
Common biological networks underlie genetic risk for
alcoholism in African- and European-American populations

Mark Z. Kos1,*, Jia Yan2, Danielle M. Dick2, Arpana Agrawal3, Kathleen K. Bucholz3, John
P. Rice3, Eric O. Johnson4, Marc Schuckit5, Sam Kuperman6, John Kramer7, Alison M.
Goate3, Jay A. Tischfield8, Tatiana Foroud9, John Nurnberger Jr.10, Victor Hesselbrock11,
Bernice Porjesz12, Laura J. Bierut3, Howard J. Edenberg13, and Laura Almasy1

1Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX, USA
2Department of Psychiatry, Virginia Institute for Psychiatric and Behavioral Genetics, Virginia
Commonwealth University, Richmond, VA, USA
3Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
4Behavioral Health Epidemiology, RTI International, Research Triangle Park, NC, USA
5Department of Psychiatry, University of California-San Diego, La Jolla, CA, USA
6Division of Child Psychiatry, University of Iowa Hospitals, Iowa City, IA, USA
7Department of Psychiatry, University of Iowa College of Medicine, Iowa City, IA, USA
8Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ, USA
9Department of Medical and Molecular Genetics, Indiana University School of Medicine,
Indianapolis, IN, USA
10Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
11Department of Psychiatry, University of Connecticut, Farmington, CT, USA
12Department of Psychiatry, State University of New York, Brooklyn, NY, USA
13Department of Biochemistry and Molecular Biology, Indiana University School of Medicine,
Indianapolis, IN, USA

Abstract
Alcohol dependence (AD) is a heritable substance addiction with adverse physical and
psychological consequences, representing a major health and economic burden on societies
worldwide. Genes thus far implicated via linkage, candidate gene and genome-wide association
studies (GWAS) account for only a small fraction of its overall risk, with effects varying across
ethnic groups. Here we investigate the genetic architecture of alcoholism and report on the extent
to which common, genome-wide SNPs collectively account for risk of AD in two US populations,
African-Americans (AAs) and European-Americans (EAs). Analyzing GWAS data for two
independent case-control sample sets, we compute polymarker scores that are significantly
associated with alcoholism (P=1.64 × 10−3 and 2.08 × 10−4 for EAs and AAs, respectively),
reflecting the small individual effects of thousands of variants derived from patterns of allelic
architecture that are population-specific. Simulations show that disease models based on rare and
uncommon causal variants (MAF<0.05) best fit the observed distribution of polymarker signals.
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When scoring bins were annotated for gene location and examined for constituent biological
networks, gene enrichment is observed for several cellular processes and functions in both EA and
AA populations, transcending their underlying allelic differences. Our results reveal key insights
into the complex etiology of AD, raising the possibility of an important role for rare and
uncommon variants, and identify polygenic mechanisms that encompass a spectrum of disease
liability, with some, such as chloride transporters and glycine metabolism genes, displaying subtle,
modifying effects that are likely to escape detection in most GWAS designs.

Keywords
alcohol dependence; GWAS; polymarker scores; synthetic association; rare variants; pathway
analysis

Introduction
Alcohol dependence (AD) is a complex, highly heritable disorder characterized by
compulsive, excessive consumption of alcohol, resulting in physical, psychological and
social impairment (American Psychiatric Association 1994) that constitutes a significant
health and economic burden in the US (Harwood 2000), with 4–5% of the population
affected at any given time (Li et al. 2007). Family, twin and adoption studies have
consistently shown a substantial genetic contribution to disease etiology (Goodwin et al.
1974; McGue 1999; Nurnberger et al. 2004), with heritability estimates ranging from 50–
80% (Heath et al. 1997; Knopik et al. 2004). To date a number of genes have been
implicated in alcoholism susceptibility via linkage analysis, candidate gene approaches and
genome-wide association studies (GWAS), including the often replicated GABRA2
(Edenberg et al. 2004; Bierut et al. 2010) and ADH4 (Guindalini et al. 2005; Luo et al. 2004;
Edenberg et al. 2006), among others (Wang et al. 2004; Xuei et al. 2006; Chen et al. 2009;
Zlojutro et al. 2011; Bierut et al. 2012). However, these genetic loci collectively account for
only a small fraction of the risk of AD, with effects varying across ethnic groups (Gelernter
& Kranzler 2009).

