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Abstract

Genomic technology has completely changed the way

in which we are able to diagnose human genetic

mutations. Genomic techniques such as the

polymerase chain reaction, linkage analysis, Sanger

sequencing, and most recently, massively parallel

sequencing, have allowed researchers and clinicians

to identify mutations for patients with Pendred

syndrome and DFNB4 non-syndromic hearing loss.

While thus far most of the mutations have been in

the SLC26A4 gene coding for the pendrin protein,

other genetic mutations may contribute to these

phenotypes as well. Furthermore, mouse models for

deafness have been invaluable to help determine the

mechanisms for SLC26A4-associated deafness.

Further work in these areas of research will help

define genotype-phenotype correlations and develop

methods for therapy in the future.

Introduction

Human mutations in SLC26A4 lead to the most

common hereditary cause of syndromic deafness known

as Pendred’s syndrome (PS) [1]. Several SLC26A4

mutations have also been linked to a non-syndromic form

of deafness DFNB4, where the ear appears to be affected

exclusively. A prominent clinical characteristic of the inner

ear in SLC26A4-related deafness is the enlarged

vestibular aqueduct (EVA). In addition, PS patients show

enlargement of the thyroid glands (goiter) that in some

cases are associated with hypothyroidism [2]. SLC26A4,

together with SLC26A3 and SLC26A6, belong to a sub-

group of SLC26 proteins that function as coupled Cl–/

HCO
3

– exchangers [3]. However, SLC26A4 participates

in transcellular I- transport as well [4]. SLC26A4, also

known as pendrin, is expressed in different tissues,

including the inner ear [5], the luminal membrane of

follicular cells in the thyroid [6], the renal cortical collecting

duct [7, 8] the salivary gland ducts [4] and the respiratory

tract ciliary epithelium [9]. The apparent enlargement of

the thyroid gland in some of the PS individuals is a result

of impaired I- organification in the thyroid [10]. This

function is probably mediated by HCO
3

-/I- and Cl-/I-

exchange and subsequently by active secretion of I- into
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the thyroid follicular space. In the inner ear, the work on

Slc26a4 null mice reveals the role of pendrin in regulating

the pH of endolymphatic fluids through secretion of HCO
3
-

ions [11].

Functional assays have shown that different

mutations within the SLC26A4 sequence have different

effects on pendrin transport activity [12]. Furthermore,

whereas the number of pendrin transmembrane domains

is still ambiguous in the literature [13], it is clear that some

of the mutations affect pendrin sub-cellular localization

so that pendrin fails to reach the plasma membrane [14].

Thus, the variable effect of each mutation on pendrin

function, expression and localization can explain some of

the clinical heterogeneity observed among affected

individuals. Over the years, a long list of SLC26A4

mutations related to human deafness has been published

in the literature [15]. Despite the wide efforts to predict

the clinical outcome of all mutations spanning the

SLC26A4 sequence, a genotype-phenotype correlation

is not complete. The complex structure of pendrin as a

transmembrane protein limits the ability to faithfully predict

the effect of a single mutation. A resolved crystal structure

of pendrin in the future may provide the possible link

between specific genetic insult to the severity of the

phenotype.

The aim of this review is to summarize the

contribution of the cross-talk between human and mouse

genetics in the study of SLC26A4-related deafness. By

utilizing state-of-the-art sequencing technologies, the

known list of pendrin mutations is expected to be enriched

with novel mutations that were out of the range of

conventional sequencing methods. Finally, the contribution

of different mouse models enhances the ability to

understand pendrin function as part of the complex

network of the auditory system.

SLC26A4 (PDS) deafness mutations

Current estimates demonstrate that SLC26A4

mutations are involved in 4% -10% of hereditary hearing

loss [15, 16], with close to 200 mutations involved in both

Pendred syndrome (PS; MIM#274600) and non-

syndromic hearing loss (NSHL) DFNB4 (MIM#600791)

(http://www.healthcare.uiowa.edu/labs/pendredandbor/

slcMutations.htm). Most mutations are associated with

temporal bone abnormalities ranging from isolated

enlarged vestibular aqueduct (EVA) to Mondini dysplasia

[16]. The mutations are located throughout the coding

region and include missense, nonsense, splice site and

frameshift mutations [15]. The hearing impairment

associated with mutations in SLC26A4 is primarily

sensorineural, variable in severity; bilateral or unilateral;

congenital, prelingual or perilingual onset; frequently

beginning at high frequencies, and sometimes has a

fluctuating and/or progressive course [17]. In many cases,

there is a conductive component, although the middle ear

remains intact. It has been suggested that the large

vestibular aqueduct functions as a third mobile window

in the inner ear, resulting in an air-bone gap at low

frequencies [18].

