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Abstract

Spatial autocorrelation plays an important role in geographical analysis; however, there is still room for improvement of this
method. The formula for Moran’s index is complicated, and several basic problems remain to be solved. Therefore, I will
reconstruct its mathematical framework using mathematical derivation based on linear algebra and present four simple
approaches to calculating Moran’s index. Moran’s scatterplot will be ameliorated, and new test methods will be proposed.
The relationship between the global Moran’s index and Geary’s coefficient will be discussed from two different vantage
points: spatial population and spatial sample. The sphere of applications for both Moran’s index and Geary’s coefficient will
be clarified and defined. One of theoretical findings is that Moran’s index is a characteristic parameter of spatial weight
matrices, so the selection of weight functions is very significant for autocorrelation analysis of geographical systems. A case
study of 29 Chinese cities in 2000 will be employed to validate the innovatory models and methods. This work is a
methodological study, which will simplify the process of autocorrelation analysis. The results of this study will lay the
foundation for the scaling analysis of spatial autocorrelation.
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Introduction

The theory of spatial autocorrelation has been a key element of

geographical analysis for more than twenty years. A number of

measurements of spatial correlation were proposed so that we can

investigate the spatial process of geographical evolution from

differing points of view [1–14]. Although there are various

correlation measurements, two are commonly used. One is

Moran’s index [15], and the other, is Geary’s coefficient [16].

The former is a generalization of Pearson’s correlation coefficient,

and the latter is analogous to the Durbin-Watson statistic of

regression analysis. In theory, Moran’s index is somewhat

equivalent to Geary’s coefficient and they can be substituted for

one another. However, in practice, Moran’s index cannot be

replaced by Geary’s coefficient and vice versa due to a subtle

difference of statistical treatment. Compared with Geary’s

coefficient, Moran’s index is more significant to spatial analysis.

Today, the concepts and methods of spatial autocorrelation

have been applied to many fields, which have resulted in a number

of interesting findings [17–26]. However, despite its long history,

many basic and important questions remain to be answered. For

example, we still don’t know how to determine the spatial

contiguity matrix objectively [21]. The relationships between

Moran’s index and Geary’s coefficient are still unclear. In fact,

spatial autocorrelation is a special case of the spatial correlation

function. This correlation in geographic systems is often associated

with the scaling process [27–30]. However, so far, spatial

autocorrelation has not been linked to scaling laws. It is necessary

to find new ways of understanding and implementing spatial

autocorrelation analysis in order to solve many theoretical and

methodological problems in this field. Before this aim can be

accomplished, a simple and general framework must be construct-

ed for this theory.

In this paper, a new way is proposed to express and estimate

Moran’s index. Geary’s coefficient can be re-expressed in a new

form along with other related measurements. By doing so, we can

further develop the analytical process of spatial autocorrelation.

The remaining sections of the paper are organized as follows. In

Section 2, I will reconstruct the spatial weight matrix and Moran’s

index, and improve Moran’s scatterplot in terms of the mathe-

matical processes in this study. In Section 3, the association of

Moran’s index with Geary’s coefficient is discussed. The scopes of

application of the two parameters are defined for geographical

analysis. In Section 4, I will introduce four approaches to

calculating Moran’s index and a simple approach to computing

Geary’s coefficient. The principal cities of China, including

national capital and provincial capitals, are taken as a case to

show how to use the methods advanced in this article. Partial

processes and results of computing are show in Files S1 and S2.

Finally, the paper is concluded with a brief summary. There are

several innovative aspects of this study. First, the mathematical

expressions are regularized, and new methods of computing spatial

autocorrelation measurements are proposed. Second, the impli-

cation of Moran’s index as a scaling parameter is reviewed. Third,

the similarities and differences between Moran’s index and

Geary’s coefficient are clarified. Especially, the threshold values

of the two parameters indicating no spatial autocorrelation are

corrected for spatial samples.

