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Rickettsia conorii, the causative agent of Mediterranean spotted fever, preferentially infects human

microvascular endothelium and activates pro-inflammatory innate immune responses as

evidenced by enhanced expression and secretion of cytokines and chemokines. Our recent

studies reveal that human microvascular endothelial cells (HMECs) infected with R. conorii also

launch ‘antiviral’ host defence mechanisms typically governed by type I interferons. To summarize,

infected HMECs secrete IFN-b to activate STAT1 in an autocrine/paracrine manner and display

increased expression of IFN-stimulated genes, for example ISG15, which in turn activate innate

responses to interfere with intracellular replication of rickettsiae. We now present evidence that

UBP43 and SOCS1, known negative regulators of JAK/STAT signalling, are also induced in R.

conorii-infected HMECs, of which UBP43 but not SOCS1 functions to negatively regulate

STAT1 activation. Interestingly, UBP43 induction is almost completely abolished in the presence

of IFN-b-neutralizing antibody, implicating an important role for UBP43 as a feedback inhibitor for

IFN-b-mediated STAT1 activation. In contrast, SOCS1 expression is only partially affected by

IFN-b neutralization, implicating potential involvement of as-yet-unidentified IFN-independent

mechanism(s) in SOCS1 induction during R. conorii infection. A number of IFN-stimulated genes,

including ISG15, OAS1, MX1, IRF1, IRF9 and TAP1 are also induced in an IFN-b-dependent

manner, whereas GBP1 remains unaffected by IFN-b neutralization. Increased STAT1

phosphorylation in HMECs subjected to UBP43 knockdown led to transcriptional activation of

OAS1, MX1 and GBP1, confirming the negative regulatory role of UBP43. Although IRF1, IRF9

and TAP1 were induced by IFN-b, siRNA-mediated silencing of UBP43 or SOCS1 did not

significantly affect their transcriptional activation. Expression of ISG15 was, however, increased in

HMECs transfected with siRNA for UBP43 and SOCS1. Thus, unique regulatory patterns of

induced expression of UBP43, SOCS1 and IFN-stimulated genes represent pathogen-specific

responses underlying IFN-b-mediated host endothelial signalling during the pathogenesis of

spotted fever group rickettsiosis.

INTRODUCTION

Rickettsia conorii, a Gram-negative, obligate intracellular a-

proteobacterium known to cause Mediterranean spotted

fever (MSF) in humans, represents one of the major

spotted fever group (SFG) Rickettsia species. Typically

transmitted to humans by infected ticks and characterized
by visible skin lesions termed ‘tache-noire’ at the bite site,
the disease symptoms include high fever, headache and
body rash (Raoult et al., 1986; Sousa et al., 2003). Although
MSF is traditionally considered a benign disease, significant
morbidity and mortality are evident among people exposed
to strains with higher levels of virulence and in cases with
delayed diagnosis due to non-specific, initial flu-likeAbbreviation: HEMC, human microvascular endothelial cell.
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symptoms and late intervention with doxycycline therapy.
As a prototypic member of SFG rickettsiae, R. conorii
preferentially infects the vascular endothelial monolayer
lining small and medium-sized blood vessels, causing
‘endothelial activation’ as well as injury (George et al.,
1993; Mansueto et al., 2012). Vascular endothelial cells
infected with R. conorii acquire a pro-adhesive and
pro-inflammatory phenotype characterized by increased
expression of surface adhesion molecules and secretion of
cytokines and chemokines such as interleukin (IL)-1a, IL-
6, IL-8, monocyte chemoattractant protein (MCP)-1 and
fractalkine (Kaplanski et al., 1995; Valbuena et al., 2003).
In addition, endothelial cells stimulated with interferon
(IFN)-c and tumour necrosis factor-a are capable of killing
intracellular R. conorii via nitric oxide-dependent mechan-
ism(s) (Walker et al., 1997) and mice lacking IFN-c exhibit
more than 100-fold greater susceptibility to infection with
Rickettsia australis (Walker et al., 2001).