In many populations, mutations in the SLC26A4 gene

are the major genetic cause of temporal bone inner ear

malformations, accounting for up to 90% of the typical

PS population, 80% of individuals with EVA and the same

rate among patients with Mondini dysplasia [19-21]. It is

inconclusive whether the presence or absence of cochlear

malformations is related to the severity of HL or whether

or not there is a genotype-phenotype correlation. Pryor

et al. [22] summarized that two mutant SLC26A4 alleles

are involved in all PS patients, whereas the NS EVA

patients had either one or no SLC26A4 mutations,

suggesting that PS and NS EVA are distinct clinical and

genetic phenomena. An additional study among French

Caucasian families with NSHL and EVA [16] reported

that patients with biallelic mutations had more severe

deafness, an earlier age of onset, and a more fluctuating

course of hearing levels than patients in whom no mutation

was identified. In another study [23], a significant

difference was found in the distribution of SLC26A4

mutations in PS versus non-PS (EVA–Mondini) patients,

with PS patients more likely to have two mutations

comparing to one or none in non-PS. Although

heterogeneity was observed in PS patients, it was lower

than observed in NS EVA–Mondini. Further analysis of

EVA-Mondini patients also showed that two mutations

are more likely associated with Mondini dysplasia

compared to one or zero associated with EVA [23].

While these studies report genotype-phenotype

correlations, most studies do not find any kind of correlation

with respect to hearing severity, fluctuation, progression,

vertigo, or goiter, as the same combination of mutations

have been described that result in variable phenotypic

expression. These phenotypes range from isolated NSHL

to NS EVA to Mondini dysplasia to PS, suggesting that

the same etiology underlies all conditions [21, 24].

Furthermore, phenotypes are variable, even with the

same mutations. T416P [25], L445W [26], H723R [21,

27] and the IVS7-2A>G [28] are involved in either PS or

NSHL. Moreover, even intrafamilial phenotypic variability

Dror/Brownstein/AvrahamCell Physiol Biochem 2011;28:535-544
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was observed, e.g., the L445W mutation was identified

in all affected individuals of a large family, either with PS

or with NSHL [26]. Among another family with three

offspring with compound R409H/

1561_1571CTTGGAATGGC PS mutations, extreme

variability was observed, both for the degree of impairment

and the age of onset [29]. These findings are supported

by localization assays, where retention of pendrin in the

endoplasmic reticulum (ER) was observed, rather than

targeting to the plasma membrane, for mutations involved

in PS, including L236P, T416P, G384E and V239D [30,

31] as well as for mutations associated with NSHL,

including T410M, Q446R and c.1458_1459insT [14, 32].

The lack of genotype-phenotype correlation and the

excess of NSHL cases, with or without EVA, with only

one or zero SLC26A4 mutation suggest that NSHL/EVA/

PS is a complex disease involving other genetic factors.

This assumption led to the detection of digenic

heterozygosity of SLC26A4/FOXI1 and SLC26A4/

KCNJ10 mutations [33, 34]. FOXI1, a transcriptional

regulating factor of SLC26A4, and KCNJ10, have also

been implicated in the development of inner ear pathology.

Interestingly, Kcnj10 expression is downregulated in

Slc26a4-depleted mice, which contributes to the failure

of endocochlear potential generation [35]. FOXI1

mutations were observed in PS and non-syndromic EVA

patients and an additional NS EVA patient was found to

be double heterozygous for SLC26A4/FOXI1 [34].

Similarly, KCNJ10 mutations were found in NS EVA

patients as well as in a double heterozygosity state with a

SLC26A4 mutation, SLC26A4/KCNJ10 [33]. Thus,

FOXI1 and KCNJ10 are two genes that may contribute

to the understanding of EVA heterogeneity. There are

most likely many more genes and other factors to be

identified, including modifier genes, or/and nutritional

factors including iodine uptake [14, 21], which may

determine the thyroid phenotype and the differences

between and within PS and NSHL.

