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Abstract CCN family member 2 (CCN2), also known as
connective tissue growth factor (CTGF), has been suggested
to be an endochondral ossification genetic factor that has been
termed “ecogenin”, because in vitro studies revealed that
CCN2 promotes the proliferation and differentiation of
growth-plate chondrocytes, osteoblasts, and vascular endothe-
lial cells, all of which play important roles in endochondral
ossification. In addition to its action toward these three types of
cells, CCN2 was recently found to promote the formation of
osteoclasts in vitro, which cells play an important role in the
replacement of cartilage by bone during endochondral ossifi-
cation, thus strengthening the “ecogenin” hypothesis. For con-
firmation of this hypothesis, transgenic mice over-expressing
CCN2 in cartilage were generated. The results proved the
hypothesis; i.e., the over-expression of CCN2 in cartilage stim-
ulated the proliferation and differentiation of growth-plate
chondrocytes, resulting in the promotion of endochondral os-
sification. In addition to its “ecogenin” action, CCN2 had
earlier been shown to promote the differentiation of various
cartilage cells including articular cartilage cells. In accor-
dance with these findings, cartilage-specific overexpression
of CCN2 in the transgenic mice was shown to protect
against the development of osteoarthritic changes in aging
articular cartilage. Thus, CCN2 may also play a role as an
anti-aging (chondroprotective) factor, stabilizing articular
cartilage. CCN2 also had been shown to promote
intramembranous ossification, regenerate cartilage and bone,
and induce angiogenesis in vivo. For understanding of the

molecular mechanism underlying such multifunctional ac-
tions, yeast two-hybrid analysis, protein array analysis,
solid-phase binding assay, and surface plasmon resonance
(SPR) analysis have been used to search for binding part-
ners of CCN2. ECMs such as fibronectin and aggrecan,
growth factors including BMPs and FGF2 and their re-
ceptors such as FGFR1 and 2 and RANK, as well as
CCN family members themselves, were shown to bind to
CCN2. Regarding the interaction of CCN2 with some of
them, various binding modules in the CCN2 molecule have
been identified. Therefore, the numerous biological actions
of CCN2 would depend on what kinds of binding partners
and what levels of them are present in the microenviron-
ment of different types of cells, as well as on the state of
differentiation of these cells. Through this mechanism,
CCN2 would orchestrate various signaling pathways, acting
as a signal conductor to promote harmonized skeletal
growth and regeneration.
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VEGF Vascular endothelial growth factor
FGF Fibroblast growth factor
FGFR Fibroblast growth factor receptor
RANK Receptor activator of nuclear factor

kappa-B
RANKL Receptor activator of nuclear factor

kappa-B ligand
OPG Osteoprotegerin
SPR Surface plasmon resonance
IGFBP Insulin-like growth factor-binding protein
IGF Insulin-like growth factor
IGFR Insulin-like growth factor receptor
VWC von Willebrand factor type C repeat
TSP Thrombospondin
FN Fibronectin
DC-STAMP Dendric cell-specific transmembrane protein
TrkA Tropomyosin-related kinase A
NF-κB Nuclear factor-kappa B

Introduction

Bone is formed by two processes, intramembranous ossifica-
tion and endochondral ossification (Fig. 1). In the process of
intramembranous ossificiation, osteoblasts differentiated from
mesenchymal stem cells directly form bone. On the other hand,
in the process of endochondral ossification, chondrocytes dif-
ferentiated from mesenchymal stem cells first form transient
cartilage, the so-called growth-plate cartilage, and then this
cartilage is replaced by bone after invasion of blood vessels
into the cartilage. Even after that, articular cartilage remains as a
permanent cartilage on the surface of joints.

As shown in Fig. 2, in the fetus, bone anlagen is formed as
cartilage; and then intramembranous ossification occurs at the

center of this anlagen, referred to as the primary ossification
center. Then the bone expands in both directions, and a
secondary ossification center is formed in the epiphysis. As
a result, plate-like cartilage remains between both bones; and
this plate-like cartilage is called the growth plate.

