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The genus Flavivirus includes both vector-borne and no known vector (NKV) species, but the

molecular determinants of transmission mode are not known. Conserved sequence differences

between the two groups occur in 59 and 39 UTRs. To investigate the impact of these differences

on transmission, chimeric genomes were generated, in which UTRs, UTRs+capsid, or the upper

39 UTR stem–loop of mosquito-borne dengue virus (DENV) were replaced with homologous

regions from NKV Modoc virus (MODV); the conserved pentanucleotide sequence (CPS) was

also deleted from the DENV genome. Virus was not recovered following transfection of these

genomes in three different cell types. However, DENV genomes in which the CPS or variable

region (VR) of the 39 UTR were replaced with MODV sequences were recovered and infected

Aedes aegypti mosquitoes with similar efficiencies to DENV. These results demonstrate that

neither vector-borne CPS nor VR is required for vector-borne transmission.

The genus Flavivirus includes both vector-borne viruses
and those with no known vector (NKV) (Billoir et al., 2000;
Chambers et al., 1990; Cook & Holmes, 2006; Gaunt et al.,
2001; Gritsun & Gould, 2006; Markoff, 2003). Attempts to
infect ticks and mosquitoes as cultured cell lines or in vivo
with NKV viruses have been unsuccessful, suggesting that
this group is transmitted horizontally among vertebrates
(Charlier et al., 2010; Fairbrother & Yuill, 1987; Hendricks
et al., 1983; Johnson, 1967; Kuno, 2007; Lawrie et al.,
2004). Vector-borne flaviviruses include important human
pathogens such as dengue virus (DENV) (serotypes 1–4),
yellow fever virus (YFV), tick-borne encephalitis virus
(TBEV) and West Nile virus (WNV). Despite striking
variation in the mechanisms of transmission within a single
genus, the molecular determinants of transmission mode in
the flaviviruses have not yet been identified.

Comparison of vector-borne and NKV flavivivirus gen-
omes is facilitated by conservation of genome size,
proteolytic cleavage site location and genome organization.
Flaviviruses are positive-sense ssRNA viruses with a
genome size of about 11 kb. The genome codes for a
single ORF, which is processed by both cellular and viral
proteases into three structural proteins and at least seven
non-structural proteins (Chambers et al., 1990; Leyssen
et al., 2002; Rice, 1996). The ORF is flanked by 59 and the
39 UTRs; both UTRs fold into complex stem–loop
structures required for replication.

Charlier et al. (2010) investigated the role of the structural
proteins in flavivirus infection of arthropod cells by
generating chimeric genomes composed of the genomic
backbone of one of two mosquito-borne flaviviruses, YFV
or DENV, in which the structural genes were replaced with
those of NKV Modoc virus (MODV). Transfection of
mosquito C6/36 cells with the parent YFV or DENV
genomes or the chimeric genomes yielded viable viruses,
whereas MODV was incapable of infecting mosquito cells.
Similarly Engel et al. (2011) have demonstrated that a
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chimeric DENV genome carrying the structural genes from
TBEV retained the ability to infect mosquito cells in
culture. Moreover, this chimeric construct failed to infect
tick cells or larvae. These results suggest that the ability of a
flavivirus to infect an arthropod vector is not determined
by its structural proteins.

A sequence comparison suggests that key determinants of
the transmission mode may reside in the UTRs of the
flavivirus genome. Differences in conserved sequence
motifs between vector-borne and NKV flaviviruses have
been identified in the highly conserved 39 stem–loop (39

SL), the core region and the variable region (VR) of the 39

UTR. For example, the conserved pentanucleotide
sequence (CPS) CACAG located at the top of the 39 SL is
conserved in all vector-borne flaviviruses but differs from
the most common sequence (CUCAG) found in NKV
flaviviruses (Charlier et al., 2002; Leyssen et al., 2002;
Markoff, 2003). Previous studies using WNV replicons
have shown that replacement mutations in any but the
fourth nucleotide position of the CPS abolishes replication
(Tilgner et al., 2005). However, in other studies using
WNV and YFV full-length genomic RNA, individual
mutations of either the second, third or fourth CPS
nucleotide were tolerated (Elghonemy et al., 2005; Silva
et al., 2007). Some of these mutations mimicked the CPS of
NKV flaviviruses but their impact on replication was tested
only in mammalian cell lines. Within the VR, NKV
flaviviruses have a conserved motif of 22 nt which is not
present in vector-borne flaviviruses (Charlier et al., 2002).
Finally, NKV and vector-borne flaviviruses each possess
unique and complementary conserved sequences that
circularize the genome during replication (Alvarez et al.,
2005; Khromykh et al., 2001; Kofler et al., 2006). In order
to investigate whether these conserved motifs in the UTRs
dictate the mode of transmission, we generated chimeric
constructs in which designated regions of the mosquito-
borne DENV-4 genome were replaced with homologous
regions of NKV MODV.

