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Abstract Patients who undergo upper-gastrointestinal

surgery have a high incidence of post-operative compli-

cations, often requiring admission to the intensive care unit

several days after surgery. A dataset comprising observa-

tional vital-sign data from 171 post-operative patients

taking part in a two-phase clinical trial at the Oxford

Cancer Centre, was used to explore the trajectory of

patients’ vital-sign changes during their stay in the post-

operative ward using both univariate and multivariate

analyses. A model of normality based vital-sign data from

patients who had a ‘‘normal’’ recovery was constructed

using a kernel density estimate, and tested with ‘‘abnor-

mal’’ data from patients who deteriorated sufficiently to be

re-admitted to the intensive care unit. The vital-sign dis-

tributions from ‘‘normal’’ patients were found to vary over

time from admission to the post-operative ward to their

discharge home, but no significant changes in their distri-

butions were observed from halfway through their stay on

the ward to the time of discharge. The model of normality

identified patient deterioration when tested with unseen

‘‘abnormal’’ data, suggesting that such techniques may be

used to provide early warning of adverse physiological

events.

Keywords Patient monitoring � Early warning scores �
Novelty detection

1 Introduction

Delayed detection of clinical deterioration has been

repeatedly associated with high rates of avoidable in-hos-

pital death and intensive care unit (ICU) readmissions

(which are associated with a substantially increased mor-

tality rate) [8, 11, 15]. According to large national surgical

audits such as the UK National Confidential Enquiry into

post-operative deaths, current systems of post-operative

care fail to detect or respond appropriately to early signs of

critical illness [17]. Such failures have been explained by

lack of experienced senior nursing staff, inexperienced

trainee medical staff [17], poor quality of care offered to

critically ill patients [6, 15], and, more importantly, the

inability of current systems to recognise clinical deterio-

ration early. All of these factors can lead to deterioration in

a patient’s condition and admission to the ICU, or death.

The UK National Institute for Health and Clinical

Excellence (NICE) [16] has recommended that physio-

logical track and trigger (T&T) systems should be used to

monitor all adult patients in acute hospital units, to promote

the recognition of patient deterioration early enough to

allow proper intervention by medical staff. These systems

are based on early warning scores (EWS) calculated from

the values of physiological variables observed periodically.

Univariate scoring criteria are applied to each physiologi-

cal variable (vital sign) in turn, and then care is escalated to

a higher level if any of the scores assigned to individual

vital signs, or the sum of all such scores, exceed some

threshold. There is widespread interest and clinical util-

isation of these scores in countries across Europe and
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Australasia, and increasingly in North America [5]. How-

ever, the quality of evidence supporting the use of T&T

systems is poor [5], and they have a number of disadvan-

tages. The thresholds and ranges of these EWS systems are

mostly determined heuristically (although evidence-based

methods have recently been proposed [18, 23]). Further-

more, each vital sign is treated independently and corre-

lations between them are not taken into account. Also, the

clinical setting from which data are acquired for either

validating or designing the EWS system is an important

consideration. Many studies have been conducted in

medical assessment units [5, 18], and it is questionable

whether the scores can be extrapolated to other medical

units; for example, post-operative wards, general wards, or

other settings.

An alternative approach to detecting patient deteriora-

tion from changes in vital signs is that of novelty detection

[2, 20], or one-class classification, which involves the

construction of a multivariate, multimodal model of nor-

mality using examples of ‘‘normal’’ vital signs. This then

allows the classification of test data as either ‘‘normal’’ or

‘‘abnormal’’ with respect to that model. Several approaches

to novelty detection have been proposed, and an extensive

review of these techniques is presented in [13, 14]. We

have shown how novelty detection can be combined with

continuous vital-sign monitoring of acutely ill in-hospital

patients [7, 9, 10, 21].

In this paper, we investigate models of normality tuned

to a specific post-operative patient population, recovering

from gastro-intestinal surgery. Following surgery, patients

start in their most acute state and gradually stabilise. We

hypothesise that models of the distribution of vital-sign

data from ‘‘normal’’ patients may be used to describe the

physiological trajectory associated with ‘‘normal’’ recovery

of these patients. These models may then be used to

identify ‘‘abnormal’’ trajectories in patients who experi-

ence major deterioration and have to be re-admitted to the

ICU.