PLOS ONE | www.plosone.org 1 July 2013 | Volume 8 | Issue 7 | e68336



Results

Reconstructing Moran’s Index and Spatial Weights Matrix
The first basic measurement of spatial autocorrelation is

Moran’s index, which came about as a result of Pearson’s

correlation coefficient in general statistics [15]. Generalizing

Pearson’s cross-correlation coefficient of two samples to the

autocorrelation coefficient of one sample, and then generalizing

the 1-dimensional autocorrelation coefficient from time series to

the 2-dimensional autocorrelation coefficient about spatial distri-

bution by substituting the weighting function for the lag

parameter, we can obtain the formula of Moran’s index.

Correspondingly, we can derive Geary’s coefficient from the idea

of spatial autocorrelation by analogy with Watson-Durbin’s

statistic [16]. It will be demonstrated that Moran’s index is based

on populations, while Geary’s coefficient is based on samples.

Moran’s index is in fact a standardized spatial auto-covariance,

which can be simply reinterpreted with linear algebra. Suppose

there are n elements (e.g., cities) in a system (e.g., a network of

cities) which can be measured by a variable (e.g., city size), x. A

vector can be defined in the equation below:

x~ x1 x2 � � � xn½ �T, ð1Þ

where xi is a size measurement of the ith element (i = 1,2,…,n). The

mean of xi is given in the following equation:

m~
1

n

Xn

i~1

xi: ð2Þ

The centralized variable can be calculated by

y~x{m, ð3Þ

where m represents the average value of a vector consisting of n

algebraic/numeric quantities. The population variance is as

below:

s2~
1

n

Xn

i~1

(xi{m)2~
1

n
(x{m)T(x{m)~

1

n
yTy, ð4Þ

where s is the population standard deviation (PSD). The result of

scaling transform of the centralized variable forms a standardized

vector as follows

z~
x{m

s
~

y

s
, ð5Þ

which is termed z-score in statistics. It can be shown that the norm

of z, i.e., the length of the vector, zk k, exactly equals the dimension

of the system, i.e., the number of elements in the system, n. Thus

we have

zk k~zTz~
Xn

i~1

z2
i ~

Xn

i~1

(
xi{m

s
)2~

n

s2

1

n

Xn

i~1

(xi{m)2~n: ð6Þ

Based on the equations prepared above, Moran’s index can be

reconstructed in a simple way. Suppose there is an n-by-n unitary

spatial weights matrix (USWM) such as

W~ wij

� �
n|n

: ð7Þ

The three properties of the matrix are as follows: (1) Symmetry,

i.e., wij = wji; (2) Zero diagonal elements, namely, |wii| = 0, which

implies that the entries in the diagonal are all 0; (3) Normalization

condition, that is

Xn

i~1

Xn

j~1

wij~1: ð8Þ

Then Moran’s index can be expressed in the quadratic form:

I~zTWz, ð9Þ

which is simple and more convenient than the conventional

expression of Moran’s index for the mathematical transform in this

context. Expanding equation (9) yields the original formula of

Moran’s index and provides an autocorrelation coefficient defined

in 2-dimensional space

I~
yT(nW )y

yTy
~

n
Pn
i~1

Pn
j~1

vij(xi{m)(xj{m)

Pn
i~1

Pn
j~1

vij

Pn
i~1

(xi{m)2
, ð10Þ

in which vij denotes the elements of a spatial contiguity matrix, V,

which will be defined and discussed in Materials and Methods.

Equation (10) is the common mathematical form of Moran’s

index.

The theoretical eigen equation of Moran’s index can be derived

from the abovementioned definitions. Equation (9) multiplied left

by z on both sides of the equal sign yields

M�z~zzTWz~Iz, ð11Þ

where

M�~zzTW ð12Þ

can be termed the Ideal Spatial Weights Matrix (ISWM) in a

theoretical sense. In equation (11), z is the eigenvector (charac-

teristic vector) of M* and Moran’s index is the corresponding

maximum eigenvalue (characteristic root) in terms of the absolute

value. According to equation (6), normalizing z leads to z=
ffiffiffi
n
p

. It

can be proved that the diagonal of M* provides the Local

Indicators of Spatial Association (LISA), that is, the local Moran’s

index defined by Anselin [31]. The entries of M*’s diagonal can be

generally expressed as

Ii~

nyi

Pn
j~1

wijyj

yTy
~zi

Xn

j~1

wijzj , ð13Þ

where Ii refers to the local Moran’s index. Accordingly, I denotes

the global Moran’s index. In fact, due to wij = wji, for arbitrary n,

equation (12) can be expanded as follows

New Approaches to Calculating Moran’s Index
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z1

z2

..