In the growth plate, chondrocytes proliferate, differentiate,
mature, and become hypertrophic chondrocytes which form a
calcified matrix. Then, osteoclasts erode this calcified carti-
lage, after which blood vessels penetrate into the eroded
cartilage. Also, osteoblasts deposit a bone matrix; and finally
the cartilage is replaced by bone. Many growth factors, cyto-
kines, and vitamins have been shown to be involved in chon-
drocyte proliferation and differentiation, but none of them
promotes the entire process of endochondral ossification. To
isolate such a factor, we previously carried out differential-
display PCR and cloned a gene that was predominantly
expressed in hypertrophic chondrocytes. We named it hyper-
trophic chondrocyte-specific gene hcs 24, the product of
which was found to be identical to CTGF, now called CCN2
(Fig. 2; Takigawa 2003; Takigawa et al. 2003; Perbal and
Takigawa 2005; Nakanishi et al. 1997).

CCN2 is a member of the CCN protein family, which
originally consisted of 3 members, i.e., CTGF, Cyr61 and
Nov, and now consists of 6 members (Takigawa et al. 2003;
Perbal and Takigawa 2005; Brigstock et al. 2003). These mem-
bers are cysteine-rich secretory proteins, and each member
contains four conserved modules, i.e., an IGFBP module,
VWC type C module, TSP type 1 repeat, and C-terminal
module except for CCN5, which lacks the CT module (Fig. 3,
top). Early studies paid much attention to the involvement of
CCN2 in fibrosis, because expression of the CCN2 gene had
been shown to be induced by TGF-beta, which expression had
been found in various fibrotic disorders, and because CCN2
had been shown to promote the proliferation, migration, and
adhesion of fibroblasts (Perbal and Takigawa 2005; Takigawa
2003; Mori et al. 1999; Sato et al. 2000; Brigstock 1999;
Moussad and Brigstock 2000). However, the discovery of
CCN2 in chondrocytes opened a new era for CCN2 research,
especially that regarding its physiological function.

Role of CCN2 in endochondral ossification - in vitro
studies

By making recombinant proteins, my colleagues and I found
that CCN2 stimulates the proliferation and differentiation of
growth-plate chondrocytes and causes them to become hyper-
trophic and form a calcified matrix (Nakanishi et al. 2000).We
also found that recombinant CCN2 (rCCN2) promotes the
proliferation and differentiation of osteoblasts, as well as
calcification by them (Nishida et al. 2000). Moreover, we
found CCN2 to promote the proliferation, adhesion, migra-
tion, and tube formation of vascular endothelial cells and to

Bone

Permanent 
cartilage
(Articular 

cartilage etc.)

Growth
cartilage

chondrocytes

osteoblasts

Mesenchymal
Stem cells

Smooth 
muscle cells

adipocytes

angiogenesis

PPARγ

MyoD
family

cbfa1, 
osterix

Sox5,6,9

Endochondral
ossification

Intramembranous ossification

Calcification
Hypertrophy
Maturation
Differentiation
Proliferation

Fig. 1 Mechanism of skeletal formation. Bone is formed by two pro-
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induce angiogenesis in ovo and in vivo (Shimo et al. 1998,
1999; Kubota and Takigawa 2007a).

From these findings, we hypothesized that CCN2 promotes
endochondral ossification by acting on three types of cells:
chondrocytes, osteoblasts, and endothelial cells (Takigawa et
al. 2003; Kubota and Takigawa 2007b, 2011). Thus we coined
the term “Ecogenin: endochondral ossification genetic factor”
to describe this molecule (Takigawa et al. 2003). However,
there is one more type of cell that plays an important role in
endochondral ossification, i.e., the osteoclast. As shown in

Fig. 2, when cartilage is replaced by bone, osteoclasts invade
into the matrix of the calcified cartilage and provide space for
the deposition of osteoid by osteoblasts. Therefore, we recently
investigated the effect of CCN2 on osteoclastogenesis.

Using osteoclast precursor cell line RAW 264.7 cells
(Shui et al. 2002), we found that (1) CCN2 potentiates
RANKL-induced osteoclastogenesis in its late stage; (2)
expression of CCN2 and DC-STAMP is induced in the late
stage of RANKL-induced osteoclastogenesis, with the in-
duction of CCN2 being earlier than that of DC-STAMP; and
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(3) CCN2 potentiates the expression of DC-STAMP in the
late stage of osteoclastogenesis (Nishida et al. 2011a;
Fig. 4). Moreover, using IP-Western blotting and the solid-
phase binding assay, we also found that CCN2 binds to DC-
STAMP (Nishida et al. 2011a; Fig. 4).