2 Methods

2.1 Dataset

Vital-sign data (heart rate, HR, measured in beats per

minute; respiratory rate, RR, measured in breaths per

minute; arterial blood oxygen saturation, SpO2, measured

as a percentage; systolic blood pressure, SysBP, measured

in mmHg; core temperature measured with a tympanic

thermometer in �C; and a level of consciousness assessed

typically with the Glasgow Coma Scale,1 GCS) were

recorded by nursing staff during their regular observations

of post-operative patients in the upper gastrointestinal (GI)

ward at the Oxford Cancer Centre, Oxford University

Hospitals NHS Trust, Oxford, UK. The dataset used for the

work described by this paper comprises measurements of

HR, RR, SpO2, SysBP and temperature (dimensionality of

the input space, D = 5) acquired by ward staff every hour

or every 2 h in the days immediately following the patient

admission to the ward (depending on patient’s condition),

and every 4 h in the last few days of the patient’s stay on

the ward. These measurements were then transcribed by

two independent research nurses into an electronic

database.

200 patients were recruited during Phase I of the

CALMS2 clinical trial in the upper GI ward (approved by

the local research ethics committee, REC reference:

08/H0607/79). This dataset was firstly refined to include

only observations with no missing physiological variables

(for example, if an observation from a patient does not

include HR, it was removed from the dataset). The median

length of stay on the ward was 9 days, and we selected

those patients who stayed on the ward for a minimum of

4 days (which corresponds to the 10th percentile) and a

maximum of 29 days (90th percentile), to construct our

model of normality, for the purposes of novelty detection.

This reduces the number of patients from 200 to 171 (see

Fig. 1).

From the original dataset, a set of 12,797 observations

X [ R5 obtained from the 171 patients was then analysed.

From the patients analysed, those who were either admitted

to the ICU or died on the ward were labelled as belonging

to the ‘‘abnormal group’’ of patients (17 patients), while the

remainder were labelled as being part of the ‘‘normal

group’’ (154 patients). The patient population characteris-

tics in each group are shown in Table 1. We note that the

mortality rate in the ‘‘abnormal’’ set of patients was

Fig. 1 Flow diagram showing the steps involved in creating the

‘‘normal’’ and ‘‘abnormal’’ patient datasets, including the number of

patients included in the study

1 The Glasgow Coma Scale is a scale from 3 to 15, in which 15

indicates ‘‘alert’’ consciousness and 3 indicates complete

unresponsiveness.
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35.3 %, which shows the severity of the risk associated

with ICU re-admission.

2.2 Vital-sign distributions

The changes in vital-sign distributions between admission

to the upper GI ward and subsequent discharge, when the

patient was deemed sufficiently stable to go home, were

evaluated for the patients in the ‘‘normal group’’. Norma-

lised histograms (unit area under the curve) and cumulative

distribution functions (cdfs) were plotted for each physio-

logical variable (HR, RR, SpO2, SysBP and temperature),

using the average value for each variable on the admission

and discharge days.

The trajectory of each vital sign throughout the patient’s

stay on the ward was evaluated by examining the following

subgroups of observations:

• G1: the set of averages of all observations performed on

the first day of the patient’s stay on the ward (admission

day);

• G2: the set of averages of all observations performed on

the day that corresponds to a quarter (25 %) of the

length of the patient’s stay on the ward;

• G3: the set of averages of all observations performed on

the day that corresponds to half (50 %) of the length of

the patient’s stay on the ward;

• G4: the set of averages of all observations performed on

the day that corresponds to 75 % of the length of the

patient’s stay on the ward;

• G5: the set of averages of all observations performed on

the last day of the patient’s stay on the ward (discharge

day).

These subgroups were defined in this way because of the

different lengths of patient stay on the ward (which varied

between 4 and 28 days). Three different metrics were

used to compare the resulting vital-sign distributions: the

Kolmogorov–Smirnov (KS) metric [4], the symmetrical

Kullback–Leibler (KL) distance [12, 25] and the Bhatta-

charyya (Bhat) distance [1].