.

zn

2
6666664

3
7777775

z1 z2 � � � zn½ �

w11 w12 � � � w1n

w21 w22 � � � w2n

..

. ..
.

P
..
.

wn1 wn2 � � � wnn

2
6666664

3
7777775

~

z1

Pn
j~1

w1jzj z1

Pn
j~1

w2jzj � � � z1

Pn
j~1

wnjzj

z2

Pn
j~1

w1jzj z2

Pn
j~1

w2jzj � � � z2

Pn
j~1

wnjzj

..

. ..
.

P
..
.

zn

Pn
j~1

w1jzj zn

Pn
j~1

w2jzj � � � zn

Pn
j~1

wnjzj

2
66666666666664

3
77777777777775

ð14Þ

Comparing equation (14) with equation (13) shows that the

elements in the diagonal of M* give the local Moran’s index. The

trace of M* is just equal to the global Moran’s index.

Actual Spatial Weights Matrix
The practical spatial weights matrix is different from the ISWM.

In practice of spatial analysis, the matrix zzT in equation (11) can

be replaced by zTz = n. It can be shown that n is the maximum

eigenvalue of the matrix zzT, and z is the corresponding

eigenvector. Considering equation (6), for arbitrary n, we have

zzTz~zn~nz~zTzz: ð15Þ

Expanding equation (15) yields

z1

z2

..

.

zn

2
66664

3
77775 z1 z2 � � � zn½ �

z1

z2

..

.

zn

2
66664

3
77775~

z1

Pn
i~1

z2
i

z2

Pn
i~1

z2
i

..

.

zn

Pn
i~1

z2
i

2
66666666664

3
77777777775
~n

z1

z2

..

.

zn

2
66664

3
77775: ð16Þ

For example, for n = 2, the extended form of equation (15) is

z1

z2

" #
z1 z2½ �

z1

z2

" #
~

z1z1 z1z2

z2z1 z2z2

" #
z1

z2

" #

~
z1(z2

1zz2
2)

z2(z2
1zz2

2)

" #
~2

z1

z2

" #
:

ð17Þ

This illustrates that n is one of the eigenvalues of the matrix zzT

corresponding to the eigenvector z. Further, it can be shown that n

is the maximum eigenvalue of zzT. For a square matrix, the trace

of zzT is

TT(zzT)~z2
1zz2

2z � � � z2
n~n~l1zl2z � � �zln, ð18Þ

where Tr refers to ‘‘finding the trace (of zzT)’’. If l1 = lmax = n as

given, then

l~
n,l~lmax

0,l=lmax

�
: ð19Þ

For arbitrary n, the extended form of zzT is below

zzT~

z1

z2

..

.

zn

2
66664

3
77775 z1 z2 � � � zn½ �~

z1z1 z1z2 � � � z1zn

z2z1 z2z2 � � � z2zn

..

. ..
.

P
..
.

znz1 znz1 � � � znzn

2
66664

3
77775: ð20Þ

According to the Cayley-Hamilton theorem, the eigenvalues of

any n-by-n matrix are identical to the roots of a polynomial

equation. For example, for n = 2, the characteristic polynomial of

the matrix zzT is

lE{zzT~
l{z1z1 {z1z2

{z1z2 l{z2z2

�����
�����

~l2{l(z2
1zz2

2)~l2{2l~0,

ð21Þ

where E denotes the identity/unit matrix. Thus

l1~
X2

i~1

z2
i ~2, l2~0, ð22Þ

The conclusion can be drawn that the maximum eigenvalue of

matrix zzT is its dimension.

Substituting the maximum eigenvalue n for the corresponding

matrix zzT in equation (11) will provide a new mathematical

relationship. In fact, the precondition that equation (10) comes

into existence is as below

nWy~Iy: ð23Þ

In other words, from equation (23) it follows equation (10).