Using fetal liver cells as a source of osteoclast precursor
from CCN2 null mice (Nishida et al. 2011a), we also found
that osteoclastogenesis induced by M-CSF and RANKL in
vitro is impaired in these mice and that exogenous CCN2
rescues this impaired osteoclastogenesis. Furthermore, we
showed that knock down of CCN2 by siRNA inhibits pit
formation, which is a marker of active osteoclasts, and that
this inhibition is reversed by the addition of rCCN2 (Nishida
et al. 2011a). Moreover, CCN2 increases DC-STAMP expres-
sion in fetal liver cells from CCN2 null mice; and forced
expression of DC-STAMP by retrovirus transfer increases
the formation of TRAP-positive cells from fetal liver cells
(Nishida et al. 2011a). These findings indicate that CCN2
induces the late stage of osteoclastogenesis through DC-
STAMP. In summary, as shown in the right part of Fig. 4.,
RANKL stimulates osteoclast precursors to form Trap-
positive cells, which then produce CCN2; and this CCN2
induces the expression of DC-STAMP and interacts with the
DC-STAMP to promote the fusion of the TRAP-positive cells,
thus resulting in enhancement of late-stage osteoclastogenesis.

Moreover, CCN2 enhances the early stage of
osteoclastogenesis (Aoyama et al. 2013). As shown in the left
part of Fig. 4, we revealed by performing the solid-phase binding
assay and using surface plasmon resonance (SPR) that CCN2
binds to RANK. SPR revealed that CCN2 binds to RANK with
a KD value of less than 100 nM (Aoyama et al. 2013). Interest-
ingly, CCN2 also binds to osteoprotegerin (OPG), which is a
decoy receptor of RANK (Aoyama et al. 2013). Translocation of
NF-κB into the nucleus is known to be one of the signaling
pathways of RANKL (Hu et al. 2008); and CCN2 enhances this

RANKL-induced nuclear translocation of NF-κB in RAW264.7
cells, which are osteoclast precursor cells (Aoyama et al. 2013).
In addition, CCN2 enhances RANKL-induced phosphorylation
of JNK, ERK, and p38 inRAW264.7 cells (Aoyama et al. 2013).
Therefore, these findings strongly suggest that in the early stage
CCN2 interacts with RANK and enhances RANKL signaling,
leading to osteoclastogenesis (Aoyama et al. 2013). This effect
may be due to increased availability of RANKL as a result of the
binding of CCN2 to OPG. However, since we also found that
OPG inhibits the interaction between CCN2 and RANK, OPG
might inhibit the enhancement of RANKL signaling by CCN2
(Aoyama et al. 2013).

In conclusion, CCN2 also stimulates osteoclastogenesis in
addition to acting on chondrocytes, osteoblasts, and endothelial
cells. These findings strongly support our hypothesis that CCN2
is an endochondral ossification genetic factor (“ecogenin,”
Fig. 5). However, this hypothesis comes from the data obtained
mainly from in vitro experiments (Fig. 5). Therefore, we needed
to confirm this hypothesis by performing in vivo studies, the
results of which are described in the next section.

Generation of transgenic mice overexpressing CCN2
in cartilage proves the “ecogenin” action of CCN2