The high prevalence of SLC26A4 mutations involved

in hereditary HL and its involvement in disease phenotypes

emphasizes the importance of the molecular

characterization of the SLC26A4 gene, as well as the

identification of additional interactors/modifiers in the

diagnosis of deafness. To date, routine clinical diagnostic

tests for deafness have consisted of screening for the

relevant mutations in a certain population. Comprehensive

testing for the entire gene is not done routinely due to

high costs. Implementing advanced sequencing

technologies for clinical use might overcome this limitation

and lead to the identification of additional mutations in a

larger SLC26A4-associated-deafness group, enabling

further genotype-phenotype analysis in larger cohorts.

Recently, such an approach has been employed by

applying DNA capture and massively parallel sequencing

to identify inherited mutations involved in HL, including

246 genes involved in both human and mouse HL [36].

This technique also has the ability to speed up the

discovery of genes that might interact and influence each

other, as all variants in all genes associated with deafness

may be identified in one experiment. Whole exome or

genome sequencing might be an even better tool for

interactors/modifiers detection, but the challenge of

analyzing the data and determining which variants are

the causative ones still remains.

Pendrin: crosstalk between human and

mouse

A wide array of organisms, including zebrafish, chick

and mouse, has complemented the genetics of deafness

field with an in-depth understanding of protein function.

Among the models, the striking similarity between the

human and mouse inner ear structure and function has

defined the mouse as a prominent animal model for

human deafness [37]. The tools of gene overexpression,

depletion and targeted mutagenesis has enabled

researchers to create reliable animal models for genetic

forms of hearing loss in order to mimic the corresponding

mutation in humans. Once a novel human deafness gene

is discovered, the generation of an animal model is optimal

for studying its function.

Two major approaches are commonly used for

cloning and studying unknown genes. The reverse

genetics approach (genotype-driven) begins with a

candidate gene chosen by bioinformatics tools e.g.

homology to other known genes. The candidate gene is

‘knocked out’ in a conditional/permanent manner or

mutated in an animal model for further investigation [38].

The resulting knockout phenotype may be one out of the

three following scenarios: compatible with the working

hypothesis, an unexpected or no phenotype. In contrast,

with the forward genetics approach (phenotypic-driven),

no prior assumption about any of the mutated genes is

made. Instead, by ‘shooting in the dark,’ mutations are

randomly generated and the phenotype is screened. The

phenotype of interest is chosen and the journey to identify

the gene begins. The chemically-induced N-ethyl-N-

nitrosourea (ENU) mutagenesis is such an approach [39].

Following the positional cloning of SLC26A4 [1], a

Human and Mouse Genetics for Pendrin Function Cell Physiol Biochem 2011;28:535-544
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knock-out mouse model for PS was the first to be

established [40]. The work on the Slc26a4 null mice

illuminated the physiological and functional role of pendrin

in various systems, including the inner ear (reviewed in

this issue by Wangemann et. al.). The generation of

additional Slc26a4 knockout mouse was reported in a

kidney study which focused on pendrin function in the

urinary system [41]. To further understand the clinical

variability observed in humans carrying different mutations

of pendrin, three additional mouse models were

investigated. The Slc26a4loop mouse, generated by ENU

mutagenesis, led to the discovery of new inner ear

pathology that has complemented the work on the

Slc26a4 null mice with its novel phenotypic variation [42].

A spontaneous mutation in Slc26a4 was found in the

Slc26a4pdsm mouse model (http://mousemutant.jax.org/

articles/mmrmutantpdsm.html). The reported inner ear

characteristics of Slc26a4pdsm appear to be similar to the

previously studied mouse strains. Finally, the attempt to

expand the mouse mutations spectrum had led to the

generation of the Slc26a4tm1Dontuh knock-in mouse that

carries a common East Asian mutation [43]. In the

following section we highlight the similarity and

differences between the available Slc26a4 mouse models,

with an emphasis on the inner ear.

