Journal of Radiation Research, 2013, 54, 630-636
doi: 10.1093/jrr/rrs142 Advance Access Publication 30 January 2013

Inhibiting TGFp1 has a protective effect on mouse bone marrow
suppression following ionizing radiation exposure in vitro
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Tonizing radiation (IR) causes not only acute tissue damage but also residual bone marrow (BM) suppres-
sion. The induction of residual BM injury is primarily attributable to the induction of reactive oxygen
species (ROS) pressure in hematopoietic cells. In this study, we examined if SB431542, a transforming
growth factor 1 (TGFI1) inhibitor, can mitigate IR-induced BM suppression in vitro. Our results showed
that treatment with SB431542 protected mice bone marrow mononuclear cells (BMMNCs), hematopoietic
progenitor cells (HPCs) and hematopoietic stem cells (HSCs) from IR-induced suppression using cell viabil-
ity assays, clonogenic assays and competitive repopulation assays. Moreover, expression of gene-related
ROS production in hematopoietic cells was analyzed. The expression of NOX1, NOX2 and NOX4 was
increased in irradiated BMMNCs, and that of NOX2 and NOX4 was reduced by SB431542 treatment.
Therefore, the results from this study suggest that SB431542, a TGFp1 inhibitor, alleviates IR-induced BM
suppression at least in part via inhibiting IR-induced NOX2 and NOX4 expression.
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INTRODUCTION

Bone marrow (BM) suppression is the most common dose-
limiting side-effect of conventional cancer therapy using ion-
izing radiation (IR) [1, 2] and is the primary cause of death
after accidental exposure to a high dose of IR. The myelosup-
pression not only worsens the outcome of cancer treatment
but also adversely affects the quality of life of cancer patients.
However, the mechanisms through which ionizing radiation
(IR) induces BM injury are not well understood, nor has an
effective treatment been developed to mitigate the injury.
Transforming growth factor f1 (TGFB1) is a pleiotropic
cytokine involved in many hematopoietic cells activities,
including growth, differentiation, quiescence, apoptosis and
mobilization [3, 4]. TGFp1 is secreted as a latent precursor
molecule (LTGFp) bound to LTGFB-binding protein, LTBP
[5]. LTGFB can be activated by IR in the extracellular space
of irradiated tissue as well as proteolytic processes [6, 7].
Activated TGF-B1 can activate TGF-p type I and type II

receptors, which are responsible for activating intracellular
mediators such as Smad proteins and p38 mitogen-activated
protein kinase (MAPK) [8, 9].

Previous work has shown that IR-induced oxidative
stress in hematopoietic cells via the NADPH oxidase
(NOX) pathway at least partly contributes to IR-induced
BM failure [10]. Mitochondria have been widely accepted
to be the main source of cellular-derived reactive oxygen
species (ROS). However, recent studies demonstrate that
cells can also produce ROS deliberately through a family of
tightly regulated NOXs that are homologues of the phago-
cyte oxidase [11, 12]. In lung fibroblasts, TGFf-induced
NADH oxidase production of hydrogen peroxide begins 8
h after TGFp stimulation with peak activity at 16 h [13]. In
fetal rat hepatocytes, it is demonstrated that TGFf-induced
ROS occurred 4 h after TGFp treatment [14]. In addition, it
was proved TGFp also plays core roles in up-regulation of
NOXs in hepatocytes, kidney myofibroblasts, aortic smooth
muscle cells, etc. at least in vitro [15-18].
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The aim of the present work was to analyze whether
IR-induced BM suppression could be ameliorated by inhi-
biting TGFf1, and to study the role of NOXs in this.

MATERIALS AND METHODS

Reagents

Anti-Mouse-CD45.1-percp-cy5.5 (clone A20, Ly5.1),
Anti-Mouse-CD45.2-PE  (clone 104, Ly5.2), biotin-
conjugated anti-Mouse-CD4 (clone GK1.5), anti-Mouse-
CD45R/B220 (clone RA3-6B2), anti-Mouse-Ly6G/Gr-1
(clone RB6-8C5), anti-Mouse-CD11b (clone M1/70) and
APC-Cy7-conjugated streptavidin were obtained from
eBioscience (San Diego, CA, USA). SB431542 was
obtained from Sigma (St. Louis, MO, USA).

Mice

Male C57BL/6 mice were purchased from the Institute of
Laboratory Animal Sciences (PUMC, Beijing, China) and
housed five to a cage at an Animal Care-certified animal fa-
cility in the Institute of Radiation Medicine, PUMC. They
received food and water ad libitum. All of the mice were
used at approximately 8—10 weeks of age. The Institutional
Animal Care and Use Committee of PUMC approved all
experimental procedures used in this study.