To confirm that CCN2 actually promotes endochondral ossifi-
cation in vivo, we generated transgenic mice over-expressing a
ccn2/lacZ fusion gene in cartilage under the control of the 6 kb-
Col2a1-enhancer/promoter (Tomita et al. 2013). Although
there was no difference between WT and TG mice on embry-
onic day 15.5, the TG mice on postnatal day 1 were larger than
the WTones. Also at 8 weeks, these TG mice were larger than
the WT animals (Tomita et al. 2013). When we measured the
length of their long bones, the tibial lengthwas longer in the TG
mice than in theWTones on postnatal day 1. Statistical analysis
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using P2mice also confirmed that the TG bone was longer than
the WT bone. Newborn transgenic mice also showed extended
length of their long bones (Tomita et al. 2013). In order to
assess whether the enhanced bone growth of CCN2 transgenic
animals was due to enhanced cell proliferation, we stained
sections of E19.5-day transgenic and wt embryos with an
antibody against proliferative cell nuclear antigen (PCNA).
The data showed that over-expression of CCN2 stimulated
chondrocyte proliferation predominantly in the proliferative
zone, but also in the resting zone (Tomita et al. 2013). Histo-
logical and immunohistological analyses revealed increased
accumulation of proteoglycans and collagen II in the Tg mice
(Tomita et al. 2013). The results of a TUNEL assay revealed
marginally enhanced accumulation of apoptotic cells at the
cartilage-bone interface and in the adjacent subchondral zone
in the transgenic embryos as compared with that in the wild-
type mice (Tomita et al. 2013). In in vitro short-term cultures of
chondrocytes prepared from the cartilage of ccn2-over-express-
ing mice, the expression of col2a1, aggrecan and ccn2 was
substantially enhanced; and in long-term cultures the expres-
sion levels of these genes were further enhanced (Tomita et al.
2013). The expression of Col10a1, a marker of hypertrophy,
and that of vegf and of mmp-9, both vascular invasion factors
expressed in the hypertrophic zone and boundary between
cartilage and bone, were also enhanced; however, the level
of stimulation in the transgenic chondrocytes was not as high
as that for aggrecan or Col2a1 (Tomita et al. 2013). In
addition, in vitro chondrogenesis by rib chondroblasts from
ccn2-over-expressing mice was strongly enhanced (Tomita et
al. 2013). IGF-I and IGF-II mRNA levels were elevated in the
transgenic chondrocytes, and treatment of non-transgenic
chondrocytes with CCN2 stimulated the expression of these
mRNAs (Tomita et al. 2013). The addition of CCN2 induced
phosphorylation of IGFR, and ccn2-overexpressing

chondrocytes showed enhanced phosphorylation of IGFR,
suggesting that our observation made on TG cartilage may
have been mediated in part by CCN2-induced overexpression
of IGF-I and IGF-II (Tomita et al. 2013). Micro-CT analysis
revealed that overexpression of CCN2 increased bone density,
the extent of mineralization of cancellous bone, and the thick-
ness of the cortical bone (Tomita et al. 2013).

These findings indicate that overexpression of CCN2 in
transgenic mice accelerated the endochondral ossification
processes by promoting the proliferation and differentia-
tion of growth-plate chondrocytes, resulting in increased
length of their long bones (Tomita et al. 2013; Fig. 6).
These results also indicate the possible involvement of
locally enhanced IGF-I or IGF-II in this extended bone
growth (Tomita et al. 2013).

Chondroprotective action of CCN2 in articular cartilage
shown by the transgenic mice overexpressing CCN2
in cartilage

CCN2 stimulates the synthesis of DNA and proteoglycans in
articular chondrocytes as in growth-plate chondrocytes, but
unlike its stimulation of calcification by growth cartilage cells,
CCN2 does not stimulate undesired calcification in articular
chondrocytes (Nishida et al. 2002; Kubota and Takigawa
2007b, 2011). Also, the administration of CCN2 together with
gelatin hydrogel into cartilage defects repairs articular carti-
lage (Nishida et al. 2004; Kubota and Takigawa 2007b, 2011).
These facts let us to speculate some special effect of CCN2 on
the articular cartilage in these CCN2-overexpressing mice
described above.

To investigate the effect of CCN2 overexpression on artic-
ular cartilage (Itoh et al. 2009, 2011), we used a spontaneously
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Fig. 5 CCN2 enhances
osteoclastogenesis in addition
to promoting actions toward
chondrocytes, osteoblasts, and
vascular endothelial cells. In
other words, CCN2 promotes
endochondral ossification by
acting on all four types of cells
that are involved in
endochondral ossification, thus
providing the so-called
“Ecogenin” (Endochondral
ossification genetic factor)
action of CCN2. Modified
from Takigawa et al. (2003)
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occurring osteoarthritis mouse model. We kept the WTand the
TG mice for approximately 20 months and then carried out
radiographic analysis of their knee joints. The results indicated
that 50 % of the WT mice showed an osteoarthritis-like phe-
notype in their knee joints, as indicated by a narrowed joint
space and rough cartilage surface (Itoh et al. 2009, 2011). On
the other hand, no TG mice showed such an age-related
osteoarthritis-like change (Itoh et al. 2009, 2011).