This shortfall in explained genetic variance, popularly referred to as “missing heritability”
(Maher 2008; Manolio et al. 2009), has been widely observed for other complex disease
phenotypes, leading many to re-evaluate the validity of the common disease-common
variant hypothesis and suggest a more central role for rare variants, epigenetics and/or
genetic interactions in pathogenesis. New analytical approaches, however, have begun to
bridge the heritability gap, indicating that much of the additive genetic variance of complex
traits, such as human height (Yang et al. 2010), intelligence (Davies et al. 2011) and
schizophrenia (Lee et al. 2012), are arguably captured by common GWAS markers.

In this paper we investigate the polygenic architecture of alcoholism by evaluating the extent
to which common, genome-wide SNPs collectively capture the variation in susceptibility in
two US populations, European-Americans (EAs) and African-Americans (AAs). To achieve
this, we aggregated genotypic data from case-control samples into sets of quantitative
scores, representing varying thresholds of GWAS P-values or particular classes of minor
allele frequency (MAF), and tested their association to AD, as well as their fit to simulated
disease models. In addition, we computed empirical, additive genetic relationships between
case-control subjects with the available GWAS data and estimated from them the total
variance in AD liability that is accounted by common SNPs via linear mixed models, as
proposed by Yang and colleagues (2010). Lastly, in an effort to identify some of the specific
genetic mechanisms that underlie the biology of AD, the designated scoring bins of putative
risk alleles were annotated to gene locations and tested for gene enrichment for various
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biological ontologies and signaling pathways in EA and AA populations using a permuted
approach.

Materials and methods
Population Samples

Routines for aggregating genome-wide SNP counts into composite scores (Fig. S1) were
designed using GWAS data from case-control subjects representing European-American (n
= 1,274) and African-American (n = 285) populations, as ascertained by the Collaborative
Study on the Genetics of Alcoholism (COGA) (Edenberg et al. 2010), a national consortium
designed to study the genetic predisposition to develop alcoholism and related phenotypes.
Alcoholic probands were recruited from inpatient and outpatient treatment centers, whereas
controls were selected from Health Maintenance Organizations (HMOs), drivers’ license
records, and dental clinics, with the objective of obtaining representative samples of the
communities at each recruitment site (Reich et al. 1998). All cases were diagnosed for
DSM-IV alcohol dependence at each clinical assessment if assessed multiple times. To
avoid pleiotropic genetic components that contribute to multiple substance abuse
phenotypes, non-alcoholic controls did not meet diagnostic criteria for other illicit substance
abuse or dependence (although cases could). Furthermore, controls were required to be 25
years or older and to have consumed alcohol at some point in their lives to ensure that their
unaffected status was not due to lack of exposure to alcohol. These procedures were
approved by the Institutional Review Boards of all COGA sites, and all participants gave
informed consent.

Developed scoring routines were applied to independent GWAS data for EA (n = 1,573) and
AA (n = 841) case-control subjects from the Study of Addiction: Genetics and Environment
(SAGE) (Bierut et al. 2010). For this data set, AD cases and non-dependent controls were
selected from three large, complementary studies: COGA, Family Study of Cocaine
Dependence (FSCD), and Collaborative Genetic Study of Nicotine Dependence
(COGEND). All COGA subjects were excluded to ensure independence between the
discovery and target samples (although it should be noted that not all of the cases from the
COGA case-control study were a part of SAGE). Cases (n = 958) were identified as having a
lifetime history of AD using DSM-IV criteria. Control subjects (n = 1,456) were required to
report a history of drinking and have no significant AD symptoms or any other substance
dependencies. The Institutional Review Board at each contributing institution approved the
protocols, and all subjects provided written informed consent for genetic studies.

Genome-Wide Genotyping
Genotyping was performed by the Center for Inherited Disease Research (CIDR) at John
Hopkins University using the Illumina® Infinium II assay protocol (Gunderson et al. 2006)
for hybridization to Illumina® HumanHap 1M BeadChips (Illumina, San Diego, CA), with a
blind duplicate reproducibility of 99.97% and 99.98% for the COGA and SAGE samples,
respectively. Details are reported by Bierut et al. (2010) and Edenberg et al. (2010).
Protocols and GWAS data for the COGA (n = 1,003,800 SNPs) and SAGE (n = 1,040,106
SNPs) samples are available on the National Center for Biotechnology Information (NCBI)
database dbGaP. For each sample set, subjects were assigned to EA and AA population
groups via principal component (PC) analysis of the genotype data, corresponding to two
major population clusters observable in PC space (Table 1; Fig. S2 and S3).