Treatment of BMMNCs with IR and SB431542
The femora and tibiaec were harvested from the mice immedi-
ately after they were euthanized with CO,. BMMNCs, iso-
lated as described previously [1, 2] and incubated (1 x 10%ml
in complete medium) with SB431542 (1 x 10> M - 1x 107°
M) or with 0.2% dimethylsulfoxide (DMSO) (vehicle
control) at 37°C for 60 min. Then, cells were exposed to
0, 1, 2 or 4 Gy irradiation generated in an Exposure
Instrument Cammacell-40  '*’Cesium-irradiator (Atomic
Energy, Lin, CA, USA) at a rate of 0.76 Gy/min. Cells were
incubated at 37°C, with 5% CO, and 100% humidity for
various times as indicated in individual experiments.

Cell viability assays

The cells (1x10° cells/well in 100 pl medium) were plated
in a 96-well plate and were cultured for 18 h. Cell viability
was monitored using the luminescent-based CellTiter Glo
TM (Promega, Madison, WI, USA) according to the
manufacturer’s recommended protocols [19]. Luminescence
of each well was read using the Infinite M200 multimode
microplate reader (TECAN, Switzerland). Cell viability was
normalized as a percentage of the untreated cells. Each ex-
periment was done in triplicate and the results were averaged.

Clonogenic assays

CFU-GM was analyzed using MethoCult M3534 medium
(Stem Cell Technologies, Vancouver, BC, Canada).
BM-MNCs incubated with SB431542 and irradiated as

described above were suspended in Methocult M3534
medium at 2 x 10% or 1 x 10° viable cells/ml and seeded in
wells of 24-well plates. The plates were incubated for 7
days. Colonies of 250 cells were scored under an inverted
microscope on Day 7, and results were expressed as the
number of CFU-GM per 10° cells.

Competitive repopulation assay (CRA)

Competitive repopulation assays were performed using the
Ly5 congenic mouse system as described previously [10,
20]. After incubation with SB431542 (1 uM) or exposure to
irradiation (2 Gy) as described above, donor cells (C57BL/
6-Ly-5.1 mice, 1 x 10° BMMNCs) were mixed with 1 x 10°
competitive BM-MNCs pooled from three C57BL/6-Ly5.1/
Ly5.2 hybrid mice. Cells were transplanted into lethally irra-
diated (9.0 Gy IR) C57BL/6-Ly-5.2 mice (seven recipients/
group) by lateral canthus-vein injection. For analysis of en-
graftment, peripheral blood was obtained from the medial
canthus using heparin-coated micropipettes (Drummond
Scientific, Broomall, PA, USA) at 2 months after transplant-
ation from all the recipients. After red blood cells had been
lysed with 0.15 M NH4CI solution, the blood samples were
stained with FITC-conjugated anti-CD45.1, PE-conjugated
anti-CD45.2, PerCP-conjugated anti-B220, APC-conjugated
anti-CD3, PE/Cy7-conjugated Anti-Gr-1 and CD11b, and
were analyzed with a LSR II flow cytometer (BD
Bioscience, San Jose, CA, USA).

Quantification Real-time PCR assays

BM-MNCs were incubated with SB431542 or exposed to
irradiation (2 Gy) as described above and cells were incu-
bated for 4 or 24 h. Total RNA was extracted from the
BMMNCs using TRIzol reagent (Applied Biosystems,
Grand Island, NY, USA) following the manufacturer’s
protocol. First-strand cDNA was synthesized from total
RNA using RNA PCR Kit (AWV) Ver. 3.0 (Takara Bio
Inc., Shiga, Japan) according to the manufacturer’s proto-
col. PCR primers for the TBRII, NOX1, NOX2, NOX4 and
the housekeeping gene GAPDH were obtained from
Sangon Biotech (Shanghai, China). The sequences of
primers used in this study were: TBRII, 5’-TAC TCT GGA
GAC GGT TTG-3’ (forward) and 5’-TGC TGG TGG TGT
ATT CTT-3’ (reverse); NOXI1, 5’-TCG ACA CAC AGG
AAT CAG GA-3’ (forward) and 5’-TTA CAC GAG AGA
AAT TCT TGG G-3’ (reverse); NOX2, 5°-TGC AGT GCT
ATC ATC CAA GC-3’ (forward) and 5’-CTT TCT CAG
GGG TTC CAG TG-3’ (reverse); NOX4, 5’-GAT TTC
TGG ACC TTT GTG CCT TT-3’ (forward) and 5’-TGA
TGG TGA CAG GTT TGT TGC T-3’ (reverse); GAPDH,
5’-TGA AGG TCG GTG TGA ACG GAT TTG GC-3’
(forward) and 5’-CAT GTA GGC CAT GAG GTC CAC
CAC-3’ (reverse). cDNA samples were mixed with primers
and SYBR Master Mix (ABI Bioscience Inc.) in a total
volume of 25 ul. All samples were analyzed in triplicate
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using an ABI Prism 7500 Sequence Detection System
(Applied Biosystems-Life Technologies). Thermal cycling
conditions were 2 min at 50°C and 10 min at 95°C fol-
lowed by 40 cycles at 95°C for 15 s and 60°C for 1 min.
The threshold cycle (CT) values for each reaction were
determined and averaged using TagMan SDS analysis soft-
ware (Applied Biosystems-Life Technologies). The changes
in target genes expression were calculated using the com-
parative CT method (fold changes =2"*2“T)) as described
previously [21].