The KS distance is a non-parametric metric that quan-

tifies the distance between the empirical distribution

functions of two sample sets [4]. Considering two proba-

bility densities, p and q, if P and Q are the respective cdfs,

the KS distance (DKS) between them is defined by

DKSðp; qÞ ¼ sup jPðxÞ � QðxÞjð Þ ð1Þ

where supðyÞ is the supremum of the set of distances y.

The KL divergence [12] compares the entropy of two

distributions over the same random variable. It measures

the number of additional bits required when encoding a

random variable with a distribution pðxÞ using the alter-

native distribution qðxÞ. This measure is asymmetrical, but

it can be modified to be the symmetrical KL distance

(DKLS) [25], defined as

DKLSðp; qÞ ¼
X

x2X

pðxÞ � qðxÞð Þ log
pðxÞ
qðxÞ ð2Þ

The Bhat distance (DBhat) [1] measures the amount of

overlap between two distributions, and is defined by

DBhatðp; qÞ ¼ � log BCðp; qÞ½ � ð3Þ

where BCðp; qÞ ¼
P
x2X

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðxÞqðxÞ

p
.

In order to study the physiological trajectory of the

‘‘normal’’ patients, the distributions of each vital sign, for each

of the first 4 subgroups described (G1, G2, G3, G4) were

compared with G5 (which contains the average of the vital

signs from the most physiologically stable period of the patient

stay), using the three metrics defined by (1), (2) and (3).

2.3 Data visualisation

The first stage in constructing a model of normality for

novelty detection usually consists of obtaining more insight

into the structure of the data [22]. Procedures for visual-

isation of the data in their original high-dimensional space

are therefore required.

Data in high-dimensional space (D [ 3) can be visual-

ised through a non-linear projection from RD to R2.

Sammon’s method [19] seeks to create a mapping such that

the distances between pairs of image points in a projection

plane (yi; yj) are as close as possible to the distances

between the corresponding pair of points in data space

(xi; xj). The following error function, known as the Sam-

mon stress metric, is defined as

E ¼ 1P
i\j

d�ij

XN

i\j

d�ij � dij

� �2

d�ij
ð4Þ

Table 1 Patient demographics for the ‘‘normal’’ and ‘‘abnormal’’

groups of patients

Normal

group

Abnormal

group

Number of patients 154 17

Number of observations 10,299 2,498

Age (mean ± SD) 61 ± 12 67 ± 10

Sex (male) 90 (58.4 %) 10 (58.8 %)

Length of stay (median ± IQR) 9 ± 5 5 ± 41

Length of stay (25th/75th

percentile)

7/12 4/81

Mortality 0 6 (35.3 %)

1 As described in Sect. 3.3, the ‘‘length of stay’’ for the abnormal

group is the time to the first event (re-admission to ICU or death)
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with dij ¼ xi � xj

�� �� and d�ij ¼ yi � yj

�� ��, where �k k is the

Euclidean norm. The Sammon mapping aims to minimise

the error metric (4), which can be achieved by initialising

the image points y to have random locations in a 2-D map

and by iteratively adjusting these locations in the direction

which gives the maximum change in E using a gradient

descent method.

It is assumed a priori that each of the five vital signs has

equal importance in the model of normality. Each variable

was therefore scaled to have approximately the same

dynamic range to ensure that variables with large changes

(e.g., blood pressure in mmHg) do not dominate parameters

with smaller changes (e.g., temperature in �C). Every vital-

sign measurement, x, was normalised using a zero-mean,

unit-variance transformation, xn ¼ ðx� lÞ=r, where xn is

the normalised value and l and r are the mean and stan-

dard deviation of the vital sign, respectively, in the overall

dataset (171 patients).

The Sammon mapping algorithm was then applied to the

770 normalised vectors contained in the 5 subgroups (G1,

G2, G3, G4 and G5) from the 154 patients included in the

‘‘normal’’ subset of patients.