We replaced the 39 UTR, alone or in combination with the
59 UTR and/or capsid (C), of a full-length DENV-4
infectious clone with that of NKV MODV (Table S1,
available in JGV Online). The 59 UTR, C and 39 UTR of
MODV, synthesized by Blue Heron Biotechnology, were
digested and ligated to plasmid p4, which contains the full-
length cDNA genome of DENV-4 Dominica strain 814669
(GenBank accession no. AY648301) (Durbin et al., 2001).
All plasmid constructs were sequenced up to and across
cloning junctions to verify the authenticity of the
replacement mutations.

First, we replaced the 59 and 39 UTRs of DENV-4 singly with
those of MODV to generate p4-MODswap59 UTR and
p4MODswap39 UTR, and then we replaced both DENV-4
UTRs together to generate p4-MODswap5939UTRs (Table
S1). All constructs were linearized with Acc65I, which
generates an authentic terminus of the rDENV-4 39 UTR but
leaves an extra G at the end of the MODV 39 UTR. Capped

mRNAs were synthesized from each linearized plasmid
using Amplicap High Yield Message Maker kit (Epicentre
technologies) according to the manufacturer’s instructions.
Full-length RNA transcripts were purified using RNeasy kit
(Qiagen) and transfection was conducted in duplicate in
Aedes albopictus mosquito C6/36 cells, African green
monkey kidney Vero cells or baby hamster kidney BHK-21
cells, essentially as previously described (Durbin et al., 2001;
Hanley et al., 2002). MODV strain M544 (GenBank
accession no. NC_003635), obtained from the World
Arbovirus Reference Center, was passaged four times in
Vero cells. Titre was determined by serial dilution and
immunostaining (Durbin et al., 2001) on the same cell types
as used for transfection; hyperimmune mouse ascites fluids
against DENV-4 and MODV were used to detect recom-
binant DENV-4 (rDENV-4) and MODV, respectively. From
a single C6/36 transfection pool of each virus, separate
clones were isolated by terminal dilution as previously
described (Blaney et al., 2001) in C6/36, Vero or BHK cells
and working pools were prepared by amplifying terminally
diluted viruses in the same cell type in which they were
terminally diluted, yielding C6/36, BHK and Vero stocks of
each virus.

As expected, wild-type rDENV-4 was recovered in all three
cell lines, while MODV infected only the two mammalian cell
lines (Charlier et al., 2010) (Table S1). No detectable virus
was recovered from any of the chimeric genomes in any of
the three cell types (Table S1). We hypothesized that the
failure of these genomes to produce viable virus may have
resulted from: (i) a mismatch in hypothetical packaging
sequences in the UTRs and recognition sites in the C protein
(Mandl et al., 1998; Men et al., 1996; Proutski et al., 1997) or
(ii) a lack of a complementarity of the 59 MODV cyclization
sequence (59 AAUGUGCGAAAAUAACAGG 39, which
extends into C) with the 39 UTR cyclization sequence (39

UUAAACCUUUUAUUGUCC 59) (Leyssen et al., 2002)
(the start codon is in bold, the C is in grey and base-paired
nucleotides are not underlined).

To test these hypotheses, we next replaced the C gene in the
rDENV-4-MODswap5939UTRs chimera with that of
MODV, thus generating rDENV-4-MODswap59C39UTRs,
which carried the complete C (including the circularization
sequence above) and anchored C (Canch) sequence of MODV
as well as complete C/pre-membrane (prM) signalase
cleavage sites from both MODV and rDENV4 (Charlier
et al., 2004). This construct also yielded no detectable virus
following transfection. Finally, since previous research on
chimeric flaviviruses (Huang et al., 2005; Pletnev et al., 2002)
has suggested that homology between Canch, which helps to
translocate the prM into the endoplasmic reticulum for post-
translational maturation, and prM sequences may be critical
for viability, we generated rDENV-4-MODswap59C39UTRs-
dAn, which contained the Canch and the C/prM signallase
cleavage site from rDENV-4. This construct also failed to
generate viable virus (Table S1). Transfections that produced
no detectable virus were repeated three times and all but
MODswap59C39UTRs-dAn were further attempted by
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electroporation. In no case did a construct that failed to
produce detectable virus following transfection produce any
detectable virus following electroporation.