Common auditory dysfunction of Slc26a4

mouse models

The inner ear is a remarkable organ that contains

both the auditory and vestibular systems responsible for

two prominent functions. Due to the close anatomical

proximity, these two systems share many genetic,

physiological and functional elements in common. As a

result, many genetic mutations that affect the auditory

system have consequences on the vestibular system in a

direct or indirect manner. The general structure of the
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Fig. 1. A general anatomical structure of the

auditory system is demonstrated by schematic

illustration. A: The ear is divided into three distinct

anatomical compartments, the outer, the middle and

the inner ear. Sound waves captured by the auricle

of the external ear passes through the ear canal

reaching the tympanic membrane leading to its

vibrations. The middle ear conducts the mechanical

energy of the sound vibration and transfers it to

the inner ear. B: A cross section through the

auditory portion of the inner ear (cochlea) reveals

its associated fluid field compartments. C: A

specialized sensory organ (organ of Corti) resides

within the scala media along the coil shape of the

cochlea from base to apex. The inner and outer

hair cells are constantly elicited by mechanical

forces driven by the acoustic stimulus. D: The

apical surfaces of the hair cell contain hair bundle

structures assembled by actin rich stereocilia with

a typical staircase structure. Upon deflection of

the hair bundle, mechanoelectrical channels

position at the tip of two adjacent stereocilia are

open and leads to hair cell depolarization. Complex

innervations at the basal pole of the sensory cells

propagate the electrical signal through the auditory

nerve into the brain. E: A scanning electron

micrograph showing hair bundle of an outer hair

cell isolated from a newborn mouse. F: A cross

section through the organ of Corti shows the

arrangement of the inner hair cells with respect to

three rows of outer hair cells. Florescent markers

were applied for myosin VI (red) and nuclear DAPI

staining (blue). Scale bars equal 2 μm in panel E, 4

μm in panel. Adapted from [37] with permission.
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ear (Fig. 1) can be divided functionally into the conductive

portion, comprised of the outer and middle ear, and the

sensitive sensory portion of the inner ear (Fig. 1A). The

inner ear is quite vulnerable to damage, as is evident by

the long list of known human mutations that leads to hearing

impairment [44]. The cochlea is a snail shape structure

that contains the sensory organ of the ear known as the

organ of Corti [45]. This sensory epithelium is associated

with an endolymph field compartment called the scala

media (Fig. 1B). The sensory cells of the auditory system,

known as hair cells, are stimulated by mechanical energy

originating from acoustic stimuli (Fig. 1C). Specialized

actin rich protrusions at the apical suface of the cell form

an organized structure of a hair bundle that is immersed

in endolymph (Fig. 1D). Upon deflection of the hair bundle

an influx of ions depolarize the cells, propagated via

channels that are located between the tips of neighboring

stereocilia [46, 47]. The unique chemical composition of

the endolymph, with its high potassium (K+) and low sodium

(Na+) and calcium (Ca+2) concentrations, is essential for

hair cell depolarization and normal auditory function [48].

Hence, it should come as no surprise that many of the

known genetic insults that lead to deafness affect channels

and transporters that maintains the delicate homeostasis

of the inner ear fluids [49]. Among this list of proteins,

pendrin stands out in its prominent role of maintaining the

acid-base balance of the endolymph and plays a cardinal

function in the normal hearing mechanism.

Generation of pendrin null mice has provided a

tremendous tool in understanding the pathophysiology

underlying this form of deafness observed in humans [40].

Initial characterization of the mouse clearly demonstrated

the high similarity between the clinical pathogenesis of

PS patients and the mouse phenotype. The auditory

brainstem response (ABR) tests show that Slc26a4-/-

mice are profoundly deaf, mimicking the early onset

deafness in humans. Furthermore, Slc26a4-/- mice show

a dramatic enlargement of the endolymphatic

compartment with significant hydrops of the cochlea, as

well as the endolymphatic sac and duct [40]. The changes

Fig. 2. Auditory phenotypic characteri-

zation of Slc26a4loop is common to all known

Slc26a4 mouse models. A: A representative

image of Slc26a4loop mice shows the typical

unsteady gait of the mutant mice that was

determined by a panel of vestibular

behavioral tests. B: Paint-filled inner ears of

Slc26a4loop P0 mice show a bulged fluid filled

compartment, with a prominent volume

increase in the cochlea and the vestibular

system. C: Auditory brainstem response

(ABR) test on 8-week old mice reveals that

Slc26a4loop mutants are profoundly deaf at

three frequencies that were tested, 8Khz,

16Khz and 32Khz. An ABR recording for

8Khz is shown (red). D: Cross sections

through the cochlea of Slc26a4loop mice

reveals hydrops of the endolymphatic

spaces of the scala media (sm), whereas the

perilymphatic spaces of the scala vestibuli

(sv) and scala tympani (st) are smaller. E:

Histogram graphic representation shows the

quantified area of the different cochlear

compartments as compared between normal

and mutant mice. A prominent enlargement

of the endolymph field scala media is

apparent in Slc26a4loop mice, at the expense

of the smaller scala vestibuli and scala

tympani. Scale bars equal 500 μm in panel B

and D. Adapted from [42] with permission.
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in inner ear fluid compartments correlates with the typical

enlargements of the vestibular aqueducts (EVA) of the

affected individuals, as seen by computed tomography

(CT) scan [28]. Subsequent work on the Slc26a4loop ([42]

and Fig. 2) and the Slc26a4tm1Dontuh/tm1Dontuh [43] mice

reported similar auditory characteristics, complementing

the work on the Slc26a4-/- mice.

In the inner ear, pendrin is localized to the membrane

of different cell types that face the endolymph, both in

the cochlear and vestibular apparatus. Electrophysiological

studies have shown that lack of pendrin leads to

acidification of the endolymph, suggesting that pendrin

mediates bicarbonate (HCO
3

–) secretion in the inner ear

that buffers the accumulation of protons (H+) [11]. A

subsequent increase of endolymphatic Ca2+ ion

concentration in pendrin null mice is attributed to the lower

pH level that inhibits the acid-sensitive TRPV5 and

TRPV6 calcium channels [50]. Pendrin null mice also

failed to develop endocochlear potential and hearing due

to the loss of Kcnj10 protein expression after the age of

P10 [35]. In the cochlea, Kcnj10, encoding a K+ channel,

is normally expressed in intermediate cells of the stria
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Fig. 3. The sensory maculae of the

vestibular system. Out of the five

sensory organs of the vestibular

system, the utricle and saccule share

similar anatomical and morphological

structures. Top: A cross section

through the utricular sac illustrates the

thick sensory epithelium creating the

floor of the maculae. The hair cells

(green) surrounded by supporting cells

(brown) are connected into nerve fibers

(yellow) in their basilar pole. The apical

surface of the hair cells is composed of

hair bundles of actin rich stereocilia

(black) that protrude into dense

gelatinous matrix. A large number of

calcite crystals, known as otoconia

(white), are positioned on top of the

epithelium. The inertial mass of these

mineralized crystals triggers the hair

cells by transferring mechanical energy

in response to linear movement of the

body. The sac is surrounded by

epithelial cells and contains

endolymphatic fluids. Bottom: SEM

showing the hair cells, dense

gelatinous matrix and otoconia.

Adapted from [42] with permission.

vascularis and is sufficient for generating an endocochlear

potential. An observed increased level of oxidative stress

in pendrin null mice impairs normal function of the stria

vascularis with subsequent loss of Kcnj10 protein

expression and lack of endocochlear potential [51].

Interestingly, KCNJ10, together with mutations

of SLC26A4, leads to digenic hearing loss with enlarged

vestibular aqueduct [33]. Understanding that the pendrin

mouse model fails to develop hearing due to the loss of

the endocochlear potential defines window of opportunities

for therapeutic approaches prior to the loss of KCNJ10

protein expression.

Unique vestibular dysfunction in the

Slc26a4loop mouse model

The vestibular system is comprised of five sensory

organs (Fig. 3). Three cristae connected to semicircular

canals are sensitive for angular movement and saccule

and utricle are sensitive for linear acceleration and gravity

[52]. The integrated input of these sensory patches is

Dror/Brownstein/AvrahamCell Physiol Biochem 2011;28:535-544
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months old. The two sensory maculae of the vestibular system, utricle and saccule are indicated (arrows). A, B: SEM images of
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mineral extracted from the saccule in Slc26a4loop mutant mice shows vibrations at 1324 and 776 cm-1 that are typical of weddelite

crystals. Scale bars equal 50 μm in panel A applies to B, 100 μm in panel D applies to E. Adapted from [42] with permission.

essential for three dimensional acquisition and gravity

perception. Similar to the cochlea, the sensory cells of

the vestibular system bathe in the (K+) rich endolymph

and are elicited in response to a mechanical stimulation.

