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Abstract
The life of plasmids is a constant battle against fluctuations: failing to correct copy number
fluctuations can increase the plasmid loss rate by many orders of magnitude, as can a failure to
more evenly divide the copies between daughters at cell division. Plasmids are therefore long-
standing model systems for stochastic processes in cells, much thanks to the efforts of Kurt
Nordström to whose memory this issue is dedicated. Here we analyze a range of experimental
methods for measuring plasmid copy numbers in single cells, focusing on challenges, trade-offs
and necessary experimental controls. In particular we analyze published and unpublished
strategies to infer copy numbers from expression of plasmid-encoded reporters, direct labeling of
plasmids with fluorescent probes or DNA binding proteins fused to fluorescent reporters, PCR
based methods applied to single cell lysates, and plasmid-specific replication arrest. We conclude
that no method currently exists to measure plasmid copy numbers in single cells, and that most
methods instead inadvertently measure various types of experimental noise. We also discuss how
accurate methods can be developed.
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1. Introduction
The control of plasmid replication and partitioning have been closely studied in the last few
decades, producing detailed molecular interaction maps and quantitative dynamic
descriptions for a wide range of plasmids. Many conclusions were extracted from cleverly
designed bulk experiments, inferring mechanistic aspects of control despite only observing
the average behavior across a population. However, several important questions are
impossible to address at the level of averages. For example, the presumed evolutionary
driving force behind plasmid replication control is to correct random fluctuations in copy
numbers and thereby reduce the plasmid loss rates – sometimes by several orders of
magnitude (Nordström, Molin, & Light, 1984). Fluctuations can for example be caused by
random segregation, inherently stochastic expression of control molecules, or variations in
the concentrations of chaperones, polymerases, ribosomes that all indirectly affect the
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initiation of replication. The optimal design of self-control then depends on the magnitude
and time-scales of these various sources of fluctuations. For example, if the greatest threat to
maintaining narrow plasmid distributions comes from slowly meandering changes in the
intracellular environment, self-correcting feedback is not so dependent on rapid turnover of
control molecules but very dependent on highly cooperative self-inhibition mechanisms
(Lestas, Vinnicombe, & Paulsson, 2010). If plasmid fluctuations come from stochastic
expression of control molecules, highly cooperative self-inhibition mechanisms by contrast
destabilize control and create wider distributions. To understand the logic of the control
circuits we must thus consider single cell dynamics – accounting for the control of
deviations using a framework that exposes those deviations. The same is true for partitioning
mechanisms at cell division that produce more even segregation and thereby reduce the risk
that all copies by chance end up in the same daughter: without measuring fluctuations in
single cells it is impossible to know what challenges partitioning mechanisms face, how well
they perform, or how various mechanistic aspects improve performance. Such analyses
currently draw on the rate of plasmid loss from plasmid-containing cells, but loss rates are
exceedingly difficult to interpret because they depend sensitively on average copy numbers,
the width of distributions, and the partitioning statistics.

The last decade has seen an explosion of interest in stochastic processes in single cells,
mainly thanks to the availability of new experimental techniques. Many of the most
commonly used models and concepts currently in circulation were in fact first introduced in
the context of plasmid biology. Despite this broad interest in stochastic effects and the
specific interest in plasmids, there are currently no methods to accurately count plasmid
copies in single cells, let alone correlating fluctuations in plasmid copy numbers with
plasmid expressed control molecules. Here we describe our long-term efforts to determine
plasmid copy number distributions. This work traces back to Kurt Nordström – to whom this
issue is dedicated – in many ways. To our knowledge Kurt was the first to model the
connection between plasmid heterogeneity and the underlying stochastic mechanisms,
including negative feedback loops and stochastic partitioning at cell division (Nordström,
Molin, & Light, 1984). Kurt also recognized early on that many quantitative plasmid
experiments, for example to determine the mode of partitioning at cell division, would be
confounded by plasmid distribution effects. One of us (J.P.) can also thank Kurt personally
for this research direction, which began with Kurt’s lecture on plasmid copy number control
in a course on stochastic processes given by Måns Ehrenberg in 1993. My first scientific
meeting with Kurt in turn focused on the role of negative experimental results, where I
argued against them on principle and Kurt patiently insisted that, from a practical point of
view, a careful negative result can be almost as useful as a positive result. Here we have
taken his words to the extreme and summarize a decade of our own negative experimental
results (read failures) to measure reliably plasmid copy numbers in individual cells.