Since their discovery, IFNs have generally been considered
as cytokines secreted by virus-infected cells to induce an
‘antiviral state’ in neighbouring host cells through auto-
crine/paracrine signalling mechanism(s). Among these, a
single IFN-b along with a number of IFN-a proteins are
classified as type I IFNs, which interfere with viral
replication by inducing host gene expression. Although
some of these target genes also display anti-bacterial
activity (Monroe et al., 2010), type I IFNs have tradition-
ally been assigned a relatively minor role and consequently
received much less attention in anti-bacterial host defence
mechanisms. Recently, we have reported on the expression
and secretion of IFN-b from cultured microvascular
endothelial cells and demonstrated an important role for
this type I IFN in modulating innate immune responses to
inhibit intracellular growth of R. conorii. Intriguingly, as a
component of the Janus kinase–signal transducer and
activator of transcription (JAK/STAT) signalling pathway,
phosphorylation/activation of transcription factor STAT1
primarily involves autocrine/paracrine effects of IFN-b and
is indispensable for IFN-b’s anti-rickettsial activity in
cultured human endothelium (Sahni et al., 2009; Colonne
et al., 2011a). Our findings further suggest that R. conorii
infection also induces the expression of an IFN-stimulated
gene of 15 kDa (ISG15) via IFN-b-dependent JAK/STAT
signalling in human endothelial cells. Moreover, intracel-
lular levels of free ISG15 as well as ISG15 conjugated to
other as yet unknown host cellular proteins are also increased
during infection and participate in protective innate immune
response by suppressing the intracellular rickettsial growth in
infected host cells (Colonne et al., 2011b).

Activation of JAK/STAT signalling by IFNs is tightly
regulated by specific negative regulators at multiple levels.
Three families of proteins known as phospho-tyrosine
phosphatases (PTPs), suppressors of cytokine signalling
(SOCS), and protein inhibitors of activated STAT (PIAS)
have been implicated in negative regulation of the JAK/
STAT signalling pathway. Specifically, members of the PTP
family proteins, namely SHP1 and SHP2, negatively

regulate IFN signalling by dephosphorylating activated
JAK1 and JAK2 proteins (Klingmüller et al., 1995; You
et al., 1999). SH2 domains of SOCS proteins, on the other
hand, inhibit IFN signalling by competing with STATs for
the receptor binding sites, inhibiting JAKs by direct
binding, or by targeting bound proteins for proteasomal
degradation (Kamizono et al., 2001; Kile et al., 2002).
SOCS1, a prototype member of the SOCS family, can
interact with different cellular proteins such as JAKs, IRAK
(interleukin-1-receptor-associated kinase) and NF-kB sub-
units p50/p65 to regulate a wide range of cellular functions,
including proliferation, differentiation, apoptosis and
immune responses in a cell-specific manner (Fujimoto &
Naka, 2010). Negative regulators belonging to the PIAS
family inhibit STAT-mediated gene activation. PIAS1 and
PIAS3 bind to STAT1 and STAT3, respectively, to inhibit
DNA-binding activity of phosphorylated STAT proteins
thereby inhibiting transcriptional activation of IFN-stimu-
lated genes (Chung et al., 1997; Liao et al., 2000). UBP43, a
ubiquitin-specific protease, has also been identified as a
negative regulator of type I IFN signalling. It associates
with IFN-a receptor 2 subunit (IFNAR2), preventing its
binding to JAK and thereby inhibiting downstream IFN-b
signalling cascades (Malakhova et al., 2006).

Subversion of JAK/STAT signalling through negative regula-
tory proteins has emerged as an important survival strategy
for intracellular microbes. As an example, influenza A and
herpes simplex viruses interfere with IFN signalling by
activating SOCS3 expression during host invasion (Pauli
et al., 2008; Yokota et al., 2004). Although R. conorii infection
augments IFN-b response during endothelial cell infection,
the status of negative regulators of the JAK/STAT pathway
remains completely unknown. To address this critical
regulatory aspect of IFN signalling, we have investigated
whether or not R. conorii infection alters the expression of
SOCS1 and UBP43 and further determined the effects of such
changes on IFN-b-dependent STAT1 activation and stimu-
lation of responsive downstream genes in human endothelial
cells. The presented results reveal that, although R. conorii
infection induces the expression of both SOCS1 and UBP43
in endothelium, IFN-b-dependent STAT1 activation is
selectively regulated by UBP43 but not SOCS1 protein.
Moreover, we have also identified a specific subset of IFN-
stimulated genes induced by R. conorii infection and evaluated
the inhibitory effects of UBP43 and SOCS1 on these IFN-
stimulated genes in R. conorii-infected endothelium.