Apparently, Moran’s index is the maximum eigenvalue of nW, and

y is the corresponding eigenvector, which can be normalized as

z=
ffiffiffi
n
p

. Equation (23) divided by the standard error s on both sides

yields

nW
y

s
~I

y

s
: ð24Þ

This leads to the following scaling relationship:

Mz~nWz~Iz, ð25Þ

where
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M~nW~zTzW : ð26Þ

This is the Real Spatial Weights Matrix (RSWM) in the sense of

application or practice. What is referred to as the ‘‘spatial weights

matrix’’ in the literature is just RSWM rather than W or ISWM.

The trace of the matrix nW is the eigenvalue with the minimum

absolute value, i.e. Tr(nW) = 0. Normalizing the eigenvector yields

z0~
zffiffiffiffiffiffiffi

zk k
p ~

zffiffiffi
n
p : ð27Þ

If we employ mathematical software such as Matlab and

Mathcad to calculate the eigenveactor of zzTW or nW, the result

will be zu instead of z. Comparing equation (25) with equation (11)

shows

zzTWz~nWz: ð28Þ

This suggests that when the eigenvector z is multiplied by W on

the left side, it will remain the eigenvector of zzT. Thus we have

(nE{zzT)Wz~(nW{zzTW )z~0, ð29Þ

in which 0 refers to the zero/null vector. However, equation (29)

cannot occur unconditionally. In empirical analysis, the null vector

should be replaced by a residual vector. An approximation

relation is as follows

Mz~nWz?zzTWz~M�z, ð30Þ

where the arrow ‘‘R’’ denotes ‘‘infinitely approach to’’ or ‘‘be

theoretically equal to’’. Empirically, there are always errors

between M = zTzW and M* = zzTW, which will lead to a new

approach to testing the spatial autocorrelation analysis. If the

spatial autocorrelation is very strong, Mz will be a very close

approximation to M*z; otherwise, the two vectors will be

significantly different.

The concept of invariance in the process of mathematical

transform is very important for geographical modeling. Equation

(11) and Equation (25) are two eigenequations that suggest some

invariance in the mathematical transform. The invariance in a

transform suggests some invariance behind change or some

robustness in the process of spatio-temporal evolution of a system.

A characteristic equation denotes a scaling relationship of

matrices. The invariance in change or transform implies some

kind of symmetry, which indicates some law of conservation. In

geography, symmetry is an essential criterion for model building,

method choice, and parameter estimation [32]. Moran’s index is a

quantity of invariance in mathematical transform, so it is a very

basic and significant parameter for spatial analysis.

Improved Version of Moran’s Scatterplot
The analytical process of spatial autocorrelation can be

developed using the mathematical expressions proposed above.

In order to find new approaches to evaluating Moran’s index and

improve the Moran scatterplot, two vectors based on spatial

weights matrix are defined as below

f �~M�z~zzTWz~Iz, ð31Þ

f ~Mz~nWz~zTzWz: ð32Þ

where the relationship between z and f* suggests the theoretical

autocorrelation trend, i.e., the regression line, and the dataset of z

and f, denotes the actual autocorrelation pattern, i.e. the points on

the scatter diagram. The residuals of spatial autocorrelation can be

defined as

ef ~f {f �~Mz{M�z~(nE{zzT)Wz: ð33Þ

where ef refers to the errors of the spatial autocorrelation. The

squared sum of the residuals Sf is

Sf ~eT
f ef ~zTW (nE{zzTE)(nE{zzT)Wz?0: ð34Þ

The value of ef fluctuates around 0; therefore, the Sf value

approaches zero. A standard error can be defined in the form

sf ~

ffiffiffiffiffiffiffiffiffi
1

n
Sf

r
~

ffiffiffiffiffiffiffiffiffiffiffiffi
1

n
eT

f ef

r
: ð35Þ

in which sf refers to the standard error between the variables f and

f*.