In previous work we have shown that chimeric genomes in
which the 59 UTR, C and 39 UTR of rDENV-4 were
replaced with those of tick-borne Langat virus (LGTV) also
failed to generate viable virus (Tumban et al., 2011).
However numerous studies have shown that structural

genes of DENV can be replaced with those of either tick-
borne (Lai & Monath, 2003) or NKV viruses (Charlier et al.,
2010). Together with the current study, these results point to
a fundamental incompatibility between the UTRs of NKV
and tick-borne flaviviruses with the replication complex of
mosquito-borne flaviviruses. The flavivirus replication
complex includes NS1, NS2A, NS3, NS4A, NS4B, NS5,
translation elongation factor 1a, La protein and polypyr-
imidine track-binding protein (Blackwell & Brinton, 1995;
De Nova-Ocampo et al., 2002; Lai, 1998; Mackenzie et al.,
1998; Umareddy et al., 2006). This replication complex
interacts extensively with the 39 UTR; for instance, NS3 and
NS5 in association with NS2A have been shown to bind to
the 39 SL of WNV (Chen et al., 1997; Mackenzie et al., 1998).
In addition, translation elongation factor 1a, La protein and
polypyrimidine track-binding protein have been shown to
bind to both the core region and the 39 SL of flaviviruses (De
Nova-Ocampo et al., 2002). More recently, host proteins
such as DDX6, G3BP1 and Caprin1 have been shown to
bind to the UTRs of DENV-2 (Ward et al., 2011). Thus, we
propose that the failure of rDENV4-MODswap59C39UTR
and rDENV4-MODswap59C39UTR-dAn to produce viable
virus may have resulted from the inability of the rDENV-4
replication complex, in association with host proteins, to
recognize the UTRs of MODV.

To better define which regions of the UTR may mediate
compatibility with the replication complex, and to assess
the impact of specific sequence motifs on the ability of
DENV to infect mosquitoes, we generated replacement and
deletion mutations (by standard PCR mutagenesis using
the primers listed in Table S2) in both the 39 SL and the
VR. Consistent with previous studies (Silva et al., 2007),
rDENV-4-DCPS, in which the CPS (CACAG, located at the
top of 39 SL) was deleted, did not yield detectable viruses
in any of the three cell types (Table S1). rDENV-4-
MODswapU39SL containing a replacement of the upper 39

SL of rDENV-4 with that of MODV also did not yield
detectable viruses in any of the three cell types (Table S1).
However, both rDENV-4-MODswapCPS (with an AAU

Table 1. Mutations in wild-type (rDENV-4) and mutant viruses derived from a single transfection in C6/36 cells followed by separate
passage in Vero or C6/36 cells

Nucleotide and amino acid sequence numbering is from the start of the genome and the polyprotein, respectively. NA, Not applicable; Y, yes.

Virus Cell type Nucleotide mutation Amino acid mutation Gene Replacement of designated

DENV sequence with MODV

sequence confirmed?

rDENV-4 Vero None – – NA

rDENV-4-MODswapCPS Vero A4560C T1487P NS3 Y

rDENV-4-MODswapVR Vero G10023A D3308N NS5 Y

rDENV-4 C6/36 None – – NA

rDENV-4-MODswapCPS C6/36 A4560C T1487P NS3 Y

rDENV-4-MODswapVR C6/36 A7485C N2462H NS4B Y

A8342T Silent NS5 Y

G10023A D3308N NS5 Y

rDENV-4

rDENV-4-
MODswapCPS

rDENV-4-
MODswapVR

MODV

C6/36 cells

0.3±0.01 (A)

0.3±0.01 (A)

0.35±0.01 (A)

N/A

1.4±0.03 (A) 1.9±0.07 (A)

1.9±0.2 (A)

1.7±0.3 (A)

1.6±0.07 (A)

1.3±0.04 (A)

1.3±0.05 (A)

0.6±0.02 (B)

Vero cells BHK-21 cells

Fig. 1. Plaque sizes of rDENV-4, rDENV-4-MODswapCPS, rDENV-
4-MODswapVR and MODV in C6/36, Vero and BHK-21 cells. The
mean plaque diameter ±SEM (mm) of 36 randomly selected plaques
is shown below each well. For each cell type, viruses that share the
same letters (in parentheses) do not differ significantly from each
other, while those with different letters have significantly different
plaque sizes (Tukey–Kramer post-hoc test, P,0.05).

Dengue/Modoc chimeric viruses
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mutation in the second nucleotide of the CPS) and rDENV-
4-MODswapVR, in which the VR of rDENV-4 was replaced
with that of MODV, yielded viable viruses following
transfection in C6/36, Vero and BHK-21 cells (Table S1).
Both constructs had post-transfection titres that were at least
1.3-fold and 100-fold lower than that of rDENV-4 in BHK-
21 and Vero cells, respectively; both replicated to similar
titres to their rDENV-4 parent in C6/36 cells.