METHODS

Cell culture and infection. Rickettsia conorii (Malish 7 strain) was

propagated in Vero cells and stocks prepared by density-gradient

centrifugation followed by plaque formation assay to estimate the
infectivity titres were kept frozen as aliquots. An immortalized line of

human dermal microvascular endothelial cells (HMEC-1) was grown

under sterile culture conditions in MCDB 131 medium (Gibco),

supplemented with FBS (10 % v/v; Aleken Biologicals), epidermal
growth factor (10 ng ml21; Becton Dickinson), hydrocortisone (1 mg

ml21; Sigma) and L-glutamine (10 mM; Gibco). At approximately
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80 % confluence, the monolayers of HMECs were infected with
66104 p.f.u. of R. conorii per cm2 of culture surface area according to
our established protocols (Sporn et al., 1997; Colonne et al., 2011a).
At 3 h post-infection, extracellular bacteria in the culture medium
were removed by aspiration and gentle washing and infected cells
were placed in fresh culture medium alone for the remaining duration
of incubation. This protocol consistently results in the infection of 80
to 90 % of cells with a mean of 3 to 4 rickettsiae per cell at 6 h post-
infection (Sporn et al., 1997; Rydkina et al., 2007; Colonne et al.,
2011a). In each experiment, the viability of both mock- and R.
conorii-infected host cells at different time points was ascertained
microscopically.

Cell treatment. To neutralize secreted IFN-b, culture medium was
supplemented with anti-human IFN-b antibody (10 mg ml21; R&D
Systems) immediately after 3 h infection. To inhibit the metabolic
activity of intracellular R. conorii, tetracycline (20 mg ml21; Sigma)
was added to the culture medium at 3 h post-infection. For
treatment, recombinant human IFN-b (10 ng ml21; PBL Interferon
Source) was added to the cell culture medium.

Small interfering RNAs for SOCS1 and UBP43. Specific ON-
TARGETplus smart pools of siRNA for SOCS1 and UBP43 along with a
control (scrambled) sequence were obtained from Thermo Scientific.
HMECs at 80 % confluence were transfected with SOCS1-specific,
UBP43-specific, or scrambled siRNAs (final concentration of 100 nM)
using Lipofectamine 2000 (Invitrogen) according to our published
protocols (Colonne et al., 2011a, b). After 6 h, transfection medium
was replaced with fresh culture medium and the cells were allowed to
recover for at least 12 h prior to infection with R. conorii.

Gene expression analysis by quantitative real-time PCR. Total
RNA isolated from mock- and R. conorii-infected endothelial cells
using TRI-Reagent (Molecular Research Center) was further purified
using an RNA purification kit (Qiagen) and quantified on a
Nanodrop spectrophotometer (ND-1000, Thermo Scientific).
Complementary DNA (cDNA) was then synthesized using the RT2

First Strand kit (Qiagen). Validated primers quantifying the
expression of SOCS1, UBP43, ISG15, OAS1, TAP1, MX1, GBP1,
IRF1, IRF9 and GAPDH were purchased from Qiagen. Quantitative
PCRs were performed in a MyiQ thermal cycler (Bio-Rad) with RT2

Real-time SYBR Green Master mix (Qiagen) according to the
manufacturer’s instructions. The levels of expression of target genes
were normalized to GAPDH and relative expression was calculated by
the DDCt method.

Western blot analysis. Monolayers of uninfected and R. conorii-
infected HMECs were washed with PBS and disrupted by scraping
and suspension in a cell lysis solution [Tris buffer (100 mM, pH 7.4),
supplemented with a mixture of protease and phosphatase inhibitors
and 0.2 % w/v SDS] followed by mild sonication. Total protein lysates
thus prepared were separated on a 10 % w/v polyacrylamide gel. The
proteins were then transferred onto a nitrocellulose membrane by wet
blotting at 100 V for 90 min. The blots were probed with primary
antibodies against pSTAT1 (Tyr701) and UBP43 (Cell Signaling
Technology) and a compatible HRP-linked secondary antibody for
chemiluminescence-based detection. To normalize for variations in
the loading of samples on different lanes, the blots from all
experiments were stripped and probed with a mouse anti-human a-
tubulin antibody (Accurate Chemical & Scientific Corporation),
followed by detection with an anti-mouse IgG-HRP (Santa Cruz).
Protein–antibody complexes were revealed using the Western
Lightning enhanced chemiluminescence detection system (PerkinElmer)
and exposure to X-ray film.