Failing to establish seemingly reasonable experimental protocols can reflect an inability to
do the experiments correctly, an ability to include the appropriate controls, or a lethal
combination of the two. Distinguishing between these problems is difficult, so rather than
presenting all details we focus on the principles and trade-offs we positively identified in
this process. This paper is thus not intended as a review but rather as an analysis motivated
by a large number of unpublished experiments. First we discuss previously published
approaches to measure plasmid distributions, all of which explicitly acknowledged that
measurement errors dominated over the natural fluctuations, and show how challenging such
experiments are, regardless of how they are implemented. We then discuss other approaches
that have not been published but that appear appropriate for counting plasmids in cells.
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2. Methods for measuring plasmid copy numbers in single cells
In this section we analyze potential methods for measuring plasmid copy numbers
distributions, including inferring copy numbers from plasmid expressed reporter proteins,
tagging plasmids in cells and running qPCR or digital PCR for single cell lysates. We
discuss the advantages and disadvantages of each method, the challenges that must be
overcome to make them quantitative, and the controls required to demonstrate that a method
works.

2.1 Monitoring plasmid expressed protein in single cells
Published methods—To our knowledge the only published attempts to estimate the
number of plasmid copies per cell used expression of a plasmid-encoded fluorescent protein
(FP) and measurement of the total fluorescence intensity per cell. Cells with twice the copy
number should then have twice the fluorescence, and the shape of the protein distribution
was argued to reflect the shape of the underlying plasmid distribution.

Anders Løbner-Olesen published the first attempt to use this approach to measure plasmid
copy numbers distributions more than a decade ago (Løbner-Olesen, 1999). He recognized
that for stable proteins, the current protein level reflects the whole history of changes in gene
dosage, with on average half of the proteins made one generation ago. As plasmids fluctuate
over time, the levels of the encoded proteins would thus smooth out the upstream plasmid
heterogeneity and make it seem smaller than it actually is. He therefore induced FP
expression for 25% of a cell cycle, harvested the cells, blocked further expression and
waited for the fluorophores to mature before measuring the fluorescence per cell in a flow
cytometer. Since the plasmid copy number changes in discrete steps, a well working method
would produce equidistant peaks in the intensity distribution corresponding to integer
plasmid copy numbers, at least for low copy plasmids such as F or R1. Such peaks were
indeed observed for the chromosomally expressed FP, but not for plasmids. In fact, all
plasmids in this study – with widely different average copy numbers, partitioning systems,
and replication control – displayed very similar and smooth fluorescence distributions. The
problem is partly that the approach measures the total superimposed variation from
numerous different molecular sources, some related to plasmid partitioning and replication,
others to stochastic gene expression or protein partitioning at cell division, and yet others
from considering unsynchronized cells. The study also demonstrated a linear relationship
between the average fluorescence and the induction period, but not a strict proportionality:
there was a high level of fluorescence even before induction, suggesting leaky promoters. In
summary the study concluded that the method at best could detect two-fold differences in
plasmid copy numbers at the single cell level, and it was primarily used for demonstrating
the great increase in fluctuations for replicators with impaired copy number control.