To confirm the enhanced expression of the ccn2 transgene
in the articular cartilage in these old mice, we performed
immunohistochemical analysis with ant-CCN2 antibody and
found enhanced accumulation of CCN2 in the superficial and
deep zones of the articular cartilage of knee joints from 21-
month-old TGmice (Itoh et al. 2009, 2011). Also, histological
analysis showed that TB staining, which is a marker of pro-
teoglycan accumulation, was more intense in the TG mice
than in the WT ones (Itoh et al. 2009, 2011). Moreover,
immunostaining with anti-type II collagen showed that the
collagen content did not decrease during aging in the TG
mice, whereas it did decrease in the WT mice (Itoh et al.
2009, 2011). It is well known that collagen type I and X and
MMP-13 are not detectable in normal articular cartilage and
that the appearance of these proteins in articular cartilage is
indicative of osteoarthritis (Kawaguchi 2008; Aigner et al.
1993; Shlopov et al. 2000). Therefore, we investigated the
presence of these proteins in articular cartilage of these mice
by immunostaining. As a result, age-related osteoarthritic
changes such as the production of collagen types I and X
and MMP-13 were not detected in the articular cartilage of
the CCN2-overexpressing mice, in contrast to the positive
staining for these three proteins in the WT articular cartilage
(Itoh et al. 2009, 2011). In conclusion, cartilage-specific
overexpression of CCN2 protected against the development
of osteoarthritic changes in aging articular cartilage (Itoh et al.
2009, 2011). Thus, CCN2 may play a role as an anti-aging
(chondroprotective) factor, stabilizing articular cartilage.

Molecular mechanism of CCN2-induced harmonized
skeletal growth and regeneration

As was shown in Fig. 2, in the case of growth cartilage
cells, CCN2 promotes not only proliferation and cartilage
matrix formation, but also hypertrophy and calcification
(Nakanishi et al. 2000). The latter are characteristics of
growth cartilage cells. However, in the case of articular
cartilage cells, CCN2 does not cause hypertrophy or
calcification, which are undesired and pathological char-
acteristics for articular cartilage (Nishida et al. 2002).
Moreover, in the case of auricular chondrocytes, CCN2
promotes their proliferation and formation of cartilage
matrix, which includes elastin, a major marker of elastic
cartilage; but CCN2 does not cause hypertrophy of or
calcification by these auricular chondrocytes (Fujisawa et
al. 2008). Moreover, in vivo administration of CCN2
with gelatin hydrogel into a defect in articular cartilage
regenerates the cartilage without undesired calcification
(Nishida et al. 2004). Furthermore, CCN2 stimulates the
expression of the differentiated phenotype of different
types of cells such as osteoblasts (Nishida et al. 2000;
Takigawa et al. 2003; Kawaki et al. 2008b, 2011), vascular
endothelial cells (Shimo et al. 1998, 1999; Takigawa et al.
2003), and osteoclasts (Nishida et al. 2011a). CCN2 is also
expressed in osteocytes (Kawaki et al. 2011) in developing bone;
and mechanical stress, which is important for bone homeostasis,
induces CCN2 expression in osteocytes (Yamashiro et al. 2001).
CCN2 is also required for intramembranous ossification
(Kawaki et al. 2008b), and in vivo adiministration of CCN2
with gelatin hydrogel into the defect of bone regenerates bone
through intramembrabous ossification (Kikuchi et al. 2008).
Moreover, CCN2 is expressed in sites of rat alveolar bone
regeneration after tooth extraction (Kanyama et al. 2003) and
during distraction osteogenesis (Kadota et al. 2004), suggesting
that CCN2 plays an important role in regeneration. In other
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words, CCN2 promotes harmonized skeletal growth and
maintenance.

How does CCN2 exhibit such a harmonizing action?
What is the molecular mechanism of its action? CCN pro-
teins have four modules, and many investigators including
us have reported that each module has various binding
partners, as described below. This might be a major reason
for its harmonizing action (Fig. 3).

Extracellular matrices (ECMs) and integrins

Using 125I-labled CCN2, we previously revealed that CCN2
binds to perlecan, a heparan sulfate proteoglycan (Fig. 3, Nishida
et al. 2003); but at that time we could not identify which domain
was involved in this binding. Searching for CCN2-interactive
proteins by yeast-two-hybrid screening, we identified the fibro-
nectin 1 gene product as a major binding partner of CCN2 in the
chondrocytic cell line HCS-2/8 (Fig. 3, Hoshijima et al. 2006).
Only the CT domain of CCN2 bound directly to fibronectin
(FN). CCN2 and its CT domain enhanced the adhesion of HCS-
2/8 cells to FN. The CCN2-enhancing effect on cell adhesion to
FN was abolished by anti-alpha5beta1 integrin (alpha5beta1),
suggesting that CCN2 enhanced chondrocyte adhesion to FN
through direct interaction of its C-terminal CT domain with FN
and that integrin alpha5beta1 was involved in this adhesion
(Hoshijima et al. 2006).

