that forms a distinct

memory leads to selective enhancement of this particular memory,

with a minor effect on other memories that are stored in the same

network. Such memory enhancement is independent of memory

formation. A memory of vital importance needs to be enhanced in

order to dominate subsequent behavior [14,31]. Examples for such

a memory can be found in reward related memory [14,32] or in

traumatic memory [31]. When the memory becomes less crucial it

should be de-enhanced in order to balance its weight with the

weights of other memories. The balance between memories in a

network of neurons is achieved through a tight upper limit of the

synaptic strength [33–35). The limit is hypothesized to occur via a

limit on the number of AMPA receptors [36]. Contrast-

enhancement bypasses the tight control of synaptic strength by

increasing the AMPA channel conductance rather by increasing

the number of AMPA receptors; it is cell-specific rather than

synapse-specific and thus has the potential to be readily toggle-on

and off via whole-cell transduction mechanisms.

To conclude, our study shows that high-skill learning induces a

profound long-lasting modulation of AMPAR and GABAAR

conductance-mediated enhancement of excitatory and inhibitory

synaptic transmission. This enhancement is mostly induced in a

sub-group of neurons, in which virtually all synaptic inputs double

their strength. Such a whole-cell modulation enables the cortical

network to enhance particularly important memories, on the

background of other, somewhat overlapping, memories. We

suggest that this unique memory enhancement mechanism in

crucial for maintaining recently acquired capabilities to perform

particularly complex tasks.

Materials and Methods

Statistical analysis
Between-groups comparison was done using one-way ANOVA,

and post-hoc multiple t-tests were then applied to compare

between each two groups. Values throughout the text are

presented as mean 6 SD. Data in graphs is presented as mean

6 SE.

PCA
We applied principal component analysis (PCA) on the

amplitude distribution curves of all cells in the trained and the

pseudo-trained group, after subtracting the total average.

PCA is a model-free analysis method that approximates a data

set with a linear combination of a small number of untailored

components. The method gives an importance score to each

component, such that the first component has the highest score.

The weights of the linear combination are different for each cell.

The method has no knowledge which cell was pseudo-trained and

which was trained in this pool.

Calculating the model based curve that describes the
difference between groups

Given a multiplication factor, the fraction of events that has to

be multiplied by this factor in order to result with the averaged

increase in event amplitude (64% for excitation and 35% for

inhibition) was calculated. A new amplitude distribution curve was

calculated by randomly selecting the calculated fraction of the

events in the pseudo group and multiplying their amplitude by this

factor. The averaged pseudo amplitude distribution curve was

then subtracted from the calculated amplitude distribution curve.

Only amplitudes .7pA for excitation and .13pA for inhibition

were used for the calculation of the correlation coefficient since the

construction of the model-based element at lower amplitudes

needs unavailable data at amplitudes ,3 pA for excitation and ,6

for inhibition, when multiplication factors .2.5 are used.

NSFA
Estimate of the averaged single channel current and the

averaged number of active channels were obtained using a peak-

scaled non-stationary fluctuation analysis (NSFA) of mEPSC’c

[21]. The NSFA was applied on the events that were electroton-

ically nearby (10–90% rise-times ,1.5 ms; 61614% of events in

trained; 64616% in pseudo-trained). Using Mini analysis software

(Synaptosoft Inc.), events (80–300 per each cell) were scaled and

aligned by their peak, and their decay phase was divided to 30

bins. The single channel current (i) and the number of channels (N)

were calculated (using Mini Analysis Software) by fitting the

theoretical relationship for the peak scaled variance (s2) after

subtraction of the background variance ( s2
b ):

s2 tð Þ~i:I tð Þ{ I(t)2 =Nz s2
b

Only cells in which the fitting of the equation yielded an

R.0.85 were incorporated in the analysis.

The Single channel conductance (c) was calculated using the

equation

c~
i

Vh { Vrev

where Vh is the holding potential (280 mV) and Vrev is the

reversal potential of the AMPA channel ( 0 mV).

Network Modeling
The network is composed from NE excitatory and NI inhibitory

integrate-and-fire current-base neurons. The sub-threshold activity

of each neuron is described by the following equation:

tm
: _VVi ~{ Vi z I

rec
i z I

ext
i z I

AHP
i ð1Þ

where the subscript i refers to the neuron number; tm is the

membrane time constant; I
rec
i is the sum of the recurrent synaptic

input from neurons in the network; I
ext
i is the sum of synaptic

currents from external neurons in other brain areas; I
AHP
i is the

After Hyper Polarization (AHP) current activated after every spike.