Densitometric and statistical analysis. Blots were scanned in
grayscale mode at a resolution of 600 d.p.i. Band intensities were

calculated using ImageJ software (version 1.42), normalized to the

housekeeping gene a-tubulin, and assigned values relative to the

corresponding uninfected control, which was given a value of 1 for

ease of comparison. All experiments were performed at least in

triplicate and statistical significance between control and experi-

mental conditions was evaluated by Student’s t-test. Results were

considered to be statistically significant at a threshold P-value of

¡0.05.

RESULTS

R. conorii infection induces SOCS1 and UBP43
expression in human endothelial cells

Human microvascular endothelial cells respond to R.
conorii infection in vitro by secreting IFN-b, which is
responsible for activating autocrine and/or paracrine
innate immune responses via transcriptional activation
of STAT1 to inhibit intracellular rickettsial replication
(Colonne et al., 2011a). Because negative regulators of the
JAK/STAT pathway represent an important arm of the
signalling network involved in the regulation of expression
of host IFN-responsive genes, we first determined which
specific players are induced in R. conorii-infected HMECs.
We found that expression of SOCS1 and UBP43, known
inhibitors of IFN signalling, was induced during rickettsial
infection (Fig. 1). UBP43 expression was significantly
higher during R. conorii infection in comparison with the
corresponding uninfected controls at 24 and 48 h, which
was followed by the peak level of response at 72 h and then
sustained through 96 h post-infection. SOCS1 expression,
on the other hand, displayed only minimal changes early
during the infection followed by significant increase of
about 3.5-fold at 72 h post-infection and a subsequent
decline to a mean of 2-fold induction at 96 h. These results
demonstrate induced expression of SOCS1 and UBP43 and
reveal clearly noticeable differences in the intensity and
kinetics of such responses during R. conorii infection of
host endothelial cells (Fig. 1a). Further, upregulation of
UBP43 expression was attributable to IFN-b produced and
secreted by endothelial cells since infection in the presence
of an antibody capable of neutralizing IFN-b completely
abolished this host cell response. This finding also implies
the dependence of cellular UBP43 induction during
infection predominantly on autocrine/paracrine effects of
IFN-b and rules this response out as a consequence of
pathogen invasion and/or intracellular replication (Fig.
1b). Interestingly, SOCS1 expression was only partially
inhibited at 72 h and completely attenuated by neutraliza-
tion of IFN-b at 96 h (Fig. 1c), implicating potential
contributions from IFN-b-independent transcriptional
activation mechanism(s), likely triggered by R. conorii
invasion and intracellular multiplication. To this end, we
further quantified the levels of SOCS1 mRNA expression in
cells treated with recombinant IFN-b alone in comparison
with those infected with R. conorii in the presence and
absence of tetracycline and an IFN-b neutralizing antibody.
As shown in Fig. 1d, SOCS1 expression during R. conorii
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infection was significantly higher than in HMECs subjected
to IFN-b treatment alone and neutralization of IFN-b
yielded only partial inhibition of SOCS1 expression in
infected cells. Also, inhibition of rickettsial metabolic
activity by tetracycline treatment completely attenuated
SOCS1 expression, indicating that infection with viable
intracellular rickettsiae is essential for SOCS1 induction.
Taken together, these data suggest that R. conorii infection
induces the expression of SOCS1 and UBP43, known
negative regulators of IFN signalling, in host HMECs.