A decade later, Wong et al (Wong Ng, Chatenay, Robert, & Piorer, 2010) tried a similar
approach using a different type of flow cytometry, which is more suitable for bacterial work,
but induced FP production for almost two cell cycles. They similarly failed to see discrete
peaks in the intensity histogram and instead attempted to indirectly infer the variance of the
underlying plasmid distribution by comparing it to the variance observed for chromosomally
expressed FPs. The problem is that the variation from each noise source is amplified or
dampened depending on the exact dynamics of the system, which would distort the
underlying distribution in different ways because plasmids and chromsomes control their
own replication in different ways. Here we summarize what we believe are the key trade-
offs and challenges that any such method must overcome. We focus on FPs for simplicity,
but the arguments apply also to other reporter systems.
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Expression reporters can both exaggerate and underestimate the underlying
fluctuations—Fluctuating levels of ribosomes and RNA polymerases can affect the
expression of all genes in a cell, fluctuations in specific transcription factors or RNases
affect groups of genes, and the probabilistic nature of individual synthesis and degradation
events of mRNAs and proteins affect each gene separately. The average rate of protein
production may thus accurately reflect the average plasmid copy number, but the
heterogeneity in expression rates in individual cells also reflects spontaneous noise in
transcription, changes in gene activity, transcription factors, polymerases, RNases, and
ribosomes. In fact, just as gene expression has been used as a tool in studies focusing on
plasmid copy numbers, plasmids are often used as tools to study stochastic gene expression
(Becskei & Serrano, 2000). Such assays may thus greatly overestimate plasmid fluctuations
by mistaking gene expression noise for plasmid noise.

The slow dynamics of FP levels also distort the underlying fluctuations. Imagine that at
some time point there is a perfect correlation between plasmid copy numbers and the levels
of a plasmid-expressed protein in single cells. When plasmids replicate, the rates of
transcription and translation may soon increase by the same factor, but the actual level of the
protein will lag behind, and only asymptotically adjust to the new plasmid level with a time
constant set by the total rate of protein degradation and dilution. For stable proteins it would
take several generations before the protein has adjusted to its new level. However, on that
time scale plasmids replicate several times. Before protein levels reach their new quasi
steady state, plasmids will thus have changed again. As a consequence, even if there were no
other sources of heterogeneity, measuring the total fluorescence intensity of continuously
expressed stable fluorescent protein will not accurately reflect fluctuations in the plasmid
copy number, but rather some average over the history of the last few cell generations.

Then at cell division, the plasmids and the FPs are partitioned between the two daughters,
with statistical errors that depend on abundances and partitioning mechanisms, but without
any expected correlation between plasmids and proteins. For example, if the FPs are present
in high numbers they are expected to partition more or less symmetrically between the two
daughter cells, while plasmids can display substantial partitioning errors depending on
clustering, partitioning systems and copy number. Again the protein level will adjust
towards the post-division plasmid level, but too slowly to track the plasmid level without
substantial errors. The FP levels are thus in a constant chase after the plasmid, but always
lagging behind, which means that, overall, FPs can greatly underestimate actual plasmid
fluctuations by time-averaging.

Reducing the problem of dampening increases the problem of expression
noise—There are several potential solutions to the time-averaging problem, for example
adding a degradation tag to the FP so that it adjusts more quickly to changing plasmid copy
numbers, or placing the FP under an inducible promoter and inducing expression for a short
time period. In both cases, short-lived FPs may not accumulate enough molecules to be
reliably imaged, though this might be solved by using microscopy rather than FACS
measurements. Slow fluorophore maturation also becomes a greater problem in both cases,
but can in principle be solved by harvesting the cells, blocking further expression, and
imaging cells after maturation has completed. However, both approaches also introduce
other sources of heterogeneity: proteins that are actively degraded become susceptible to
fluctuations in protease levels, while using inducible genes exposes proteins to ‘operator
noise’ where some genes may be on when most are off and vice versa.

Another alternative is the use time-lapse microscopy to measure protein accumulation rates
from time series, or to effectively erase the FP history by bleaching all existing fluorescent
molecules. However, there is still a trade-off that cannot be resolved by any such method:
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the goal is to prevent the protein from time-averaging out plasmid fluctuations, but that
automatically prevents the protein from averaging out other sources of heterogeneity.
Proteins that better track plasmids will thus also better track changes in for example mRNA
levels, which increases the FP noise and masks real plasmid fluctuations. The noise
contribution from the mRNA to the FP is indeed expected to be fairly small for stable
proteins, but very large when considering the rate of making proteins, or the abundance of
an unstable protein. Depending on the various sources of expression noise, there is thus a
hard trade-off between reducing the problem of time-averaging and reducing the problem of
expression noise, which could be an inherently unworkable trade-off.