Complete genomes of Vero and C6/36 stocks of rDENV-4,
rDENV-4-MODswapCPS and rDENV-4-MODswapVR
were sequenced (Table 1); of these, neither rDENV-4 stock
possessed any mutations, both rDENV-4-MODswapCPS
stocks possessed the same T1487P mutation in NS3, and
both rDENV-4-MODswapVR stocks possessed a common
D3308N mutation in NS5, although the C6/36-derived
rDENV-4-MODswapVR stock also acquired one additional
coding and one silent mutation in NS5. Common
mutations probably arose during initial transfection in
C6/36 cells but were not lost during terminal dilution and
passage in the two different cell lines. As these mutations
may represent compensatory mutations, it is not possible
to unambiguously attribute the phenotypes of the mutant
viruses to the MODV or VR replacements alone. However,
it is possible to conclude that any phenotypes manifested
by the mutant viruses were possible, despite the loss of
specific DENV sequences.

The size of 36 randomly chosen plaques (Blaney et al.,
2003; Hanley et al., 2008) of Vero stocks of rDENV-4-
MODswapCPS and rDENV-4-MODswapVR were com-
pared with those of parent viruses in all three cell lines
(Fig. 1). While MODV does not replicate in C6/36 cells, the
mean plaque size of the two mutant viruses were similar to
that of their rDENV-4 parent in this cell type. In
mammalian cells, the mean plaque sizes of the two mutant
viruses were similar to that of their rDENV-4 parent in
both cell lines and were larger than those of MODV in
Vero but not in BHK-21 cells.

The phenotype of rDENV-4-MODswapVR is consistent
with some previous studies showing that deletion of the VR
of DENV and other flaviviruses did not affect viral
replication in vitro or in vivo (Mandl et al., 1998; Tajima et
al., 2006) but contrasts with studies, including a study that
we conducted on the same rDENV-4 backbone in which the
DENV VR was replaced with that of LGTV (Tumban et al.,
2011), reporting that deletion or replacement of the VR
decreased replication in mammalian cells but not in insect
cells (Alvarez et al., 2005; Men et al., 1996; Pankhong et al.,
2009; Tajima et al., 2007). These apparent discrepancies in
the effect of the VR may stem from variation in the size of
the deletions/replacements used in these studies. For
example, the length of the VR replaced in our previous
study (Tumban et al., 2011) was almost twice the size of the
VR replaced in this study (225 versus 122 nt), which may
explain the difference in results of VR replacement.

The ability of each of the mutant viruses to infect
mosquitoes was compared with that of their two parentalT
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viruses by feeding Aedes aegypti, following previously
described methods (Troyer et al., 2001), with bloodmeals
containing 6.0–7.0 log10 p.f.u. ml21 of Vero stocks of
rDENV-4, MODV, rDENV-4-MODswapVR and rDENV-4-
MODswapCPS, as well as C6/36 stocks of rDENV-4,
rDENV-4-MODswapVR and rDENV-4-MODswapCPS. As
expected, MODV did not infect any A. aegypti and both
stocks of rDENV-4-infected A. aegypti (Table 2). At
bloodmeal titres of approximately 6.5 log10 p.f.u. ml21,
Vero-derived rDENV-4-MODswapCPS and rDENV4-
MODswapVR infected significantly fewer mosquitoes than
rDENV-4 at 7.0 log10 p.f.u. ml21 (Fisher’s exact test, P,0.05
for both comparisons) but infected a similar percentage
compared to rDENV-4 at 6.0 log10 p.f.u. ml21 (Fisher’s exact
test, P.0.05 for both comparisons). Moreover, both mutant
viruses disseminated with similar efficiency to that of
rDENV-4 (statistical analysis not performed due to small
sample sizes). The mean titre of both mutant viruses in the
bodies of infected mosquitoes was similar to each other and
to that of rDENV-4 at a bloodmeal titre of 7.0 log10 p.f.u.
ml21 (ANOVA, df52, 18, F51.0, P50.39). Similar patterns
were observed for C6/36-derived viruses: neither the per cent
of bodies infected (contingency table analysis, Chi-
squared52.96, P50.23) nor the body titre (ANOVA,
F52.39, P50.11) differed among rDENV-4, rDENV-4-
MODswapVR and rDENV-4-MODswapCPS. Both rDENV-
4-MODswapVR (Fisher’s exact test, P50.47) and rDENV-4-
MODswapCPS (Fisher’s exact test, P50.30) disseminated
with similar efficiency as rDENV-4 and head titres were
similar among all three viruses (ANOVA, F52.76, P50.10).

The threat from vector-borne flaviviruses is increasing as
the efficacy of traditional vector control measures wane
(Gubler, 2006; Mackenzie et al., 2004). The development of
a licensed live virus vaccine is challenging, in part, because
vector transmission from vaccinees to unvaccinated
populations must be prevented. Identifying regions in the
genomes of flaviviruses that determine vector transmission
can serve as a basis for the design of live attenuated vaccine
strains that lack the capacity for vector transmission. The
current study has demonstrated that neither the VR nor the
CPS of mosquito-borne DENV is necessary for transmis-
sion by mosquitoes.
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