Western blot assays

BM-MNCs were incubated with SB431542 or exposed to ir-
radiation (2 Gy) as described above and cells were incubated
for 24 h. Harvested cells were lysed in M-PER mammalian
protein extraction reagent (Thermo Scientific, Rockford, IL,
USA). The protein concentration was estimated using the
bicinchoninic acid protein assay kit (Beyotime Institute of
Biotechnology, Jiangsu, China). Cell lysates (50 ug) were
loaded onto 5-10% gradient polyacrylamide gels. Proteins
were electroblotted onto polyvinylidene difluoride mem-
branes (Millipore, MA, USA) and immunolabeled using
1:400 dilutions of antibodies against TBRII, NOX2, NOX4
(Santa Cruz Biotechnology, Santa Cruz, CA, USA) and
1:2000 dilutions of antibodies against B-actin (Santa Cruz
Biotechnology, Santa Cruz, CA, USA). The enhanced
chemiluminescence plus reagent (Boster Biotechnology Co.,
Wuhan, China) was used for chemiluminescent signal detec-
tion. Quantitative analysis was carried out using Quantity
One version 4.6.2 (http:/www.bio-rad.com).

Statistical analysis

The data were analyzed by analysis of variance (ANOVA).
In the event that ANOVA justified post hoc comparisons
between group means, these were conducted using the
Student—-Newman—Keuls test for multiple comparisons. For
experiments in which only single experimental and control
groups were used, group differences were examined using
the unpaired Student’s ¢ test. Differences were considered
significant at P < 0.05. All of these analyses were done
using SPSS 16.0 software (SPSS Inc.).

RESULTS

SB431542 protected BMMNC:s from irradiation
injury in vitro

Luminescence assays were performed to evaluated cell via-
bility which manifested drugs’ radiation protective effect on
BMMNCs. Fig. 1A depicts the SB431542 toxicity, in
which SB431542 at concentrations higher than 10 pM
inhibited the bone marrow cell viability. Therefore,
SB431542 at concentrations lower than 10 uM was chosen

Fig. 1. SB431542 reduced IR-induced suppression of BMMNC
viability. The cells were sham-irradiated as a control or sublethally
irradiated with 1-4 Gy IR after receiving vehicle or SB431542
treatment and were cultured for 18 h. Cell viability was monitored
as described in the text. (A) Cell toxicity assays; (B) cells treated
with 1 Gy irradiation; (C) cells treated with 4 Gy irradiation. Date
were expressed as relative viability as mean + SE (n =6).

for the subsequent experiments. As shown in Fig. 1B and
C, compared with the sham irradiation group, BMMNC’s
viabilities decreased significantly after irradiation exposure
(1 Gy for 30.28%, P < 0.01; 4 Gy for 51.94%, P <0.01).
Treatment with SB431542 (1 uM) increased cell viabilities
of irradiated BMMNCs (1 Gy for 13.25%, P<0.01; 4 Gy
for 20.81%, P<0.01). SB431542 treatment displays a
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protective effect on irradiated BMMNCs at 4 Gy better
than at 1 Gy.

SB431542 raised the ability of forming colonies of
CFU-GM

Clonogenic assays were performed to evaluate viability of
HPCs affected by IR and SB431542. As shown in Fig. 2,
SB431542 was capable of increasing CFU-GM in
sham-irradiated cells, whereas the cells treated with differ-
ent dose of irradiation (1-4 Gy) exhibited a diminished
ability to form CFU-GM by 42.1-89.5% (P < 0.01) and
treatment with SB431542 (10 uM-0.1 uM) enhanced the
ability to form CFU-GM by 60.0-292.4% (P <0.01) sig-
nificantly. These results suggest SB431542 could amelior-
ate IR-induced mice HPC injury.