However, unlike the cochlea, the vestibular sensory

epithelia have a different morphology and depend on a

unique inertial mass that is required for its proper

stimulation. The utricle and saccule are two small sacs

that contain an oval-shaped thick epithelium, known as

maculae, that contains the sensory hair cells. The sensory

epithelia of the utricle and saccule are anatomically

positioned 90° to each other [53], correlating with their

functional significance in sensing linear and vertical

acceleration, respectively. The apical surface of the

sensory epithelium is associated with an extracellular

gelatinous matrix on which large number of calcium

carbonate (CaCO
3
) crystals, also known as otoconia, are

positioned. Otoconia are small highly dense calcitic

minerals that associate exclusively with the saccule and

utricle. Thousands of otoconia, partially embedded in a

gelatinous matrix, are supported on the sensory epithelium

and serve as an inertial mass that is critical for mechanical

stimulation [54, 55]. Movement of the otoconial layer

through action of gravitational acceleration forces activate

the underlying mechanosensory hair cells to generate

action potentials that are transmitted to the brain.

In addition to the auditory deficit, all Slc26a4 mouse

models show prominent vestibular dysfunction with

variable manifestations [40, 42, 43]. Among the various

vestibular deficits, a prominent abnormal gait, circling

behavior and abnormal reaching response clearly

distinguishes the mutant mice from their littermate

controls. A closer look at the utricle and saccule of these

mouse models reveals an abnormal giant otoconia

associated with the sensory epithelium [40]. The formation

of the giant stones breaks the delicate balance between

otoconia and the underlying hair cells. While in normal

conditions the otoconia sustain an equally distributed mass

to elicit the hair cells, in the presence of Slc26a4 mutations

a sporadic distribution of the giant minerals leads to a

differential mass over the sensory cells. Whereas some

hair cells are overloaded with the weight of the giant

stones, others lack any viable load of otoconia minerals.

As a result, both cell populations are neutralized from
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being active in vestibular sensation and leads to severely

disturb vestibular perception. Interestingly, out of the three

Slc26a4 mouse models, the Slc26a4loop mice shows a

unique composition of the pathological mineralized bodies

[42]. A gradual change in composition of the Slc26a4loop

giant otoconia leads to the formation of calcium oxalate

minerals, determinately different from the calcium

carbonate constituent of the wild-type otoconia (Fig. 4).

The changes in chemical structure of the minerals are

suggested to be attributed to an ongoing progressive

acidification of the surrounding fluids as a result of

impaired pendrin function. A lower pH leads to dissolution

of the native calcium carbonate mineral while it is in favor

of calcium oxalate mineral aggregations that are more

stable in acidic environment. Prominently the formation

of calcium oxalate stones are most known in the kidney

under pathological conditions [56]. A recent study shows

that Slc26a4 ablation leads to calcium wasting in urine

due to down regulation of calcium absorbing protein in

the kidney [57]. This evidence supports the leading

framework that extracellular pH affects homeostasis in

other organs via pH sensitive calcium channels [50]. The

nucleation of oxalate crystals in Slc26a4loop inner ears is

a unique example that links a genetic mutation to this

aberrant pathophysiology [42]. Interestingly, in addition

to the aberrant composition of Slc26a4loop giant minerals

this strain distinguishes from other Slc26a4 mouse models

in the morphology of the vestibular hair cells. At early

progressive ages both Slc26a4-/- and Slc26a4tm1Dontuh/

tm1Dontuh mice show massive degeneration of utricular and

saccular sensory cells [40, 43], whereas in Slc26a4loop

mouse the vestibular hair cells are intact at the same

time point [42]. Although the molecular mechanism for

this variation is yet to be determined, it highlights

the importance of having several mouse models to

illuminate the function of pendrin through different

genetic mutations.

Summary

The field of genetics and its associated area of

genomics have evolved tremendously over the past years.

Since the discovery of SLC26A4 mutations and

association with disease, there has been remarkable

progress in understanding pendrin function due to

technological genomic advances. The wide expression

of pendrin in a variety of systems initiated studies that

illuminated the role of pendrin in different clinical conditions

including deafness [11], asthma and chronic obstructive

pulmonary disease (COPD) [58], kidney and chloride

reabsorption [59] and iodide homeostasis of the thyroid

[10]. However, despite progress, there are aspects of

the role of pendrin that still remain to be explored. The

absence of precise genotype-phenotype correlations, as

well as modifiers of disease, of the known pendrin

mutations highlight intriguing questions. The overview

provided in this summary lays the groundwork for these

questions and points to a promising future in the pendrin

field.
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