2.4 Model of normality

We now consider the construction of a model of normality,

based on all observations made on the last day on the ward

(discharge day) of each patient from the ‘‘normal group’’.

This dataset contains the vital signs from the most physi-

ologically stable period of the patient stay, because these

data were acquired immediately prior to discharge from the

ward, when the patient is at their most ‘‘normal’’ after

recovering from surgery. This set of ‘‘normal’’ pre-dis-

charge data contains 1,100 vital-sign vectors, X [ R5,

which were subsequently used for the construction of our

model of normality.

A kernel density estimate [3] is a technique that allows

the underlying 5-dimensional vital-sign pdf to be estimated

from training data. A kernel density estimate was chosen

because it is a non-parametric method, so no a priori

assumptions are made about the form of the probability

distribution.

The pdf of the set of N = 1,100 ‘‘normal’’ vectors,

x1; . . .; xN , was estimated using the following equation:

pðxjxi; r
2Þ ¼ 1

Nð2pÞD=2rD

XN

i¼1

e
� x�xik k2

2r2 ð5Þ

which is a weighted sum of Gaussian kernels centred on the

1,100 vectors, xi, and where each kernel is isotropic with

variance r2. The variance was determined using the

nearest-neighbour method proposed by Bishop [2], in

which the average of the squared Euclidean distance to the

set of 10 nearest neighbours fNNsg is determined for each

point x1; . . .; xN in X,

Di ¼
1

10

X

j2fNNsg
xi � xj

�� �� ð6Þ

and r2 is estimated by calculating the average over all

points:

r ¼ 1

N

XN

i¼1

Di ð7Þ

The likelihood for all data from the ‘‘normal’’ group of

patients was then calculated using (5). The likelihood of all

data from the ‘‘abnormal’’ group of patients, prior to the

occurrence of an adverse event (either death or ICU

admission) was also evaluated using the same model of

normality.

In order to estimate the ‘‘abnormality’’ of a data point x,

the departure from normality is usually quantified using a

novelty score defined as follows

zðxÞ ¼ � log pðxjhÞ ð8Þ

where zðxÞ is the novelty score and h ¼ fxi;rg. ‘‘Normal’’

data, which have higher likelihoods pðxjhÞ, therefore gen-

erate low novelty scores zðxÞ; conversely, ‘‘abnormal’’

data, which have lower likelihoods, generate high novelty

scores zðxÞ.

3 Results

3.1 Vital-sign distributions

Empirical pdfs (histograms) and cdfs for each physiologi-

cal variable for each of the two subgroups G1 (average of

observations at admission) and G5 (average of observations

at discharge day) are shown in Fig. 2. Table 2 gives the

corresponding means and standard deviations.

Figure 3 shows the KS, KL and Bhat distance-maps

between each of the distributions, for the 4 subgroups (G1,

G2, G3, and G4) and the distribution for the G5 subgroup. In

each distance-map, the subgroups involved (G5—Gi with

i = {1, 2, 3, 4}) are represented on the x-axis, and physi-

ological variables are represented on the y-axis. The colour

code is associated with the values of the calculated dis-

tances (blue indicates small distances, and red indicates

large distances).

It may be seen that, apart from the HR, the distributions

represented for each of the other 4 vital signs vary from

admission to discharge, as the patient recovers from

surgery.

The results obtained by the three different metrics are

very similar, in the sense that the patterns in the distances
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for each physiological variable are identical. The distances

between the G1 and G5 distributions are greater than the

distances between the G3 and G5 distributions.

3.2 Data visualisation

The resulting Sammon maps obtained are shown in Fig. 4.

Represented in each map are the projected data points from

G1, G2, G3, G4 (red crosses) superimposed on the projected

data points from G5 (blue points).