Membrane resistance has been absorbed into the definition of the

currents in Eq. 1.
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Whenever the depolarization of a neuron hits a fixed threshold

h (Vi(t) .h), the neuron emits a spike, causing all its output

synapses to be activated, yielding a synaptic current on the

postsynaptic neurons within a uniformly distributed period of 0.3–

4 ms (Dij). After a spike, Vi is reset to zero and then resumes its

pre-spike integration, followed by AHP current.

Excitatory neurons were randomly interconnected. Inhibitory

and excitatory neurons were also randomly inter-connected.

The external input I
ext
i is governed by homogenous Poisson

process and is composed of continuously activated synapses

( I
inp bg
i )supplying random background input which led to a

background activity with average of 1 spikes/sec and from inputs

that were activated selectively ( I
inp mem
i )and drove the network

response. I
inp mem
i was applied on 28% of the excitatory cells. Its

activation rate varied during the course of the trial such that it was

silent during the first and the last 1000 msec of the trial. We

implemented feed-forward inhibition such that the external input

activated also the inhibitory cells.

The recurrent current I
rec
i is the sum of the postsynaptic

currents from all neurons in the network targeting neuron i:

Irec
i (t)~

X

j

Wij

X

k

A(t{ tjk{ Dij ):d(t{ tjk { Dij )

Where Wij is the efficacy of the synapse connecting neuron j to

neuron i; A(t) is the time course of the postsynaptic current,

governed by instantaneous rise and a single exponential decay; the

sum on k is over all the emission times tjk of presynaptic neuron j;

Dij is the transmission delay.

A memory was learned by changing the strength of the relevant

synapses. The strength of the connectivity between neurons, Wij,

was modulated based on Spike-Timing-Dependent-Plasticity

(STDP) rule [37]. The basic rule for STDP-based changes is

given by:

F (Dt)~ Az e{DDtD=tz if Dt .0; F (Dt)~ A{ e{DDtD=t{ if Dt

,0Where Dt is the timing of the post-synaptic spike relative to the

pre-synaptic spike.

We applied boundary conditions on the synaptic strength, such

that the size of the synaptic change F(Dt) is reduced as Wij(t)

approaches its limits [35] and achieve it by multiplying F(Dt) by

the equation :ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Wij { Bmin

p
if Dt ,0;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bmax { Wij

p
if Dt .0where Bmin and

Bmax are the lower bound and the upper bound respectively.

A great deal of care was taken to keep the activity of the neurons

in a Poisson fashion. We achieved this by choosing the right initial

values for the network, and later by controlling the rate of

learning. In addition we implemented activity-dependent scaling

of synaptic strength, modeling the phenomena reported in

pyramidal neurons cultured from rat visual cortex [38]. Post-

synaptic activity in each excitatory neuron j was tracked by

counting the number of spikes (aj) during the last 1000 msec of a

trial in which Ii
inp_mem was silent. If the activity of the neuron

wandered outside the range of (amin, amax), synaptic scaling was

applied at the end of the trial by adding the product of the

following equation to Wij:

b:Wij ( amin { aj ) if aj v amin ; b:Wij ( amax { aj ) if

aj w amax ;

The synaptic scaling was applied on all excitatory and inhibitory

synapses in the cell excluding the synapses of the background

activity.

Each cell had 25 afferent input synapses. In each memory

activation 20% of the synapses were activated on each cell.

Memories were learned by repeating the same input during 20

trials. In each trial, input was applied for 1 sec. For each memory,

randomly chosen 28% of cells received afferent input. Values for

all the parameters that were used in the simulations are listed at

Table 2.

Applying contrast enhancement
The foot print of a memory in a network context is the response

of the cells to Ii
inp_mem. For each neuron i, contrast enhancement

was applied if the response to Ii
inp_mem was significantly (P,0.02)

different from its response to background activity over 10 trials. In

each cell in which contrast-enhancement was applied, all

excitatory synapses (both recurrent and afferent) were multiplied

by 2.5, the same fraction of inhibitory synapses were multiplied by

a factor that was derived such that the averaged activity of all

neurons that were modulated by the contrast enhancement will

remain the same (in our simulation the value was of 2.260.3).

Typically contrast enhancement was applied on ,5% of the cells

for single memory activation.

Simulations were conducted using the event driven simulation

implemented in Neuron [39].

Table 2. Values for simulation parameters.