Variances cannot be mathematically inferred without knowing the full
dynamics of the system—A principally different solution to this problem is to attempt
to infer the sources of heterogeneity by also tracking the expression of chromosomal genes
in single cells (Wong Ng, Chatenay, Robert, & Piorer, 2010), ideally expressing a spectrally
distinct FP in the same cells. The assumption is then that the noise in gene expression has
similar dynamics for the chromosomal and plasmid genes, so that mathematical analysis can
be used to back out the contribution from the plasmid. However, the analysis relies on
unproven (and unlikely) assumptions about stochastic processes in cells. In fact, because
plasmids and chromosomes have different replication control, the gene dosage should
change with different dynamics, which in turn means that the time-averaging process is
quantitatively different. That was in fact observed in the Løbner-Olesen experiment, where
chromosomally expressed fluorescent proteins showed a multi-peaked distribution
corresponding to the number of gene copies in individual cells, while even F plasmids with
similar average gene dosage displayed single-peak distributions. We thus know that the
processes are not equivalent in this way, and cannot assume that they are similar to infer the
noise mathematically. Heavily relying on mathematically untested assumptions to infer the
noise is then not all that different from the many studies that model the noise based on what
is known about the control mechanisms. In a later paper partly from the same group
(Ghozzi, Wong Ng, Chatenay, & Robert, 2010) they introduce the mathematical model used
for estimating single cell plasmid copy numbers from data. They show that even if the
assumptions were trusted they can only identify a broad interval of estimated variances, and
thus only demonstrate consistency with the Løbner-Olesen paper, which is perhaps not so
surprising since they use a similar method. Furthermore, the dual reporter method – where
correlations between two reporters are used to track the origin of fluctuations – does not
even work quantitatively in most linear systems where the reporters are identical and
independent (Hilfinger & Paulsson, 2011) and much more extensive and rigorous multi-
reporter systems would have to be designed to separate the various noise contributions.

Over the last five years, we have also tried many versions of these FP-expression approaches
– moving to high-throughput microscopy, actively degrading or bleaching the fluorescent
protein, measuring correlations between reporters etc. In each case controls showed that the
distributions so obtained did not reflect the actual plasmid copy numbers. We still hope that
some version of this method will work, by using better FPs as well as growth conditions in
which we expect less noise in other components that affect expression rates.

2.2 Direct plasmid visualization
The conceptually most straightforward method of counting plasmids in cells is to
fluorescently tag plasmid DNA and visually count spots. If this could be done in live cells, it
would provide information not only about copy number distributions, but the full spatial and
temporal dynamics: which plasmid copy replicates when and where. The challenge is that
most plasmids naturally co-localize into diffraction-limited spots. A single spot in a
conventional microscope image may then correspond to anything from a single plasmid
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copy to tens of copies. Super-resolution microscopy techniques (Huang, Bates, & Zhuang,
2009) can in principle resolve objects as close as ten nanometers apart, but require bacterial
cells to be fixed to repeatedly image a small fraction of photoactivatable fluorophores, and
eventually pin point each light source by fitting distributions. As of yet it has not been used
to reliably count molecules, and it is not known how closely plasmid copies co-localize
within each diffraction limited spot. Another approach to deal with co-localization is using
methods to quantify the total intensity of each spots to infer the number of copies. Here we
discuss two visualization approaches and their associated problems: FISH and arrays of
binding sites for fluorescently tagged DNA binding protein.

2.2.1 FISH—The standard method for visualizing polynucleic acids in cells is fluorescence
in situ hybridization (FISH), where target sequences are specifically bound to labeled single-
strand DNA probes. After fixing, hybridizing, and washing cells, labeled probes should
ideally bind all the designated target molecules (no false negatives) and nowhere else (no
false positives). However, given that the non-specific targets – not just DNA and RNA, but
also other hydrogen bond donors – greatly outnumber the specific ones, the energetic
differences between fully matched and mismatched interactions may be insufficient for
accurate counting. There are many approaches to reduce the rate of false positives, such as
increasing temperature, but they instead often increase the rate of false negatives. This trade-
off between selective and quantitative binding is well studied in the context of micro-arrays
where there are less competing interactions and more freedom to control relevant
parameters. The same problem may be much more challenging to address in situ where the
main strategy has been to carefully design primers.