The error sum of square can be equivalently expressed in

another form. From equation (11) it follows the observed values of

z as below:

z~
1

I
zzTWz~

1

I
f �: ð36Þ

Correspondingly, the predicted values of z can be given by

z�~
1

I
nWz~

1

I
f : ð37Þ

Thus another residual vector is as below:

ez~z{z�~
1

I
(zzT{nE)Wz~{

1

I
ef , ð38Þ

where ez denotes the residual vector of z and z*. Obviously, the two

residual vectors, ez and ef, are equivalent to one another. The

squared sum of the residuals ez is

Sz~eT
z ez~

1

I2
eT

f ef ?0: ð39Þ

Accordingly, another standard error can be defined as follows

sz~

ffiffiffiffiffiffiffiffi
1

n
Sz

r
~{

sf

I
: ð40Þ

in which sz refers to the standard error between the variables z and

New Approaches to Calculating Moran’s Index
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z*. This implies that the two standard errors, sf and sz, are

equivalent to each other.

After evaluating Moran’s index, it can be tested in two ways.

First, the series of residuals should satisfy the normal distribution,

which shows a bell-shaped curve or histogram. If this distribution

does not occur, the spatial weights matrix must be adjusted or the

weight function must be changed. Second, the standard error

between f and f* should be less than 0.15, that is, sf,0.15, which is

an empirical value. The standard errors and the histograms of

residuals make two test approaches of spatial autocorrelation.

Moran’s scatterplot can be amended and developed using the

above equations. The Moran scatterplot proposed by Anselin [31]

plays an important part in spatial autocorrelation analysis. If y

represents the x-axis, and nWy represents the y-axis, a conventional

Moran scatterplot can be created. The scatterplot can be

improved as follows. First, a trend line can be added to the plot.

Second, the variables can be standardized, and x or y can be

replaced by z. Based on equations (31) and (32), the Moran

scatterplot can be bettered so that it will illustrate spatial

autocorrelation more efficiently. The plot of f* vs. z shows a set

of ordered data points, which make a straight line, while the plot of

f vs. z displays a set of randomly scattered data points.

Superimposing the two plots onto each other yields an improved

scatter diagram for Moran’s I. In the revised plot, the coordinates

(zi, fi
*) represent the ideal locations that form a trend line, while (zi,

fi) represent the actual locations of data points that are irregularly

scattered. The slopes of the trend lines of (zi, fi
*) and (zi, fi) indicate

Moran’s index. Thus, the geometric meaning of the Moran

scatterplot becomes clear. Moreover, an inverse Moran scatterplot

can be defined based on equations (36) and (37). In the inverse

scatterplot, the abscissa (x-axis) is represented by f*, and the

ordinate (y-axis) is represented by z and z*. The coordinates (fi
*, zi)

indicates the ideal locations which form a straight line, while (fi
*,

zi
*) denotes the actual locations of data points which are irregularly

scattered. A dual relationship can be found between the Moran

scatterplot and the inverse Moran scatterplot.

Discussion

Revision of Moran’s Index and Geary’s Coefficient
Moran’s index is only one of the many spatial autocorrelation

measurements in geographical analysis. Another important

measurement is Geary’s coefficient [16]. In theory, Moran’s index

can be associated with Geary’s coefficient. However, the former

cannot be directly converted into the latter because that the bases

of definitions of the two spatial statistics are different. Geary’s

coefficient is defined in the equation below:

C~

(n{1)
Pn
i~1

Pn
j~1

vij(xi{xj)
2

2
Pn
i~1

Pn
j~1

vij

Pn
i~1

(xi{�xx)2
~

(n{1)
Pn
i~1

Pn
j~1

wij(xi{xj)
2

2
Pn
i~1

(xi{�xx)2
, ð41Þ

in which �xx~m is the mean of x, and vij is the spatial contiguity

measurement (See Materials and Methods). Equation (41) can be

rewritten as

C~
1

2

Xn

i~1

Xn

j~1

wij(
xi{�xx

s
{

xj{�xx

s
)2~

1

2

Xn

i~1

Xn

j~1

wij(Zi{Zj)
2,ð42Þ

where s refers to a sample standard deviation (SSD), and Z, to the

corresponding standardized vector, that is

s~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n{1

Xn

i~1

(xi{�xx)2

s
, Z~

x{�xx

s

This differs from the definition of Moran’s index, which, as

indicated above, is based on PSD. The traditional Moran’s index

is used to describe spatial population, while traditional Geary’s

coefficient is for describing a spatial sample.