Inhibitory effect of UBP43, but not SOCS1, on R.
conorii-induced STAT1 activation

Since both UBP43 and SOCS1 have been implicated in the

negative regulation of the STAT1 activation response, we

next investigated whether IFN-b-dependent STAT1 phos-

phorylation during R. conorii infection of HMECs is

regulated by SOCS1 or UBP43. To investigate this, we

utilized the RNA interference approach to transiently
knockdown the expression of UBP43 or SOCS1 in HMECs
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Fig. 1. R. conorii infection induces SOCS1 and UBP43 expression in human microvascular endothelial cells. (a) Time-course
analysis of SOCS1 and UBP43 expression during R. conorii infection. The levels of SOCS1 and UBP43 expression were
determined relative to the housekeeping gene GAPDH by quantitative RT-PCR. (b) Inclusion of an IFN-b-neutralizing antibody
during R. conorii infection inhibits UBP43 expression in HMECs. Infection was carried out in the absence (Rc) or presence of
an antibody capable of neutralizing soluble IFN-b (Rc+anti-IFN-b) in comparison with the corresponding uninfected cells
(Con). (c) Partial dependence of SOCS1 expression on R. conorii-induced IFN-b at 72 and 96 h post-infection. SOCS1
expression was determined in RNA preparations from uninfected (Con) and R. conorii-infected (Rc) HMECs and those infected
in the presence of an IFN-b-neutralizing antibody (Rc+anti-IFN-b) as mentioned above. (d) Further analysis of IFN-b-
independent expression of SOCS1. The expression of SOCS1 transcript was quantified in HMECs subjected to the following
experimental conditions: uninfected/untreated (Control), recombinant human IFN-b-treated (Control+IFN-b), R. conorii-

infected (Rc), infection in the presence of an anti-IFN-b antibody (Rc+anti-IFN-b) and infection in the presence of tetracycline
as described in Methods (Rc+TC). The datasets represent the mean±SE of the mean from a minimum of three independent
experiments performed in duplicate.
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prior to infection with R. conorii. As expected, infection
stimulated the expression of both SOCS1 and UBP43 by a
mean of 3- and 5-fold, respectively, in HMECs transfected
with a scrambled siRNA sequence used as a negative
control. Also, transcriptional activation of both of these
genes following infection was significantly inhibited in
HMECs subjected to introduction of specific ON-target
siRNA for SOCS1 (Fig. 2a) and UBP43 (Fig. 2b),
respectively. Interestingly, siRNA-mediated knockdown of
SOCS1 did not have a significant impact on the

transcriptional activation of UBP43, but HMECs trans-
fected with UBP43-specific siRNA and subsequently
infected with R. conorii had significantly higher levels of
SOCS1 expression (Fig. 2a, b). Although analysis of protein
expression further ascertained that SOCS1 knockdown did
not adversely affect the expression of both full-length
protein as well as a truncated isoform (splice variant) of
UBP43 in infected endothelial cells (Fig. 2c), we were not
able to determine the levels of SOCS1 protein by Western
blotting owing to relatively very low abundance in HMECs.
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R. conorii infection resulted in the stimulation of STAT1
Tyr701 phosphorylation in HMECs transfected with both
scrambled sequence (control) and SOCS1-specific siRNA,
the intensity of which was not significantly different (Fig.
2c). Thus, interference with SOCS1 expression did not
affect the status of STAT1 phosphorylation, indicating that
IFN-b-dependent STAT1 activation due to R. conorii
infection is not regulated by SOCS1. In contrast, depletion
of UBP43 led to the potentiation of STAT1 phosphoryla-
tion and this response was completely blocked by the
presence of IFN-b-neutralizing antibody in the culture
medium. Together, these data show that UBP43, but not
SOCS1, functions as a feedback inhibitor to regulate IFN-
b-dependent STAT1 activation in infected endothelium.

Transcriptional activation of IFN-stimulated
genes in R. conorii-infected endothelium

Previous studies from our laboratory have shown that
secreted IFN-b from R. conorii-infected HMECs induces an
IFN-stimulated gene ISG15 to activate innate host defence
to inhibit intracellular growth of the pathogen (Colonne
et.al, 2011b). Using quantitative PCR, we have further
identified a series of IFN-stimulated genes whose mRNA
expression is significantly upregulated in endothelial cells
infected with R. conorii. As shown, transcriptional
activation of IFN regulatory factor-1 (IRF1), IRF9,
transporter of antigen peptides-1 (TAP1), myxovirus
resistance protein (MX1) and oligoadenylate synthetase-1
(OAS1) was clearly evident and occurred in an IFN-b-
dependent manner, because presence of an antibody
capable of neutralizing the activity of IFN-b effectively
curtailed the expression of these genes (Fig. 3a–e). IFN-b
neutralization, however, did not have an effect on the
induction of guanylate binding protein-1 (GBP1) (Fig. 3f).