One primer strategy that has been used for RNA is to design tens of small probes against
each transcript (Raj, Peskin, Tranchina, Vargas, & Tyagi, 2006), thereby increasing the
chance that multiple probes bind, while at the same time making sure that non-specific
binding produces much lower fluorescence intensity. This method is useful for spatially
separated targets, which is often the case in mammalian cells, since it greatly increases the
intensity of a spot relative to the cytoplasmic background level.

However, when molecules are not spatially separated beyond the diffraction limit, as in the
case of many plasmids, the number of spots does not represent the number of plasmids.
Because quantitative super-resolution microscopy is not yet available for FISH, and we do
not know how close the plasmid copies are, the intensity of each spot must then be
quantified. The quantification can in turn be established in two ways: ideally the histogram
of intensities per spot should display equidistant peaks corresponding to the integer number
of molecules per spot, or a separate control experiment with single plasmid copies should
show a relative standard deviation in intensity that is much smaller than the fold difference
between the copy numbers that are being separated. This has so far not been possible,
presumably due to heterogeneity in binding: when using a large number of probes it is
practically impossible to evaluate the efficiency of each one, and the probe cocktail may
thus contain several probes that bind poorly or non-specifically.

The other extreme FISH strategy is to use a single but highly optimized probe. No non-
specific binding events are then allowed since they would be inseparable from the real
events. However, since all spots would have the same expected intensity, it is also
impossible to use the binding profile to test if the binding has gone to completion. Such
strategies must therefore be accompanied by careful controls for example showing that the
number of spots observed is insensitive to the probe concentration used.

An intermediate strategy, that was developed by Robert Singer’s group in the first
quantitative FISH studies for RNA counting (Zenklusen & Singer, 2010), is to use a handful
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of probes against each target, and attach many fluorophores per probe. These probes are
currently more expensive commercially and the total spot intensity is often lower than in the
multi-probe FISH method above. However, having multiple fluorophores per probe makes it
possible to separate between one and two probes using quantitative microscopy. The low
number of probes further makes it feasible to evaluate each probe individually, both in the
wildtype (here plasmid-containing) and the knock-out (here plasmid-free) strains, and thus
discard any poorly working probes that would have increased signal-to-background for the
total spot at the expense of decreasing the signal-to-noise in the intensity per spot.
Furthermore, because it is possible to distinguish between spots with three versus two
probes bound, the completion of binding can be more directly evaluated. Using multiple
probes with different colors for the same plasmid can also improve the fidelity though
accurate co-localization will probably require super-resolution methods to separate between
plasmid copies.

FISH assays that do not provably meet the requirements for having narrow intensity
distributions per plasmid copy must be dismissed as qualitative at best, and though they may
give an indication of localization patterns, they cannot be used to count molecules. In fact,
even if it was demonstrated that all plasmids that bind a probe of one color also bind a probe
of another color, and even if the intensity distribution per spot had clear equidistant peaks
corresponding to discrete plasmid copies, the problem remains that some plasmids may be
entirely unavailable for binding – because of the crowded environment, proteins bound, the
conformational state, or because the crosslinks introduced by fixation prevents binding
altogether, for example creating microscopic pockets of the cell where probes cannot reach.
The ideal control against such artifacts is to cross-validate the results with an independent
counting method applied to the same single cells, rather than just the same populations. In
lieu of that, it may be sufficient to compare the average copy number to bulk methods,
keeping in mind that outliers contribute much more to standard deviations than they do to
averages.

Plasmid FISH has been used by several groups, including Kurt Nordström (Weitao,
Dasgupta, & Nordström, 2000), for measuring the localization of plasmids but has not been
published as a means to count plasmids. Plasmid FISH suffers from all the issues mentioned
above plus one more: the DNA strands must be separated to allow the probe to bind, usually
by denaturation at high temperature. This could lead to interference since the second strand
is fixed, as the whole cell is, and cannot diffuse away and may compete with the probes. We
have also tried several FISH methods to count plasmids, and in our hands none of them have
so far met these standards, though that may be a matter of protocol optimization.