Polymarker Scoring
COGA has conducted a series of analyses that evaluate the predictive utility of GWAS data
for alcoholism and related phenotypes (Yan et al. 2011). Here, we have expanded the scope
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of this work by examining what this information tells us about the disorder’s underlying
genetic architecture. Using a two-stage, risk prediction framework similar to the one
employed by Purcell et al. (2009) to characterize the polygenic basis of schizophrenia, we
aggregated variation across nominally associated GWAS loci into quantitative scores or
“genomic profiles” and correlated these predictors with observed AD status in independent
target samples from SAGE (Fig. S1).

For the design of the genome-wide scoring routines, autosomal GWAS data (n = 1,003,800)
was pruned of SNPs in strong linkage disequilibrium (LD) with other markers (pairwise r2

threshold of 0.25, within a 200-SNP sliding window), ensuring that the scores computed in
our target samples represent the aggregate effect of a large number of predominantly
independent markers. The retained genotype data for EA (n = 193,979) and AA samples (n
= 332,687) were further trimmed for minor allele frequency (MAF ≥ 0.05), call rate (≥ 0.98)
and deviation from Hardy-Weinberg (HW) equilibrium (p ≥ 1×10−3), leaving 124,291 and
256,549 SNPs in the two respective population samples available for developing the scoring
routines.

Genome-wide association tests were conducted with the program PLINK (Purcell et al.
2007), using the standard measured genotype method, with covariates age and sex (quantile-
quantile plots are provided in Fig. S4). SNPs were then delineated into bins according to
incremental thresholds of association test P-values, as well as MAF ranges, from which
scores were defined as the total number of “risk” alleles carried by a given target sample,
weighted by the log odds ratio (OR) for AD as estimated from the COGA data. Scores were
calculated for the SAGE data, limited to SNPs with an allele frequency > 1%, in HW
equilibrium (P ≥ 1×10−4), and with a minimum call rate of 98% (n = 948,658). To measure
how well the SAGE target scores predict AD risk, logistic regression analyses of case-
control status were performed to quantify the amount of variation accounted for by the
scores, as determined by Nagelkerke’s pseudo-R2, representing the difference in R2

estimates for the null model, with terms for the intercept, age, sex and genotyping rate, and
the alternative model that includes the polymarker scores.

Variance Component Analysis of AD Liability
Using the method proposed by Yang et al. (2010), the amount of variance in AD risk that is
explained simultaneously by genome-wide SNPs was estimated by treating the effects of
SNPs as statistically random. The model for this analysis is y = Σ wibi + e, where y is the
phenotypic value, bi is the effect of the ith SNP, wi is a scaling factor equivalent to (xi −
2pi)/(2pi (1 − pi))1/2 with pi the allele frequency and xi the genotype indicator of the ith SNP
(values of 0, 1 or 2), and e is a random environmental effect (Visscher et al. 2010). In matrix
notation this is equivalent to y = g + e, where g = Wb is a vector of genetic values calculated
from the SNP alleles each individual carries, with var(g) = WW′σb