The yeast-two-hybrid screening also revealed that
CCN2 binds to aggrecan and that its binding is through
IGFBP and VWC modules (Fig. 3, Aoyama et al.
2009). SPR (surface plasmon resonance) analysis
showed the direct interaction between CCN2 and
aggrecan, and ectopically overexpressed CCN2 and G3
domain of aggrecan core protein confirmed their binding
in vivo. When IGFBP-VWC modules, but not TSP-CT
modules, were expressed in chondrocytic HCS-2/8 cells,
aggrecan production in the cells was strongly induced,
suggesting that this binding may be related to the
CCN2-enhanced production and secretion of aggrecan
by chondrocytes.

Moreover, CCN2 has been shown to bind to various ECMs
such as heparan sulfate proteoglycan via its CT module
(Nishida et al. 2003; Gao and Brigstock 2004), matrilin-3 via
IGFBP-VWC modules (Araki et al. 2008), and decorin, in
which case the binding module in the CCN2 molecule has
not been identified (Vial et al. 2011; Fig. 3). CCN2 is also
known to bind ECM-degrading enzymes such as matrix
metalloproteinases (MMPs; Fig. 3), which cleave CCN2
(Hashimoto et al. 2002).

In addition to binding to integrin alpha5beta1, CCN2 and
other CCN family members are reported to bind to various
other integrins that are receptors for ECMs (for reviews, see
Jun and Lau 2011; Lau and Lam 1999, and Kubota and
Takigawa 2007b)

Growth factors and their receptors

Because it had been reported that CCN2 can antagonize
BMP-4 activity by preventing its binding to BMP receptors
in Xenopus embryos (Fig. 3, Abreu et al. 2002) and because
both CCN2 (Kubota and Takigawa 2007b) and BMP-2
(Yoon and Lyons 2004) play an important role in cartilage
metabolism, we first evaluated whether or not CCN2 could
interact with BMP-2; and so we examined the combination
effect of CCN2 with BMP-2 (CCN2-BMP-2) on the prolif-
eration and differentiation of chondrocytes (Maeda et al.
2009). Immunoprecipitation-Western blotting analysis and
a solid-phase binding assay revealed that CCN2 directly
interacted with BMP-2, probably via its CT module and
IGFBP-VWC modules (Fig. 3), and surface plasmon reso-
nance (SPR) spectroscopy showed that its dissociation con-
stant was 0.77 nM (Maeda et al. 2009). CCN2 was co-
localized with BMP-2 at the pre-hypertrophic region in the
E18.5 mouse growth plate (Maeda et al. 2009). Interesting-
ly, CCN2-BMP-2 did not affect the BMP-2/CCN2-induced
phosphorylation of p38 MAPK, but caused less phosphory-
lation of ERK1/2 in cultured chondrocytes (Maeda et al.
2009). CCN2-BMP-2 stimulated cell growth to a lesser
degree than that achieved by either CCN2 or BMP-2 alone;
whereas the expression of chondrocyte marker genes and
proteoglycan synthesis, representing the mature
chondrocytic phenotype, was increased collaboratively by
CCN2-BMP-2 treatment in the cultured chondrocytes
(Maeda et al. 2009). Because phosphorylation of ERK1/2
by CCN2 is involved in chondrocyte proliferation
(Yosimichi et al. 2001, 2006), CCN2-BMP-2 treatment
might promote chondrocyte differentiation by suppressing
chondrocyte proliferation via decreased ERK1/2 phosphor-
ylation. In any event, the above findings suggest that CCN2
may regulate the proliferating and differentiation of
chondrocytes by forming a complex with BMP-2 as a novel
modulator of BMP signaling (Maeda et al. 2009).