2.2.3 Arrays of binding sites—Plasmids are most commonly visualized by inserting
into the plasmid an array of DNA repeats that bind a specific protein tagged with a
fluorescent reporter. Plasmids then generate fluorescent foci that are visible over the
background, as long as the arrays are large enough. This method is attractive since it is done
in live cells that provide much more information and where there are no risks of losing
material or concerns about the partial penetration of probes.

The three most commonly used combinations of DNA binding sites and binding protein are
lacO/lacI, tetO/tetR and ParB/parS. These arrays have been widely used to determine
plasmid localization or to monitor the spatial dynamics of chromosomal genes. But when it
comes to quantitatively counting the number of plasmids, at least the naïve method fails.
Just as for FISH, plasmids often co-localize and the spots must either be resolved with
super-resolution, or the intensities of the spots must be shown to quantitatively reflect
plasmid copy numbers. Intensity quantification has unfortunately proven very difficult and
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the intensity distributions have not displayed equidistant peaks corresponding to the integer
number of copies, but rather tend to follow very broad and smooth distributions.

When using the ParB/parS system, quantification of the spots seems not to be an option at
all, since after initial binding to parS, ParB polymerizes without a defined end point, though
it may be possible to add a binding site for a strong DNA binding protein to block
polymerization beyond a certain site. When working with lacO/lacI or tetO/tetR arrays, in
order to ensure that the number of FPs bound per array does not fluctuate significantly due
to individual binding and unbinding events, or varies with the cytoplasmic FP concentration,
the FP concentration must be high enough so that the arrays are always saturated. In addition
to the variable auto-fluorescence background of cells, this adds a high and variable
background of cytoplasmic FPs that makes it harder to quantify the spot intensities.
Furthermore, even if every binding site would bind an FP, only a fraction of the FPs will be
fluorescent at any given time, which creates binomial fluctuations in the intensity per spot,
or worse. Compounded with microscopy artifacts, this can randomize the spot intensity to
the point where for example a spot with two plasmid copies is recorded as being brighter
than a spot with three plasmid copies. The high local concentration of FPs at each array can
also cause even reporters with very weak dimer formation tendencies to form large
aggregates, much like avidity effects in antibody interactions. A protein may then dissociate
from its binding site, and be replaced by a new protein from the cytoplasm, but the FP part
of the dissociating fusion protein may still be bound to FPs at neighboring sites. As a result a
plasmid can in fact have more FPs bound than it contains binding repeats, which would
further contribute to the variation in fluorescence intensity per plasmid copy. In fact, if these
aggregates dissociate from the plasmid but still stay bound together, they could mimic a
plasmid focus, which can be misleading since no such aggregates would form in the
plasmid-free cells. Our lab recently demonstrated FP induced clustering for a number of
complex forming proteins in Escherichia coli (Landgraf, Okumus, Chien, Baker, &
Paulsson, in press), as well as for LacI-FP fusions that bind to lacO repeats (unpublished).

The bound proteins also interfere with plasmid replication and movement (Sengupta,
Nielsen, Youngren, & Austin, 2010). We have observed that complete binding to 240 or 120
repeat arrays prevents virtually all movement, replication or partitioning of the plasmid, so
very careful controls would be required to show that partial binding does not also create
significant effects. We have also evaluated the binding array approach with a variety of
systems, microscopy methods, FPs and plasmids, and applied them to cells where we know
there is only a single copy of the plasmid, to directly estimate the heterogeneity in the read-
out. So far, and in our hands, none of the methods have met the necessary conditions for
reliable quantitative counting. If such a method were to work in the future we expect it to
involve highly monomeric reporter proteins (Landgraf, Okumus, Chien, Baker, & Paulsson,
in press), not so many binding sites that the complex interferes with plasmid dynamics but
enough to reliably detect the spot above background, possibly super-resolution methods to
resolve individual plasmid copies, and controls that demonstrate that the distribution of
intensity per focus has equidistant peaks corresponding to the underlying number of plasmid
copies.