2 (WW′ is the matrix of
genetic relationships between individuals). Using the software GCTA (Yang et al. 2011), we
computed the genetic relationship matrix (GRM) for our LD-pruned genotype data,
combining the COGA and SAGE samples for the EA (n = 2,763) and AA (n = 1,167) study
populations, with the exclusion of individuals with estimated relatedness greater than 0.025
(i.e., corresponding to third cousins or closer). The GRMs were then fitted to the linear
models for AD status, parameterized on an unobserved continuous liability scale via a probit
transformation (Lee et al. 2011), using a restricted maximum likelihood (REML) approach,
with the covariates age and sex. The estimates of AD variation explained by the GRMs were
corrected for ascertainment bias using population-specific prevalence rates (0.038 and 0.036
for EAs and AAs, respectively) (Grant et al. 2004).
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Simulation of Genome-Wide Scores for Different Disease Models
Using the program GCTA, case-control phenotypes for six disease architectures were
simulated using real genotype data from the COGA and SAGE data sets, pruned of SNPs in
strong LD, as described above. The phenotypes were generated from a simple additive
genetic model yj = Σi xijbi + ej, where xij is the number of reference alleles for the ith causal
variant of the jth individual, bj is the allelic effect of the ith causal variant, and ej is the
residual effect generated from a normal distribution with mean 0 and variance of (xijbi)(1 −
1/h2). The six selected disease models differ with regards to the number of causal loci (100,
1,000 or 5,000) and their allele frequency profiles (MAF < 0.05 or MAF ≥ 0.05). For each of
the population samples, a new AD status was assigned via a disease liability threshold, with
the number of cases matching those in the original phenotype data. Causal loci were
randomly selected from LD-pruned SNPs excluded from the initial two-stage, genome-wide
scoring analysis, which have not been filtered for MAF and thus include rare variants (Fig.
S1), with 100 replicates drawn for each disease model. The heritability of the disease
phenotypes was set at a conservative 0.65, the median of estimates reported for AD in a pair
of published studies (Heath et al. 1997; Knopik et al. 2004). Effect sizes were fixed for each
model, making the variance accounted for by a causal locus proportional to the total number
of loci in a given disease model and its respective minor allele frequency. With the program
PLINK and the R statistical package (R Development Core Team 2011), genome-wide
association tests, followed by the aforementioned two-stage, scoring routines, delineated
according to MAF class, were conducted on the simulated disease phenotypes and the
corresponding COGA or SAGE genotype data.

Gene Enrichment Analysis for Biological Ontologies
For the final analytical approach, the focus was shifted from the general, genetic architecture
of AD to the detection of specific polygenic mechanisms giving rise to the disorder, as
permuted gene enrichment analyses were conducted on the bins of potential risk alleles
applied in the scoring calculations described above. For each population-specific bin,
representing one of twenty GWAS P-value thresholds defined by increments of 0.05, alleles
exhibiting contrasting directions of effect between the discovery and target samples
(accounting for ∼50% of the markers) were assumed to be predominantly due to chance and
removed from analysis to help control statistical noise. The remaining SNPs were then
assigned to genes based on the UCSC hg18 gene coordinates, with the boundaries extended
+/− 20 kb to include regions that may have cis-regulatory functions. The resulting gene lists
were tested for enrichment for genes belonging to various biological ontologies (n = 507)
and receptor signaling pathways (n = 227), as defined in the ResNet Mammalian v. 7.0
database curated by Ariadne Genomics (Bethesda, MD). Unlike the “GO” vocabulary from
the Gene Ontology Consortium, the Ariadne ontologies are mostly based on narrowly
defined cellular processes and molecular functions, thus limiting the redundancies between
biological categories. Each ResNet ontology and pathway was limited to only member genes
marked by genotyped SNPs in the LD-pruned GWAS data from COGA, with only those
retaining 2 or more genes examined for enrichment (n = 651 and 639 ontologies/pathways
for the AA and EA GWAS data sets, respectively). Gene enrichment was evaluated via
Fisher’s exact tests using the R package, with permuted lists (n = 1,000) randomly
assembled from genes marked by the LD-pruned GWAS data (totaling 16,740 and 14,777
for AAs and EAs, respectively), with each gene weighted for its SNP coverage. Empirical P-
values represent the number of times the P-values from permuted Fisher’s exact tests are
smaller than the value from the observed test.
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Results
Application of Population-Matched Scoring Routines

When target scores derived from associations in the COGA data set are used to predict case/
control status for the matched population (i.e. EA or AA) in SAGE, the R2 estimates for
both EAs and AAs are modest, but statistically significant (Fig. 1). Maximum values are
observed for association P-value thresholds set at less than 0.05 (n = 6,790 risk alleles) for
EA and 0.30 (n = 76,218 risk alleles) for AA target samples, accounting for 0.73% (P = 1.64
× 10−3) and 2.14% (P = 2.08 × 10−4) of the variation in AD status, respectively (Table S1);
although both sets of R2 values begin to plateau at around the 0.05 or 0.10 thresholds. Given
the heritability estimates of 50–80% for AD liability (Heath et al. 1997; Knopik et al. 2004),
these results fall well short of the total additive genetic variation believed to underlie the
illness. This discrepancy can be attributed in part to the statistical noise arising from the
inclusion of non-associated markers, as well as the large number of small, individual
estimates of AD effect, whose standard errors reduce the accuracy of the aggregate scores in
predicting disease outcome despite their small sizes.