SB431542 enhances long-term and multi-lineage
engraftment of irradiated HSCs

Because long-term and multi-lineage engraftment is a gold
standard to measure HSC function, we performed a com-
petitive repopulation assay to validate whether IR-induced
HSC function decline could be ameliorated by SB431542
treatment. As shown in Fig. 3, mice receiving donor cells

exposed to irradiation with vehicle treatment showed a sub-
stantial decrease in donor cell engraftment in all the
lineages 2 months after transplantation. Treated with

Fig. 2. SB431542 reduces IR-induced suppression of HPC
clonogenic function. Mice BMMNCs were sham-irradiated as a
control or sublethally irradiated with 1-4 Gy IR after receiving
vehicle or SB431542 treatment. Clonogenic function of HPCs in
BM-MNCs was analyzed by CFC assay. Colonies of >50 cells
were scored under an inverted microscope on Day 7, and results
were expressed as the number of CFU-GM per 10° cells. Data are
presented as mean + SE. *P <0.01 vs. control, n="6.

Fig. 3. SB431542 reduces IR-induced suppression of HSC long-term engraftment after transplantation. Donor
BMMNC s, treated with IR (2 Gy) after receiving vehicle or SB431542 (1 uM), were mixed with competitive
cells. Cells were transplanted into receptor mice as described in the text, and donor cell engraftment was
analyzed 2 months after transplantation. The data are expressed as means + SE of percentage of donor-derived
cells as: (A) leukocytes (CD45.1 +cells), (B) B cells (CD45.1 + B220 +cells), (C) T cells (CD45.1 + CD3 +
cells) and (D) myeloid cells (CD45.1+CDI11b +and/or Gr-1 + granulocyte—-monocyte—macrophage) in the

peripheral blood (n =7 recipient mice/group).
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Fig. 4. 1R induces expression of TPRII in BMMNCs. The cells
were sham-irradiated as a control or irradiated with 2.0 Gy IR.
They were incubated for 4-24 h and analyzed for the mRNA and
protein expression of TPRII by qRT-PCR and western blot assays.
The levels of TBRII mRNA expression are expressed as
means + SE of fold changes compared with the control (n=3).
*P <0.05 vs. control.

SB431542 (1 uM), the donor cell engraftment increased
23.1% at 2 months, 16.7% of B cells, 18.8% of T cells and
6.7% of myeloid cells derived from donor cells. These find-
ings indicate that SB431542 treatment indeed preserved the
function of HSCs after irradiation exposure, resulting in
enhanced long-term and multi-lineage engraftment after
BM transplantation.

Irradiation increased TBRII expression in
BMMNCs

TGFB1 can be activated by ionizing irradiation in the extracel-
lular space of irradiated tissue as well as proteolytic processes
[6, 7]. To confirm irradiation exposure could up-regulate
TGFB1 activity in bone marrow hematopoietic cells, TRRII
expression in BMMNCs exposed to irradiation was analyzed.
As shown in Fig. 4, after irradiation exposure, TBRII mRNA
and protein expression were up-regulated. These results
suggest irradiation might activate the TGFp pathway partly by
over-expression of TPRIL.

SB431542 induced down-regulation of NOX
expression

Previous work has shown that IR-induced ROS stress in
hematopoietic cells via up-regulating NOX4 at least partly
contributes to IR-induced BM failure [10]. In this study,
NOX1, NOX2 and NOX4 expression in BMMNC:s treated
with irradiation and SB431542 was investigated. As shown
in Fig. 5, irradiation exposure up-regulated NOX1 mRNA
expression significantly by 4.07-fold (P < 0.01) at 4 h, and
by 1.61-fold (P<0.05) at 24 h. After irradiation, NOX2
mRNA expression was up-regulated by irradiation (1.56-
fold, 4 h, P<0.01; 1.26-fold, 24 h, P<0.05). Compared
with sham-irradiated cells, a consistently higher level
(about 2-fold) of NOX4 mRNA expression of irradiated
cells was observed from 4-24 h. Treated with SB431542
(1 uM), NOX2 and NOX4 mRNA expression was down-
regulated, but not NOX1. These data, verified by western

Fig. 5. SB431542 inhibits IR-induced expression of NOX2 and
NOX4 in BMMNGCs. The cells were sham-irradiated as a control
or irradiated with 2.0 Gy IR after receiving vehicle or SB431542
(1 uM) treatment. They were incubated for 4-24 h and analyzed
for the mRNA and protein expression of NOX1, NOX2 and
NOX4 using qRT-PCR and western blot assays. (A) The levels of
NOX1 mRNA and protein expression; (B) the levels of NOX2
mRNA and protein expression; (C) the levels of NOX4 mRNA
and protein expression. Results of mRNA expression are
expressed as means + SE of fold changes compared with those of
the control (n=3). *P <0.05 vs. control, “P < 0.05 vs. vehicle.

blots assays as shown in Fig. 5, suggest radiation exposure
up-regulates NOX expression in BMMNCs, which at least
partly contributes to oxidative stress in the BM hematopoi-
etic system. And SB431542, a TGFf1 inhibitor, could
reduce IR-induced up-regulation of NOX2 and NOX4
expression.