Role of SOCS1 and UBP43 in regulating IFN-
stimulated genes in R. conorii-infected HMECs

Because expression of IFN-stimulated downstream genes
during inflammatory and microbial insults is subject to
tight regulatory control in order to prevent severe
immunopathology and damage to the host cells and our
findings suggest increased expression of UBP43 and SOCS1
during R. conorii infection of HMECs, we reasoned that
UBP43 and SOCS1 may have an important role in the
regulation of transcriptional activation of IFN-stimulated
genes. Therefore, HMECs transfected with either UBP43 or
SOCS-1-specific siRNA along with a control scrambled
sequence were infected with R. conorii prior to the analysis
of expression of IFN-stimulated genes. As expected, R.
conorii infection induced the expression of GBP1, OAS1,
MX1, ISG15, IRF1, IRF9 and TAP1 in cells transfected with
control siRNA (Figs 4 and 5). Further, siRNA-mediated
knockdown of UBP43 led to significant increase in the
expression of GBP1, OAS1 and MX1, whereas SOCS1
knockdown had no significant effect on these genes (Fig.
4a–c). ISG15 expression during infection was, however,

induced further in host cells subjected to UBP43 as well as
SOCS1 siRNA, although the effect was much more
pronounced with the knockdown of UBP43 as compared
with SOCS1 (Fig. 4d). On the other hand, the expression of
IRF1, IRF9 and TAP1 was not significantly affected by
silencing the expression of either SOCS1 or UBP43 (Fig. 5).
These results thus suggest that UBP43 and SOCS1 not only
are induced in response to R. conorii infection, but also
selectively regulate the expression of specific IFN-stimu-
lated genes in microvascular endothelial cells.

DISCUSSION

We have recently demonstrated the activation of host cell
JAK/STAT signalling and an essential role for IFN-b, a type
I IFN, in STAT1-mediated interference with intracellular
replication of R. conorii in vascular endothelial cells in vitro
(Sahni et al., 2009; Colonne et al., 2011a). Signalling
mechanisms downstream of JAKs and STATs are con-
trolled at many steps through a variety of distinct
mechanisms, including key negative regulators such as
the suppressor of cytokine signalling (SOCS) proteins.
Microbial pathogens are known to subvert and subterfuge
IFN-governed innate immune responses of the host via
modulation of negative regulators of the JAK/STAT
pathway, yet the potential importance of such mediators
in determining IFN-b-mediated responses during host cell
interactions with pathogenic Rickettsia species is not at all
understood. In the present study, we have identified
increased expression of UBP43 and SOCS1, proteins
implicated in the feedback inhibitory loop of the JAK/
STAT signalling pathway, during R. conorii infection of
HMECs and report on their selective involvement in the
regulation of downstream IFN-b-responsive genes.

UBP43, a member of the family of ubiquitin isopeptidases,
specifically cleaves a ubiquitin-like molecule ISG15, which
is induced by stress signals such as type I IFNs and viral
infections and associates with other cellular proteins to
form ISGylated complexes. Documented evidence suggests
that UBP43 negatively regulates IFN signalling by blocking
interactions between JAK kinase and the IFNAR2 receptor
subunit, thereby interfering with STAT1 activation
(Malakhova et al., 2006). Our findings are in agreement
with such a role for UBP43, because neutralization of IFN-
b during R. conorii infection results in complete attenu-
ation of UBP43 induction, indicating that UBP43 likely
functions as a feedback inhibitory mechanism to regulate
STAT1 activation. Silencing of UBP43 expression also
results in even stronger STAT1 phosphorylation in infected
cells, yielding further support to the notion that activation
of STAT1 is negatively regulated by UBP43. In addition to
its role as an inhibitor for IFN signalling, UBP43 catalyses
the deISGylation reaction by cleaving ISG15–protein
complexes and in doing so regulates the extent of cytosolic
protein ISGylation (Malakhov et al., 2002). Thus, UBP43
maintains the delicate cellular equilibrium between free
cytosolic ISG15 and ISG15–protein conjugates, which are
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strongly increased after IFN stimulation. We have also

demonstrated that isopeptidase activity of UBP43 leads to

increased accumulation of ISG15–protein complexes in

endothelial cells subjected to RNA interference during

rickettsial infection and accumulation of free ISG15 and/or

proteins conjugated to ISG15 exerts inhibitory effects on

R. conorii replication (Colonne et al., 2011b). Therefore,

UBP43 apparently performs a dual role as an ISG15

protease as well as a negative regulator for IFN-b signalling
in R. conorii-infected host endothelium.