Variance Component Analysis
To obtain a more accurate estimate of AD variance explained by genome-wide markers, we
conducted variance component analysis using the method proposed by the Yang et al.
(2010). Based on this approach, we estimate from our LD-pruned GWAS data that 37.8%
(s.e. = 10.4%) and 35.1% (s.e. = 27.8%) of the variation in AD risk is captured by common
SNPs in EAs and AAs, respectively (Table S2). Although the heritability of AD is not fully
recovered in these results, at least for the larger heritability estimates when one considers the
substantial standard errors, it is reasonable that any unaccounted, additive genetic variation
could be “hidden” from our statistical purview due to causal variants not being in strong LD
with the GWAS markers, with the most probable candidates being those with small MAFs
(Purcell et al. 2009; Visscher et al. 2012).

Application of Population-Mismatched Scoring Routines
Despite having nearly equivalent levels of AD risk variation captured by common genetic
markers, EAs and AAs appear to have distinctly different allelic architectures. Genome-wide
scores generated from routines that are mismatched for population (i.e., EA COGA
discovery sample and AA SAGE target sample, or vice versa) do not predict AD risk (Fig.
1), with R2 values generally less than 0.1% and βs displaying opposite directions of effect
(Table S3). This stands in sharp contrast to the genome-wide scoring results reported by
Purcell et al. (2009) for a larger sample of schizophrenia subjects, in which AA cases were
found to carry significantly more European-derived risk alleles than AA controls (P = 0.008;
R2 = 0.4%). Though the aggregate differences in allele frequencies and LD patterns between
EAs and AAs are expected to lead to attenuated associations, our findings suggest a larger
degree of allelic heterogeneity may exist between these two populations for the genetic
liability of AD than for schizophrenia and perhaps other psychiatric disorders.

Scoring Delineated by Association P-Value and MAF Class
To further dissect the allelic architecture of alcoholism in our two study populations, we re-
ran the scoring routines on non-overlapping bins of risk alleles, based either on GWAS P-
values or classes of minor allele frequency. For the target samples, we observed significant
R2 values for scores representing weakly associated risk alleles, including ones for
significance thresholds as permissive as 0.50 ≤ P < 0.55 (OR: 1.05–1.15; R2 = 0.30%; P =
0.027) and 0.55 ≤ P < 0.60 (OR: 1.07–1.26; R2 = 1.42%; P = 0.0012) for EAs and AAs,
respectively (Fig. 2a; Table S4). When broken down by frequency, a skew in the R2

Kos et al. Page 6

Genes Brain Behav. Author manuscript; available in PMC 2014 July 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



distribution towards more common markers is evident (Fig. 2b; Table S5), with a peak at 0.3
≤ MAF < 0.4 for both population samples (EA: R2 = 0.57%, P = 0.0047; AA: R2 = 2.13%, P
= 0.00013), suggesting an important role for highly common variants in the liability of AD
if one assumes a robust LD relationship between score alleles and the unknown causal loci.

Simulation of Genome-Wide Scores
To explore whether or not this is indeed the case, we simulated a series of disease models
and conducted the same two-stage, genome-wide scoring delineated by MAF class (Fig. 3).
Surprisingly, the strongest R2 signals in both populations are for simulated diseases arising
entirely from rare and uncommon risk alleles, with modes overlapping the observed peak at
the 0.3 ≤ MAF < 0.4. For AAs the observed R2 values fall slightly below those generated for
the model based on 100 causal loci (with a maximum of 0.022 variance explained by any
individual variant; goodness of fit R2 = 0.78, P = 0.046), whereas the best fitting model for
EAs is for 1,000 causal loci (maximum variance explained of 0.0037; R2 = 0.49, P = 0.19).
For disease models representing the other part of the frequency spectrum (i.e., common
alleles), the fit to the observed results is poor for EAs (R2 = 0.07, P = 0.68 for 5,000 causal
loci), with the genome-wide scores explaining substantially less of the variation in the
disease phenotypes. For AAs the signals are more concordant; however they also are
noticeably attenuated relative to those obtained for rare/uncommon risk alleles, with the
model based on 1,000 causal loci fitting best to the observed R2 values (R2 = 0.79, P =
0.044). In addition to these six models, we also tested mixed models representing rare and
common causal loci drawn randomly from the MAF spectrum. As one would expect, the
simulated R2 profiles are intermediate to those reported for the models discussed above (Fig.
S5), with the ones based on 100 and 5,000 causal loci fitting best to the observed results for
AAs (R2 = 0.80, P = 0.04) and EAs (R2 = 0.38, P = 0.27), respectively.