In addition to BMP signaling, FGF signaling is important
in the developing endochondral skeleton (Ornits 2005). To
investigate whether CCN2 interacts with fibroblast growth
factor 2 (FGF2), we performed a solid-phase binding assay
and immunoprecipitation-Western blot analysis and found that
the C-terminal module of CCN2 (CT) directly bound to FGF2
(Fig. 3, Nishida et al. 2011b). SPR spectroscopy revealed
that the dissociation constant between CCN2 and FGF2
was 5.5 nm. FGF2 promoted not only the proliferation of
cultured chondrocytes but also the production of matrix
metalloproteinase (MMP)-9 and −13 by them; however,
FGF2 combined with the CT module, but not with full-
length CCN, nullified the enhanced production of bothMMPs
and chondrocyte proliferation (Nishida et al. 2011b). CCN2
bound to the FGF receptor 1 with a dissociation constant of
362 nm, whereas the CT module did not (Fig. 3); and FGF2-
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stimulated phosphorylation of ERK1/2, p38 MAPK, and c-
Jun N-terminal kinase was decreased by the CT module, but
not by full-length CCN2 (Nishida et al. 2011b). These data
suggested that the full-length CCN2 can activate intracellular
FGF2 signaling, resulting stimulation of proliferation of
chondrocytes and MMP production by chondrocytes. In con-
trast the cleaved CT module can bind to FGF2 but not to
FGFR1 and so cannot activate FGF2 signaling (Nishida et al.
2011b). These findings suggest that CCN2 may regulate the
proliferation and matrix degradation of chondrocytes by
forming a complex with FGF2 as a novel modulator of
FGF2 functions.

By screening a protein array, we also found that CCN2
could bind to fibroblast growth factor receptors (FGFRs) 2
and 3 (Aoyama et al. 2012). We ascertained that FGFR2
bound to CCN2 by performing a solid-phase binding assay
and SPR. CCN2 enhanced the binding of FGFR2 to FGF2 and
FGF4 at least through its TSP-1 module (Fig. 3). CCN2 and
FGF2 had a collaborative effect on the phosphorylation of
ERK and the differentiation of osteoblastic MC3T3-E1 cells.
These results indicate the biological significance of the bind-
ing of CCN2 to FGFR2 in bone metabolism (Aoyama et al.
2012).

In addition to the growth factors and their receptors
described above, CCN2 can bind to VEGF through TSP-1-
CT modules (Inoki et al. 2002), to LRP-1 via the TSP-1
module (Segarini et al. 2001; Gao and Brigstock 2003), and
to LRP-6, which is a Wnt co-receptor, via the CT module
(Mercurio et al. 2004; Fig. 3). Concerning LRP-1, CCN2
was shown to induce tryrosine phosphorylation of its

cytoplasmic domain in fibroblasts (Yang et al. 2004). How-
ever, in cartilage LRP-1 not only plays a role as a signaling
receptor for CCN2 (Kawata et al. 2010) but also is involved
in transcytosis of CCN2 protein in this avascular tissue,
which is a protein transport system newly recognized in
cartilage (Kawata et al. 2012).

Although its participating binding domain has not yet
been identified, CCN2 is also known to interact with
tropomyosin-related kinase A (Trk A), which is one of the
neurotrophin receptors (Wahab et al. 2005). TrkA is ob-
served in bone-forming cells during fracture healing
(Asaumi et al. 2000) and distraction osteogenesis (Aiga et
al. 2006) in both of which CCN2 has been shown to play an
important role (Nakata et al. 2002; Kadota et al. 2004).
CCN2 (Asano et al. 2005) and TrkA (Tsuboi et al. 2001)
are also expressed in periodontal ligament cells, suggesting
possible interaction therein.

Specific receptors

By means of a conventional receptor binding assay using
iodinated CCN2 and a cross-linking study , a 280-kDa cell-
surface molecule was identified on chondrocytes (Nishida et
al. 1998), osteoblasts (Nishida et al. 2000), and vascular
endothelial cells (Takigawa 2003). However, the structure
of this molecule has not been clarified. Although we cannot
exclude the possibility that this molecule is identical to one
of the already known binding partners, cloning of this mol-
ecule is highly expected.