Single-cell parameters

tm – membrane time constant 9 ms

h – spike threshold 1 mV

te – decay time constant of excitatory current 4 ms

ti – decay time constant of inhibitory current 6 ms

Network parameters

NE – number of excitatory cells 2000

NI – number of inhibitory cells 800

Probability of E R E synaptic contact 0.2

Probability of E R I synaptic contact 0.05

Probability of I R E synaptic contact 0.015

Initial synaptic efficacy E R E 0.0075 mV

synaptic efficacy E R I 0.04 mV

synaptic efficacy I R E 20.06 mV

%cells receiving excitatory input 28%

%cells receiving inhibitory input 56%

Initial excitatory input 0.015 mV

Inhibitory input 0.006 mV

Input frequency 10 hZ

Learning parameters

A+ learning rate 0.003

A2 learning rate 20.0015

t+ time constant of STDP window 13 ms

t2 time constant of STDP window 26 ms

Bmin – lower bound for synaptic size 0 mV

Bmax – upper bound 0.045 mV

b – rate of synaptic scaling 0.15

amin , amax – lower and upper bound on spike count.0.15 Hz; 3.5 Hz

The parametrs listed in the tables underly the basic single cell properties,
network connectivity and learning.
doi:10.1371/journal.pone.0068131.t002

Whole Cell Synaptic Increase Enables Memory Gain

PLOS ONE | www.plosone.org 12 July 2013 | Volume 8 | Issue 7 | e68131



Supporting Information

Figure S1 The second PCA component describes the inner

variability within groups, whereas the inner variability in the

trained group is two-fold expansion in the X-axis of the inner

variability pseudo group. The weights of PC1 and PC2 are well

correlate both for the pseudo and trained groups and therefore the

same linear combination of the two principal components is

sufficient to describe all distribution curves in the same group. A.
The first two components (PC1 and PC2) calculated by Principal

Component Analysis on the pool of mepsc’s distribution curves

from pseudo and trained groups. B. The compound component of

the pseudo group (red) was build based on the correlation between

the weights of PC1 and PC2 for the pseudo group (figure 1D;

PC1+0.88?PC2). The curve describing the main variability within

the pseudo group (blue) was obtained by applying PCA on the

pseudo group only. The resulting first PC well overlapped the

compound component (r = 0.77). C. The compound component

of the trained group (red) was build (PC1-0.8?PC2). PCA was

applied on the trained group only, where the resulting first PC

(blue) describes the main variability within the trained group. The

first PC well overlapped the compound component (r = 0.80). D.
The curve calculated by multiplying the compound pseudo

component in the X-axis by a factor of 2.2 describes well

(r = 0.86) the compound component of the trained group (for

calculation of R only amplitudes .13pA were used, since at lower

amplitudes, multiplication factors bigger than two requires

unavailable data in amplitudes ,6pA, see Methods).

(TIF)

Table S1 When the difference between groups is moderate, a

good correlation between the curve describing the averaged

differences between groups and PC1 is attained only if big

majority of the events were multiplied by the same factor, or if the

multiplication factors had similar values. The distribution curves of

the pseudo group were modified with different multiplicative

transformations and then normalized. PCA analysis was calculated

on a pool of distribution curves containing the pseudo and the

transformed data. For each transformation, the correlation

coefficient (r) between PC1 and the curve that resulted from

subtracting the pseudo mean curve from the transformed mean

curve was calculated. In addition the significance value between

the weights of the two groups was calculated both for PC1 and

PC2 (PC1, PC2). Only 50% of the mepsc’s population was

modified. The modified group was divided such that each portion

(X, Y) was multiplied by a different multiplication factor(X*a,

Y*b). The proportions were chosen such that the weighted average

of the multiplication factors will be 2.5.

(DOCX)

Table S2 When the difference between groups is large (.150%),

a high correlation is attained even though the multiplication

factors are significantly different. The distribution curves of the

pseudo group were modified with different multiplicative trans-

formations and then normalized. PCA analysis was calculated on a

pool of distribution curves containing the pseudo and the

transformed data. For each transformation, the correlation

coefficient (r) between PC1 and the curve that resulted from

subtracting the pseudo mean curve from the transformed mean

curve was calculated. In addition the significance value between

the weights of the two groups was calculated both for PC1 and

PC2 (PC1, PC2). Half of the population was multiplied by a and

half by b, causing more than two-fold difference between groups.

A high correlation is attained even though the multiplication

factors were very different.

(DOCX)

Table S3 When both additive and multiplicative processes

underlie the difference between groups, a good correlation is

attained only if one of the processes is very minor. The distribution

curves of the pseudo group were modified with different

transformations and then normalized. PCA analysis was calculated

on a pool of distribution curves containing the pseudo and the

transformed data. For each transformation, the correlation

coefficient (r) between PC1 and the curve that resulted from

subtracting the pseudo mean curve from the transformed mean

curve was calculated. In addition the significance value between

the weights of the two groups was calculated both for PC1 and

PC2 (PC1, PC2). Two different processes were applied, an

additive and a multiplicative process. The amplitude of 25% of the

mepsc’s population was increased by factor a and the amplitude of

other 25% of the population was multiplied by factor b.

(DOCX)
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