Gene Enrichment Analysis
To identify potentially causative biological mechanisms for AD, we examined our scoring
bins, ones defined by cumulative GWAS P-value thresholds, for discernible ontological
patterns, including those comprised of alleles with small, statistically non-significant effects
on disease risk. The permuted Fisher’s exact tests show that about 90% of the examined
ontologies exhibit no significant evidence of gene enrichment (empirical P ≤ 0.05) for any of
the twenty P-value thresholds for either population (Table S6), with the percentages slightly
higher for the signaling pathways. Of the biological relationships that do show significant
enrichment, approximately half are for single thresholds, with only a limited number
displaying significance across three or more of the tested levels (n = 15 and 19 for EAs and
AAs). From this latter group, the following four ontologies show evidence of significant
enrichment in both population samples (in parentheses are the sizes of the ontologies after
being matched against the gene coverage of population-specific GWAS data, along with the
top empirical P-values observed for the various EA and AA gene lists, respectively): Maf
transcription factors (n = 6 genes; P-values = 0.024 and 0.008); homeotic (Hox) AbdB genes
(n = 16 genes; P = 0.026 and 0.008); chloride transport (n = 62 and 66 genes; P = 0.002 and
0.006); and glycine and serine metabolism (n = 27 and 33 genes; P = 0.001 and 0.014).

Discussion
Through the aggregation of genome-wide, genotypic data, we present molecular evidence
for a substantial polygenic component to the risk of alcoholism. Although accounting for
only a modest amount of variation in AD risk (R2 values less than 3%; Fig. 1), our
polymarker scores are nonetheless significantly associated to AD in both EA and AA target
samples, even for putative risk alleles with GWAS P-values as lax as 0.55 ≤ p < 0.60 (Fig.
2a), underscoring the statistical power issues faced by genome-wide studies of similarly
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complex, polygenic traits. When populations were mismatched between the discovery and
target samples for the scoring routines, the resulting scores became poor predictors of
alcoholism, suggesting that the genetic liabilities stem from patterns of allelic architecture
that are predominantly population-specific, a finding that is consistent with the various novel
genetic associations and linkage signals reported in ethnic studies (Gelernter & Kranzler
2009).

For a more accurate estimate of the proportion of AD variation captured by GWAS markers,
we conducted variance component analysis via mixed linear modeling, with allelic effects
treated as statistically random. Using this approach (Yang et al. 2010), we determined that
around one-third of the phenotypic variation is collectively accounted for by common SNPs
in our EA and AA samples. Thus, if recent estimates of AD heritability are reliable, this
result still leaves much of the additive genetic variation to be explained, with a potentially
important role for rare causal variants. One example that is particularly instructive is
rs1229984, a functional variant in ADH1B known to modify the conversion of alcohol to
acetaldehyde, with a low frequency in non-Asian populations (∼1–3%) and, as a result, is
poorly tagged by genotyped markers in current GWAS arrays. However, when this coding
variant was directly genotyped in the COGA sample, a genome-wide significant association
with AD was revealed, with a strong protective effect (Bierut et al. 2012).

To explore the relative contributions of common versus rare causal variants to the genetic
liability of AD, we simulated a series of disease models and conducted the same two-stage,
genome-wide scoring for EA and AA samples, with routines delineated by MAF class. What
we find is that the best fitting models, overall, are those based entirely on rare causal
variants (Fig. 3). Although these simulations examined only a limited number of possible
disease architectures and therefore do not preclude the possibility of thousands or tens of
thousands of common loci solely contributing to AD risk, especially for heritabilities larger
than the one tested in our models (65%), it does indicate that polymarker scoring based on
GWAS data for complex phenotypes can detect the small, collective effects of rare and
uncommon genetic determinants and that there could be as few as one hundred of them. This
contrasts with the conclusion reached by Purcell et al. (2009) in their models that simulated
both disease status and genotype data, asserting that rare variants could not alone account for
R2 signals generated from genome-wide, polymarker scoring of psychiatric disorders such
as schizophrenia. This discrepancy between the studies may stem from design differences,
as our simulations are based on real genotype data, which could have produced divergent
features in the respective LD structures, or perhaps be a reflection of fundamental
differences in the genetic architectures of these two psychiatric disorders.