2.3 PCR based methods
The classic approach to detect specific DNA targets is PCR amplification. But standard PCR
methods are not quantitative: the amplification process is exponential and after a few
amplification cycles, the amount of product correlates poorly with the amount of initial
material. The accuracy of PCR has been improved in many ways, introducing new
polymerases, following the process in real time, using better dyes etc. Here we discuss the
opportunities and challenges associated with quantitative and digital PCR.
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2.3.1 qPCR—Quantitative PCR (qPCR) is now widely used to measure RNA and DNA
levels but for many applications the term is a misnomer. At low molecule numbers
probabilistic chemistry can introduce errors that then are amplified in subsequent cycles:
with a single initial copy, a failure to replicate in the first cycle would produce a two-fold
error that, due to the exponential nature, would persist through the cycles. As all methods
that rely on DNA hybridization, there is also a trade-off between hybridizing to all target
molecules (no false positives) and only hybridizing target molecules (no false negatives).
Errors are then hard to avoid and it is therefore standard to run at least triplicates per sample,
which is impossible when working with single cells.

qPCR is also sensitive to several external factors and is therefore mostly used for reporting
relative amounts between different samples within one experiment, where converting to
absolute numbers requires a calibration curve with known amounts of DNA or RNA in the
relevant range. The calibration itself must then be established separately, usually with UV
measurements for serial dilutions which have their own sources of errors.

Single cell analyses introduce several additional problems. For typical plasmid copy
numbers, ranging from one copy to a few tens of copies, it is difficult to establish reliable
calibration curves. Even if such curves could be confirmed, calibration curves often account
for the fraction of false negatives. For example, if only 50% of molecules are detected by
PCR, that can simply be included into the calibration. At low numbers however, a 50%
chance per molecule of not being detected will cause binomial fluctuations around the
average, sometimes detecting all copies and sometimes none. Such effects cannot be
corrected for via calibration and can introduce large errors. Adding pre-amplification steps
before running qPCR introduces the same type of amplification errors as qPCR itself.

In single cell assays it can also be challenging to conserve the full sample volume, which
may require that individual cells are lysed inside the reaction tube, which in turn requires
methods for accurately inserting exactly one cell per tube, and ideally methods to measure
the size of each cell. Generating distributions in turn requires hundreds of samples, and
ideally many more to look for equidistant peaks in the histogram. To our knowledge the few
single cell studies based on qPCR have therefore focused on high copy RNAs, and our own
attempts to quantify plasmid expressed RNAs with qPCR were far from quantitative. We do
not know if this is due to non-quantitative PCR or to the fact that the RNA still only partially
reflects the plasmid copy number in individual cells, see section 2.1

2.3.2 Digital PCR—A strategy better suited for the low copy regime of plasmids is digital
PCR. The idea is to dilute the sample into many wells such that most wells contain zero
copies of the DNA or RNA of interest, a few wells contain one copy, and almost no wells
contain more than one. Subsequent PCR should then yield some products in the wells with
one copy and not otherwise, and hence the number of wells with signal should correspond to
the number of DNA or RNA molecules in the original sample.

This concept was introduced in 1999 (Vogelstein & Kinzler, 1999), and variants have
recently become commercially available in different platforms – including the nano-wells
system by Fluidigm and more recently the droplet-based platform from Quantalife and
RainDance. Digital PCR side-steps the main problem of qPCR of errors in the first cycles: if
it is sufficient to separate between having template and not having template the PCR
reactions do not need to be as quantitative.