CCN2 Modifies Various Signaling Pathways 
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Fig. 7 How CCN2 exhibits
such a multifunctionality?
CCN2 not only acts through its
own receptors but also modifies
the actions of various growth
factors by binding to them and
their receptors. Moreover, it
also binds to ECM, which
accumulates growth factors
around the cells and modifies
the actions of these growth
factors. The sum of these
actions would become the final
outcome of the biological
action of CCN2. In other words,
the various biological actions of
CCN2 would depend on the
different microenvironments of
various types of cells and the
state of their differentiation
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CCN2 proteins

Yeast two-hybrid screening using a cDNA library derived
from a chondrocytic cell line, HCS-2/8, identified CCN2
and CCN polypeptides as CCN2-binding proteins (Hoshijima
et al. 2012). Direct binding between CCN2 and CCN2 and
between CCN2 and CCN3 was confirmed by co-
immunoprecipitation and SPR, and the calculated dissociation
constant (Kd) was 1.17×10

−9 M between CCN2 and CCN2,
and 1.95×10−9M between CCN2 and CCN3 (Hoshijima et al.
2012). Endogenous CCN2 and CCN3 interact and co-localize
in chondrocytic HCS-2/8 cells, and ectopically overexpressed
CCN2 and CCN3 also interact and co-localize in COS7 cells,
as determined by direct fluorescence analysis (Hoshijima et al.
2012). CCN2-CCN3 interactions modulate CCN2 activity
such as causing enhancement of aggrecan and col2a1 expres-
sion (Hoshijima et al. 2012). Curiously, CCN2 enhances,
whereas CCN3 inhibits, the expression of aggrecan and co-
l2a1 mRNAs in HCS-2/8 cells (Hoshijima et al. 2012) and
proteoglycan synthesis by mouse rib chondrocytes in primary
culture (Kawaki et al. 2008a); and the combined treatment
with CCN2 and CCN3 abolishes the inhibitory effects of
CCN3 (Hoshijima et al. 2012; Kawaki et al. 2008a). An
antibody against the VWC domain of CCN2 (11H3) dimin-
ishes the binding between CCN2 and CCN2, but enhances
that between CCN3 and CCN2 (Hoshijima et al. 2012). The
results suggest that CCN2 can form homotypic and hetero-
typic dimers with CCN2 and CCN3, respectively. Enhanced
binding between CCN2 and CCN3 with the 11H3 antibody
has an enhancing effect on aggrecan expression in
chondrocytes, suggesting that the CCN2-CCN3 heterodimer
has a positive effect on aggrecan expression in chondrocytes
(Hoshijima et al. 2012). We previously reported that CCN2
stimulates the gene expression of CCN2 itself and inhibits that
of CCN3, that CCN3 inhibits the gene expression of CCN2
and has no effect on CCN3 expression, and that expression of
CCN3 occurs earlier than that of CCN2 in the process of
chondrocyte differentiation toward endochondral ossification
(Kawaki et al. 2008a). Therefore, CCN3 suppresses CCN2
expression and chondrocyte differentiation in the early stage
of chondrocyte differentiation, but after CCN2 starts to be
expressed, the expressed CCN2 inhibits CCN3 expression and
stimulates CCN2 expression, resulting in the promotion of
differentiation. In this process, the CCN2-CCN3 heterodimer
and then next the CCN2 homodimer would act as chondrocyte
differentiation factors in this order.

In summary, CCN2 not only acts through its own receptors
but also modifies the actions of various growth factors by
binding to them and their receptors (Fig. 7). Moreover, it also
binds to ECMs, which accumulate growth factors around the
cells and modifies the actions of these growth factors (Fig. 7).
The sum of these actions would become the final outcome of
biological action of CCN2 (Fig. 7). Moreover, gene expression

and activity of CCN2 is also regulated by another member of
the CCN family of proteins, CCN3 (Fig. 7). In other words,
various biological actions of CCN2 would depend on the
different microenvironments of various types of cells as well
as on their state of differentiation. Through these various mech-
anisms, CCN2 would orchestrate various signaling pathways
by acting as a signal conductor to promote harmonized skeletal
growth and maintenance (Fig. 7).

Future prospects and conclusions

Evidence thus far indicates that the most important physio-
logical role of CCN2 is the promotion of endochondral
ossification. Roles in regeneration, protection of bone and
articular cartilage, and angiogenesis are also important ones
for CCN2. Continuous search efforts to find other binding
partners of CCN2 and to identify the corresponding binding
modules in the CCN2 molecule, as well as further investi-
gation of combinational effects, may lead to a better under-
standing of the molecular mechanisms responsible for the
multifunctionality of the CCN2 protein.
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