The exact contributions of rare and common genetic variants to the underpinnings of AD
remain unknown, but consistent with both the neutral and selection theories of genetic
variation, our results, principally those for the EA sample, point to a strong likelihood for a
concentration of weak causal variants from the low end of the MAF spectrum that can lurk
beneath stringent genome-wide significance boundaries (Heath et al. 2011). Moreover, these
findings support the theoretical possibility of “synthetic association”, a phenomenon
described and coined by Dickson et al. (2010), in which the aggregate risk effects of
extended genomic blocks of rare variants can create genome-wide significant associations
with weakly tagged, common SNP markers, complicating the interpretation of GWAS
results as it relates to the localization of causal variants. Despite other simulation studies and
empirical evidence that lend support to this genetic mechanism of association, including the
well-known instance involving the NOD2 locus and Crohn’s disease (Anderson et al. 2011),
several recent papers have disputed the prevalence of synthetic association for complex
phenotypes, drawing upon the paucity of replicable linkage signals that should be amenable
to similar rare variant effects (Orozco et al. 2010; Anderson et al. 2011), as well as the
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modality of GWAS marker signals towards higher frequencies (Wray et al. 2011) and the
observance of trans-ethnic associations (Waters et al. 2010). Although our findings indicate
the plausibility of recapitulating rare variant effects through polymarker scores derived from
common GWAS markers (e.g., 0.3 ≤ MAF < 0.4), this should not be interpreted as support
of a rare variant-only model for the genetic architecture of alcoholism, as mixed models also
exhibit robust fits (Fig. S5). The simulations conducted here represent only a cursory
exploration of potential disease models, and thus does not discount other neutral
evolutionary models for common genetic variation, especially given the positive relationship
between risk allele frequency and disease variance explained (Visscher et al. 2012).

Lastly, this study delved beyond the allelic architecture of alcoholism, searching for wider
biological patterns among alleles of varying association strengths by means of permuted
gene enrichment analysis. Of the ontologies and signaling pathways that show significant
enrichment in our data set, four are particularly compelling, as they represent broad signals
(i.e., significance across three or more GWAS P-value thresholds) and are shared by both
EAs and AAs: a) Maf transcription factors, which regulate cell differentiation and
potentially brain segmentation (Cordes & Barsh 1994; Sadl et al. 2003); b) Hox AbdB
genes, a family of transcription factors involved in embryogenesis and axial patterning; c)
chloride transport, which plays a crucial role in synaptic inhibition through the activity of
GABA and glycine neurotransmitters; and d) glycine and serine metabolism, for which
glycine is an important inhibitory neurotransmitter. When their empirical P-values from the
enrichment analyses are plotted, they reveal remarkably similar trends between the two
populations (Fig. 4), with overlapping peaks, significant correlations (r ranging from 0.73 to
0.44), and non-significant Kolmogorov-Smirnov (K–S) distances between the P-value
distributions. All of this, as well as substantial sharing between annotated gene lists at peak
enrichment thresholds (Table S7), suggest commonalities in the genetic mechanisms
responsible for AD liability that transcend population differences in the underlying allelic
architectures. For Maf transcription factors and AbdB genes, the strongest signals for
enrichment occur at small GWAS P-values (< 0.10), indicating large to modest effects on
AD risk by genes belonging to these particular groups, whereas chloride transport (which
includes GABA receptors that have been often implicated in AD) and glycine/serine
metabolism reveal peaks at markedly higher thresholds (< 0.60), pointing to more subtle
effects that are likely to escape detection in most single marker association tests. These
enrichment differences may represent molecular signatures of a hierarchical etiology, in
which the effects of the Maf and AbdB transcription factors on developmental and
pathophysiological pathways related to AD are more proximate to the disease endpoint than
chloride transport and glycine-related neurochemical systems. (Gaino & Fishell 2002;
Pandey 2004; Yamauchi 2005; Lee & Messing 2008; Aguirre et al. 2010; Moonat et al.
2010; Kaun et al. 2011)

From the other ontologies and pathways tested for enrichment in this study, some also
exhibit similar trends in their empirical P-value distributions between the two study
populations, of which several appear to be potentially meaningful to AD and neuronal
function, including NOTCH → EP300 signaling (Gaino & Fishell 2002; Aguirre et al. 2010;
Kaun et al. 2011), organic anion transport (Moonat et al. 2010), and calcium-dependent
protein kinases (Yamauchi 2005; Lee & Messing 2008) (Fig. S6; Table S8). However it
should be noted that many of the significant enrichment signals are indeed population-
specific (Fig. S7 and S8), hinting that some important differences in the genetic etiology of
alcoholism may exist between EAs and AAs.