However, though conceptually straightforward it is practically difficult to implement
without introducing artifacts. In addition to detection problems when a single specific target
competes with a huge number of non-specific targets, which could be partially addressed by
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amplifying many targets per plasmid, the main challenge is perhaps the cell handling. First
precisely one cell must be placed in a lysing well, ideally after recording its size. In our
experiences FACS sorting is unreliable for both – even at low sample rates, it sometimes
picks two cells – and light scatter is a very poor measure of size of bacteria. The cell must
then lyse completely and mix with the PCR cocktail, and the multiplasmid foci must
disintegrate into individual copies, which must be validated independently. Then the
complete volume of the single cell lysate must be subdivided into such a large number of
subvolumes that two plasmids are unlikely to end up in the same subvolume. The current
commercial devices do not include on-chip cell handling, and also have a dead volume that
never enters the PCR reactions. They therefore do not claim to have the resolution needed
for plasmid counting (our local core facility set up with the Fluidigm system advised that the
assay will not be quantitative unless we have hundreds of molecules per cell).

In addition to evaluating commercial digital PCR systems, we are completing a custom
microfluidic device to deal with all these challenges, to count plasmid copy numbers in
single cells without need for cloning.

3. Replication arrest methods
The perhaps most promising assay to determine plasmid copy numbers accurately is to block
plasmid replication abruptly and completely without interfering with chromosomal
replication or cell growth. As each cell grows into a micro-colony, plasmids eventually
segregate into separate cells. This reduces the problem of counting individual plasmid copies
in cells to counting plasmid-containing cells in the population descending from the founder
cell when replication was arrested. The final detection can be done in many ways:
expressing a resistance gene and selecting for plasmids, expressing GFP and separating
between cells that have some versus no GFP rather than quantifying fluorescence levels, and
tagging plasmids using FP-repressor fusions and arrays of binding sites, now without the
complication that each spot can contain multiple copies. The approach thus combines
several assays above, with the advantage of a digital readout, exploiting the natural cell
growth and plasmid segregation to minimize material loss, and expressing plasmid encoded
genes to achieve higher detection accuracy than FISH or PCR.

The main challenge for these methods is the replication arrest, which must be immediate and
absolute. There are many replication arrest methods reported in the literature and we have
carefully and systematically evaluated pSC101 and F plasmids with temperature sensitive
replication proteins, and R1 with the sudden induction of the replication inhibitor CopA. The
seemingly straightforward methods described in the literature are not quantitative however.
For example, the complete replication arrest observed for some pSC101 strains is not
immediate, but allows for partial replication before coming to a complete halt, which distorts
the distributions. This is invisible in the classic control that the number of plasmid
containing cells post replication arrest approaches a perfectly stable plateau determined by
the average plasmid copy number. Increasing the temperature to the point where plasmids
stop replicating immediately will instead cause cell death that interferes with the counting
assay. Replication arrest of plasmid R1 suffered similar problems but for different reasons.

We have worked extensively to optimize the arrest methods to count plasmid pSC101 and
R1 with high accuracy in single cells, as well as their partitioning mechanisms at cell
division, and believe they can be made to work accurately. However, the approach is very
labor intensive to perform with appropriate controls, and still only provides a snapshot of the
copy number at the time of the replication arrest. It is also difficult to extend to additional
plasmid strains without extensive controls and likely modifications – it may even be difficult
to extend to different growth conditions without repeating all controls. For these reasons we
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are in parallel pursuing many of the approaches described in sections 2 and 3, as well as
several others.

4. Conclusions
We analyzed a range of potential methods for measuring plasmid copy numbers in single
cells, and the challenges that must be overcome to make them quantitative. All methods
produce an estimated distribution, but without extensive optimization and evaluation, we
have strong reason to believe that the reported fluctuations have little to do with the actual
plasmid copy numbers. The methods that we believe are the most promising, based on
replication arrest, are very labor intensive, require extensive controls and optimized
procedures, and are difficult to extend to more types of plasmids. We therefore continue to
work to develop alternative methods that provide more information about the underlying
process, allow greater sampling, and that can be extended to a broader range of plasmids.
We believe these methods will be fully developed in the next few years, by us or others, and
that the dynamics of plasmid control mechanisms then can be studied quantitatively in their
natural context: the individual cell.
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Research highlights

• Plasmid copy numbers have not been accurately measured in single cells

• Most current methods confound plasmid fluctuations with other stochastic
processes.

• In some cases, measurement errors mask plasmid fluctuations.

• Some problematic methods could be rectified by modifications to existing
protocols
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