SOCS1 is one of the major prototypical proteins belonging

to the suppressor of cytokine signalling family. It binds to

JAK proteins via an SH2 domain and blocks the phosphor-

ylation of STAT1, preventing its dimerization and nuclear

translocation, a critically important step for IFN signalling
(Dai et al., 2006; Qin et al., 2006). Intracellular pathogens

specifically induce SOCS proteins during host invasion to
antagonize IFN signalling, leading to the dampening of
immune responses. For instance, hepatitis C virus infection
has been shown to induce SOCS1 and SOCS3 expression,
resulting in the inhibition of STAT1 and STAT3 phosphor-
ylation and subsequent interference with T-cell functions
(Yao et al., 2005). Our findings clearly demonstrate that R.
conorii-infected endothelial cells display increased SOCS1
transcription and, interestingly, only partial inhibition of
SOCS1 expression following IFN-b neutralization. It is well
established that the promoter region of the SOCS1 gene
contains putative STAT1 binding sites (Naka et al., 1997;
Saito et al., 2000). Therefore, activated STAT1 apparently
contributes to only partial induction of SOCS1 expression.
This may further explain the increased transcriptional
activation of SOCS1 in cells experiencing UBP43 knock-
down because UBP43 depletion strongly increased STAT1
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phosphorylation in infected cells. It is also possible that
induced SOCS1 expression is a component of rickettsial
strategy to subdue and subvert IFN signalling in host
endothelium and that the levels of accumulation of SOCS1
in infected host cells may correlate with the virulence
potential of the invading pathogen and the severity of
resulting disease. Although the magnitude of SOCS1
induction independent of IFN-b is about two-fold, it is
expected to have significant implications since SOCS
proteins are potent, tightly regulated inhibitors known for
their capacity to exert biological effects even in relatively
small quantities (Chen et al., 2000). Considering that
interference with SOCS1 yields no adverse effect on
STAT1 phosphorylation, it apparently functions through a
mechanism independent of inhibitory feedback regulation
of STAT1 activation. SOCS1 may, however, negatively
regulate a specific subset of host genes, for example ISG15,

via other mechanism(s) independent of direct inhibition
of IFN-b signalling in R. conorii-infected endothelium.
Another important consideration in this context is that anti-
rickettsial host responses activated by IFN-c may also be
adversely affected because SOCS1 is capable of inhibiting
IFN-c mediated immune responses (Alexander et al., 1999),
which have been implicated in rickettsial clearance in vivo
(Walker et al., 2001). Therefore, further detailed studies are
currently being performed to investigate the potential
impact of SOCS1 induction on the host immune responses
and rickettsial replication in both in vitro and in vivo murine
models relevant to the pathogenesis of human rickettsiosis.
Also, the identity of pathogen-associated molecular patterns
or rickettsial effectors responsible for the induction and/or
subversion of host cell signalling mechanisms is the subject
of further detailed investigations in our laboratory.
Production of IFN-b and expression of downstream genes
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by host endothelium likely constitutes an essential first line
of defence against invading and intracellular rickettsiae and
offer a unique strategic opportunity to identify potential
rickettsial effectors and/or pathogen recognition mechan-
isms involved in switching on the upstream signalling
mechanisms leading to such responses.

In addition to UBP43 and SOCS1, this study also identifies
transcriptional activation of OAS1, IRF1, IRF9, MX1 and
TAP1, and provides evidence for the dependence of these
genes on IFN-b production and resultant autocrine/
paracrine signalling from infected cells. Expression of
GBP1, on the other hand, seems to occur independently of
the host IFN-b signalling as the presence of IFN-b-
neutralizing antibody during the infection has no effect
on its expression. GBP1 is an IFN-c-inducible gene known
for antimicrobial effects against intracellular bacteria, for
example Chlamydia and Listeria infections (Tietzel et al.,
2009; Kim et al., 2011). However, it can also be induced by
type I IFNs, IL-1b and TNF (Decker et al., 1991; Guenzi

et al., 2001, 2003). Although the detailed molecular
mechanism of this activation is not yet established, IFN-b

may indirectly regulate endothelial GBP1 activation,
possibly via activated STAT1, because GBP1 expression
displays significant increase after UBP43 knockdown,
which is associated with increased STAT1 phosphorylation.
Nevertheless, the potential involvement of GBP1 in anti-
rickettsial activity has not been explored and requires
detailed investigation.