In conclusion, we report that a significant proportion of variance in AD risk can be
explained by common SNPs of small effect in an aggregate manner, with allelic
architectures that are specific to EA and AA populations. Although these findings would
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appear to support the widely held common disease-common variant hypothesis, our
simulation models show that the modest effects of rare and uncommon susceptibility loci
can be captured in genome-wide association signals for complex disease phenotypes, at least
in aggregate. How big of a role rare variation actually has, if any, in the genetic liability of
alcoholism is unknown, however there is growing evidence that it can have important effects
on psychiatric disorders, including results from studies of copy number variants (CNVs)
(Stone et al. 2008; Sanders et al. 2011), as well as early findings from exome sequencing
efforts that reveal an abundance of rare genetic variation, much of which is functional
(Keinan & Clark 2012; Kiezun et al. 2012; Tennessen et al. 2012). In addition, our GWAS
data sets have implicated a number of biologically relevant pathways and mechanisms in
both study populations, including various transcription factors known to affect brain
development, as well as genes involved in inhibitory neurotransmission. The latter plays a
key role in the brain’s reward system and has been previously linked to externalizing
psychopathologies (e.g., antisocial personality disorder, childhood conduct disorder) that
share a genetic predisposition with substance abuse disorders (Dick et al. 2006), thus
providing compelling targets for future research on alcoholism, as well as population-
specific pathways.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Variance in alcohol dependence (AD) explained by genome-wide scores for African-
American and European-American subjects
Polymarker scoring routines based on AD status were designed for thirteen GWAS
significance thresholds (plotted against the x axis) using COGA data and applied to SAGE
target samples. The y axis represents Nagelkerke’s pseudo R2, the amount of variation in
AD accounted by the SAGE scores, computed for routines that are both population-matched
and mismatched across the COGA and SAGE data sets.
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Figure 2. Scoring analysis stratified by non-overlapping bins of score risk alleles based on (a)
GWAS P-values and (b) minor allele frequencies
Variance explained was standardized by SNP counts for the respective bins.

Kos et al. Page 16

Genes Brain Behav. Author manuscript; available in PMC 2014 July 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 3. Variance explained by genome-wide scoring routines for observed and simulated
disease phenotypes according to MAF class
The variances explained, derived from MAF bins comprised of different score alleles, are
presented for six disease models for each study population. The models represent either 100,
1,000 or 5,000 causal variants, which were randomly drawn from SNP data excluded from
the original design of scoring routines, limited to either rare/uncommon markers (<5%
MAF) or common markers (>5% MAF). Each model was replicated 100 times. Disease
heritability was set at 0.65, with causal effect sizes fixed for all loci. Observed R2 results for
AD are given as black, dotted lines.
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Figure 4. Empirical P-values of four, top-ranking biological ontologies based on permuted
(1,000X) Fisher’s exact tests of gene enrichment in European- and African-American samples
Allele bins, delineated by genome-wide association P-values at cumulative increments of
0.05, were annotated for gene location using UCSC hg18 coordinates.
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Table 1

Descriptive statistics for COGA and SAGE data sets.

European-American African-American

COGA

Sample Size 1,274 457

Cases (Controls) 767 (507) 329 (128)

Males (Females) 676 (598) 245 (212)

Mean Age 41.17 yrs 39.87 yrs

SAGEa

Sample Size 1,573 841

Cases (Controls) 599 (974) 359 (482)

Males (Females) 616 (957) 389 (452)

Mean Age 35.71 yrs 39.59 yrs

COGA, Collaborative Study on Genetics of Alcoholism; SAGE, Study of Addiction: Genetics and Environment; yrs, years.

a
All COGA subjects were excluded to ensure independence between the two data sets.
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