3.3 Model of normality

The novelty scores are computed each day for each patient,

by averaging the scores for each set of vital-sign obser-

vations that day. The group mean novelty scores zðxÞ for

Fig. 2 Histograms for respiratory rate, heart rate, blood oxygen

saturation and temperature, computed from the average of vital-sign

data acquired from patients at admission to the post-operative ward

(light blue) and time near discharge (dark blue). Cumulative

distribution functions PðxÞ for each vital sign from patients at

admission (light red) and time near discharge (dark red), are also

represented (refer to the right vertical axis) (colour figure online)

Table 2 Vital-sign means (SD) for admission and discharge days for ‘‘normal’’ patients

RR (breaths per minute) HR (beats per minute) SpO2 (%) SysBP (mmHg) Temp. (�C)

Admission 16.7 (2.5) 80.6 (12.8) 97.0 (1.3) 115.7 (16.0) 36.6 (0.5)

Discharge 15.7 (1.0) 81.2 (11.7) 96.3 (1.5) 132.1 (16.6) 36.4 (0.4)

Med Biol Eng Comput (2013) 51:869–877 873

123



each day are shown in Fig. 5 for ‘‘normal’’ and ‘‘abnor-

mal’’ patients. The median length of stay on the ward for

the ‘‘normal’’ group of patients is 9 (see Table 1). For the

‘‘abnormal’’ group, we considered the length of stay on the

ward prior to the event (either admission to the ICU or

death). The median time to event for this group is 5 days.

The novelty scores are displayed in Fig. 5 for the length of

stay (or time to event in the case of the ‘‘abnormal’’ group)

up to the 75th percentile (12 and 8 days, respectively) for

each group of patients.

Figure 6 shows the change in novelty score over time

for two example patients from the ‘‘abnormal’’ group who

deteriorate sufficiently after surgery to be re-admitted to

ICU. A threshold zðxÞ ¼ k was determined using

k ¼ lþ 3s:d:, where l is the average of the density esti-

mates zðxÞ for the 154 ‘‘normal’’ patients in the model of

normality, and where s:d: is one standard deviation of zðxÞ
for these ‘‘normal’’ patients.

The first example (Fig. 6a) shows a patient who dete-

riorated 2 days after admission to the upper GI ward and

was then admitted to the ICU. The patient was sent back to

the upper GI ward after 2 days in the ICU. The patient

stayed a further 4 days before being discharged. During the

first 2 days after surgery, the patient exhibits physiological

instability (which is more significant at the end of the

second day) showing indications of tachycardia (HR

reaching 150 beats per min) and tachypnea (RR reaching

almost 40 breaths per min). It can be seen that zðxÞ
increases in value at approximately 12 h before ICU

admission, indicating physiological deterioration. After the

stabilisation of the patient in the ICU, zðxÞ remains close to

the ‘‘normal’’ trajectory.

The second example (Fig. 6b) shows a patient who had

some periods of instability after being admitted to the

upper GI ward, following surgery. After 7 days, the patient

was re-admitted to the ICU, and then died 1 month later.

Fig. 3 Representation of the distances between each of the 4 groups

(G1, G2, G3 and G4 represented in the horizontal axis as 1, 2, 3 and 4)

and the G5 group. The Kolmogorov–Smirnov (KS), the symmetrical

Kullback–Leibler (KLS) and the Bhattacharyya metrics for each

distribution are shown in the form of matrices, in which the colour is

associated with the values of the calculated distances (colour figure

online)

Fig. 4 Sammon maps obtained

for the groups: a G1 and G5,

b G2 and G5, c G3 and G5, and

d G4 and G5. Projected data

from G5 are shown by blue �;
projected data from all other

groups are shown by red x
(colour figure online)
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In this case, large variations are observed in zðxÞ during the

post-surgical period of abnormality, which are caused by

episodes of elevated blood pressure (SysBP at around

190 mmHg) and bradycardia (HR decreasing to 45 beats

per minute). These exceed the threshold defined by

zðxÞ ¼ k.

4 Discussion

The histograms and cdfs shown in Fig. 2 indicate that the

HR distributions are similar and approximately symmetri-

cal. The distributions for SpO2 are one-sided because they

are limited to the maximum value SpO2 = 100 %. For the

distribution of SpO2 values at admission, a mode occurs at

SpO2 = 97 %. Patients are likely to achieve 100 % oxygen

saturation only if they are receiving additional oxygen

through an oxygen mask. Therefore, the distributions

shown in Fig. 2 exclude values of SpO2 [99 %. RR dis-

tributions are similar between admission and discharge.