Among other IFN-stimulated genes, OAS1 activates latent
RNase, which degrades viral RNA, thereby inhibiting viral
replication (Coccia et al., 1990; Lin et al., 2009). So far,
there is no published evidence to suggest that OAS1 has
anti-bacterial functions. Therefore, some of the IFN-
stimulated genes may simply represent a somewhat
generalized response to IFN-b, instead of specific cellular
responses of the host to intracellular rickettsiae. Another
downstream gene, MX1, codes for a member of the large
GTPase family of proteins, which is mainly induced by
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IFNa/b during viral infections (Staeheli et al., 1986; Grimm
et al., 2007). However, the exact mechanisms of MX1
protein function also remain largely unknown. In our
system, the expression of both OAS1 and MX1 was
negatively regulated by UBP43 but not by SOCS1, because
increased STAT1 activation due to UBP43 interference
enhances transcriptional activation of both OAS1 and MX1
genes. TAP1 facilitates translocation of peptides from
cytosol into endoplasmic reticulum and participates in the
expression of MHC class I molecules on the cell surface and
antigen presentation to cytotoxic T lymphocytes during
microbial infections (Van Kaer et al., 1992; de la Salle et al.,
1994). Interestingly, the TAP1 gene can be induced by both
IFN-c and IFN-b via formation of STAT1 homodimers,
which bind to GAS elements on the gene promoter (Min
et al., 1998).

Initially characterized for its role in the transcriptional
activation of type I IFN genes, IRF1 acts as a transcription
factor by binding to the IFN-b gene promoter to regulate its
transcription and that of several other downstream IFN-
stimulated genes implicated in promoting anti-bacterial and
antiviral innate immunity (Miyamoto et al., 1988; Harada
et al., 1989). As another key transcription factor, IRF9,
associates with phosphorylated STAT1/STAT2 heterodimers
to form the ISGF3 complex, which translocates to the
nucleus and binds to regulatory IFN-stimulated response
elements (ISREs) to induce the expression of specific IFN-
stimulated genes (Levy et al., 1989; Fu et al., 1992). We find
that although IRF1, IRF9 and TAP1 are induced during R.
conorii infection in an IFN-b dependent manner, the
expression of these genes is refractory to interference with
UBP43 or SOCS1 response. Thus, R. conorii-induced STAT1
activation is apparently sufficient to trigger the expression of
IRF1, IRF9 and TAP1 genes, and potentiation of STAT1
phosphorylation as a consequence of UBP43 knockdown
essentially has no effect on their transcriptional activation.
On the contrary, ISG15 is negatively regulated by both
SOCS1 and UBP43. Since ISG15 is a STAT1-dependent
gene, increased STAT1 activation following UBP43 knock-
down could trigger a strong transcriptional activation of
ISG15 expression. Importantly, ISG15 represents the only
IFN-stimulated gene identified in this study to be regulated
by SOCS1, as evidenced by significant increase in its
expression in cells subjected to SOCS1 knockdown. Since
STAT1 activation remains unaffected by SOCS1 interfer-
ence, the inhibitory effects of SOCS1 on ISG15 expression
may be attributed to other as-yet-unidentified STAT1-
independent mechanism(s).

To summarize, distinct patterns of the regulation of IFN-
stimulated genes by SOCS1 and UBP43 may represent host
cell-specific mechanisms of innate immune responses
against Rickettsia infection. Elucidation of the roles of these
newly identified IFN-stimulated genes and their negative
regulators in anti-rickettsial host defence is an important
area of future scientific enquiry. Considering the emergence
of severe forms/strains of R. conorii with fatal outcomes
despite treatment with antibiotics, understanding the

pathogen-induced regulation of IFN signalling is expected
to provide new insights into novel virulence mechanisms
exploited by infectious rickettsiae during the onset and
progression of resultant clinical syndromes.
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