DISCUSSION

In spite of the extensive study of TGFI inhibitor to
prevent fibroblast activity [22, 23], the pharmacological
effect of SB431542 on IR-induced BM suppression has not
been well investigated. In this study, we examined whether
SB431542 can mitigate IR-induced BM injury in vitro. Our
results showed that IR increased TBRII mRNA expression
in BMMNCs, which provides additional evidence that IR
could up-regulate TGFB1 activity. Then, it was found that
treatment with SB431542 significantly alleviated depressed
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clonogenic function of HPCs and HSCs induced by IR.
It was also observed that expression of NOX1, NOX2 and
NOX4 in BMMNCs was up-regulated by IR and that of
NOX2 and NOX4 was ameliorated by treatment with
SB431542. Therefore, results from this study demonstrate
that SB431542, a wildly used TGFp1 inhibitor, has the
potential to be used as a therapeutic agent to mitigate
IR-induced BM suppression in part via inhibition of NOX
expression.

Increasing evidence suggests that IR-induced injury is
caused, at least in part, by induction of oxidative stress.
This suggestion is in agreement with our previous findings
[1, 10], which demonstrate IR-induced up-regulation of
NOXs in hematopoietic cells at least partly contribute to
IR-induced BM failure [10], and using antioxidants
such as N-acetylcysteine (NAC), Mn(IIl) meso-tetrakis-
(N-ethylpyridinium-2-yl) porphyrin (MnTE) and resveratrol
effectively ameliorates IR-induced BM failure in mice
[10, 20, 24]. Elegant work by Bondi et al. [17] showed that
TGFB1 increases both the activity of NADPH oxidase and
expression of NOX2 and NOX4 in kidney, indicating that
this growth factor induces production of ROS, which could
be effectively decreased by inhibiting TBRI. It has also
been reported that treatment with TGFB1 increases NOX4
expression and activity in human aortic smooth muscle
cells [13], pulmonary fibroblasts [25], airway smooth
muscle [26] and in hepatocytes [27]. Our work showed that
IR increased NOX1, NOX2 and NOX4 expression in mice
BMMNCs, and treatment with SB431542 decreased NOX2
and NOX4 expression after IR. These data suggest inhibit-
ing TGFB1 could attenuate IR-induced ROS stress via the
NOX pathway, which at least partly protects mouse hem-
atopoietic function from IR damage. However, SB431542
functions only as a radiation protectant to reduce IR-
induced BM failure, because in our preliminary cell viabil-
ity assays, we found that post-IR treatment with SB431542
had no significant effect on the activity of the BMMNCs
exposed to IR.

Radiation-induced fibrosis, an important side-effect in the
treatment of cancer, plays a core role in injury of normal
tissues or organs, which not only adversely affects the
quality of life of cancer patients but also worsens the
outcome of cancer treatment [23]. Increasing evidence shows
that TGFp1 is the major cytokine responsible for the regula-
tion of fibroblast proliferation and differentiation [28, 29]. IR
not only induces long-term TGFB1 overexpression owing in
part to oxidative stress and an inflammatory response, but
also actives LTGFp in the extracellular space of irradiated
tissue as well as proteolytic processes [6, 7]. Many studies
suggest inhibiting TGFB1 could protect lungs, kidneys,
blood vessels, liver, skin, etc. from radiotherapy-induced
injury [30-33]. In addition, TGF-B1 inhibitor can attenuate
tumor cell migration [34] and enhance sensitivity to radiation
therapy in pancreatic cancer, glioblastoma and breast cancer

[35-37]. TGF-B1 antibody was tested in a phase III clinical
trial for breast cancers, prostate cancers, colon cancers and
renal carcinoma [33]. Therefore, SB431542 has the potential
to increase the therapeutic efficacy of radiotherapy not only
by reducing normal tissue injury, but also by inhibiting
tumor growth.

In summary, our study shows that SB431542 ameliorates
IR-induced BM suppression. These findings provide a
better understanding that TGF-B1 inhibitor may have the
potential to be used as a therapy for other oxidative stress-
related organ injury.
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