Tympanic temperature and SysBP distributions show that

patients are, in general, mildly pyrexic (high temperature)

and hypotensive (low systolic blood pressure) when

admitted to the ward following surgery. They subsequently

show decreasing temperature (back to ‘‘normal’’ values)

and increasing blood pressure (back to ‘‘normal’’ values)

by the last day of their stay on the ward.

From the distances between the distributions calculated

with the three different metrics (Fig. 3), we can easily see

the pattern of recovery with time: the distance between the

G1 and G5 distributions is greater than, for example, the

distance between the G3 and G5 distributions. If we con-

sider the SysBP, for example, the KS, KL and Bhat dis-

tances between the G1 and G5 distributions are 0.29, 0.41

Fig. 5 Representation of average (per day) of novelty scores zðxÞ
against time for the ‘‘normal’’ group of patients shown in dark blue

and the ‘‘abnormal’’ group of patients shown in dark red. Error bars

denote one SE of the group mean (colour figure online)

Fig. 6 Two example patients are shown in (a) and (b). The upper

plots show the observations of vital signs with time: temperature is

shown in the upper plot in each column; RR, HR, SysBP and SpO2 are

shown in the middle plot of each column (refer to the right vertical

axis for SpO2). The lower plot in each column shows the novelty

score zðxÞ determined using the model of normality: the decision

threshold (dashed red line) was determined from the average of the

density estimates for ‘‘normal’’ patients (dashed green line). The grey

box in (a) indicates the patient’s admission to the ICU, during which

period no vital-sign data are available (colour figure online)
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and 0.54, respectively, whereas the distances between the

G3 and G5 distributions are 0.21, 0.31 and 0.34.

The Sammon maps represented in Fig. 4 show that the

projected data from the five groups form clusters with some

overlap between them, but that there are groups with

visually separable distributions. The G1 cluster is the most

diffuse (shown in red, in the upper-left plot in Fig. 4),

while the projected data from G3, G4 and G5 are more

concentrated, and similar to each other in their locus in the

projection plane. This suggests that there are no large

changes in the vital-sign distributions from halfway

through a patient’s stay to the time of their discharge from

the ward. That is, ‘‘normal’’ patients appear to have sta-

bilised at around halfway through their stay on the ward.

These results suggest that patients included in the ‘‘normal

group’’ could have been considered for earlier discharge, or

provided with a lower level of care from halfway through

their stay.

From the trajectory of zðxÞ for the ‘‘normal’’ group of

patients (Fig. 5a) we can see a significant decrease in zðxÞ
in the first 4 days, after which zðxÞ is approximately con-

stant for t C 4 days. The first 4 days correspond to patient

recovery immediately following surgery [24]. After day 4,

the majority of patients included in the ‘‘normal’’ group

appear to have fully physiologically recovered from sur-

gery and are physiologically stable. It could be argued that

these patients are sufficiently stable for early discharge to

be considered, or for them to be provided with a lower

level of care should they need to remain in hospital for

reasons not related to physiological instability. Conversely,

zðxÞ for the ‘‘abnormal’’ group of patients, suggests that the

physiological trajectory for these patients is significantly

different to that of ‘‘normal’’ patients with a sudden

increase in novelty in the last 48 h, following the gradual

decrease prior to this. These results suggest that patients’

criticality could be assessed by evaluating the distribution

of their vital signs using the novelty score of Eq. (8) after

their admission to the post-operative upper GI ward, fol-

lowing major surgery.

In summary, this study indicates that multivariate

models of normality may be used to assess post-operative

patients’ criticality. A multivariate model of the distribu-

tion of vital-sign data from ‘‘normal’’ patients was con-

structed using a kernel density estimate, and tested using

‘‘abnormal’’ data from patients who deteriorate sufficiently

after surgery to be re-admitted to the ICU. Significant

differences were found between the physiological trajec-

tories for ‘‘normal’’ patients and those for ‘‘abnormal’’

patients.
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