The base of spatial analysis can be divided into two cases: spatial

population and spatial sample. Based on spatial sample, Moran’s

index can be revised as

I�~

(n{1)
Pn
i~1

Pn
j~1

vij(xi{�xx)(xj{�xx)

Pn
i~1

Pn
j~1

vij

Pn
i~1

(xi{�xx)2

~ZTWZ~
n{1

n
zTWz~

n{1

n
I ,

ð43Þ

which suggests that there is a linear scaling relationship between

the population-based Moran’s index and the sample-based

Moran’s index. On the other hand, based on a spatial population,

Geary’s coefficient can be redefined as

C�~

n
Pn
i~1

Pn
j~1

vij(xi{xj)
2

2
Pn
i~1

Pn
j~1

vij

Pn
i~1

(xi{m)2

~
1

2

Xn

i~1

Xn

j~1

wij(zi{zj)
2~

n

n{1
C:

ð44Þ

Rearranging equation (44) yields

C�~
Xn

i~1

Xn

j~1

wij(z
2
i {zizj)~

Xn

i~1

Xn

j~1

wijz
2
i {zTWz: ð45Þ

Defining a parameter such as

v~
Xn

i~1

Xn

j~1

wijz
2
i ?

1

n

Xn

i~1

z2
i ~1, ð46Þ

we have

C�~v{I?1{I , ð47Þ

which reflects the relation between Moran’s index and the Geary’s

coefficient based on spatial population. Since I ranges from 21 to

1, C* will have a value between 0 and 2. The threshold value of

Geary’s coefficient is Ct
* = 1, where the subscript ‘‘t’’ refers to

‘‘threshold’’; therefore, the threshold value of Moran’s index is

It = 0, indicating no spatial autocorrelation. In light of equation

(47), if C *,1, then I .0, and then there will be a positive spatial

autocorrelation (PSAC); If C *.1, then I ,0, then there will be a

negative spatial autocorrelation (NSAC).
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Similarly, for a spatial sample, the mathematical relationship

between the revised Moran’s index and Geary’s coefficient can be

derived as follows:

C~y{I�?
n{1

n
{I�, ð48Þ

where

y~
Xn

i~1

Xn

j~1

wijZ
2
i ?

1

n

Xn

i~1

Z2
i ~

n{1

n
: ð49Þ

This suggests that, for a spatial sample, the threshold value of

Geary’s coefficient is Ct = (n21)/n, which implies no autocorrela-

tion in a spatial process. If Ct,(n21)/n, then I*.0, there will be a

PSAC; If Ct.(n21)/n, then I*,0, and there will be a NSAC.

Thresholds of Moran’s Index and Geary’s Coefficient
A long-standing problem about the threshold values of Moran’s

index and Geary’s coefficient, which suggest no spatial autocor-

relation, should be solved. For a spatial population, the critical

value of Moran’s index is It = 0, and the threshold of Geary’s

coefficient is Ct
* = 1. These are indisputable. However, for a spatial

sample, the consensus has not yet been reached so far. In many

previous works, the threshold value of Moran’s index was regarded

as It
* = 1/(1-n) [10]. If this were true, then, according to equation

(43), the threshold of Moran’s index for population would be

It = 2n/(n21)2; According to equation (47), the threshold of

Geary’s coefficient for population would be Ct
* = [(n21)2+n]/

(n21)2; According to equation (44) or equation (48), the threshold

of Geary’s coefficient for sample would be Ct = [(n21)2+n]/

[n(n21)]. However, based on Pearson’s correlation coefficient,

Moran’s index will indicate null autocorrelation if and only if its

value equals zero. In other words, for populations, the threshold of

Moran’s index must be It = 0 rather than other values. Then,

according to equation (43), we have It
* = 0 for samples; according

to equation (47), we have Ct
* = 1 for populations; according to

equation (44) or equation (48), we have Ct = (n21)/n for samples. A

comparison between the new values and the traditional results of

autocorrelation thresholds can be drawn as follows (Table 1).

Materials and Methods

Four Approaches to Moran’s Index
The traditional method of evaluating Moran’s index is so

complicated that it is difficult for learners to make spatial analyses

using the autocorrelation measurement. Based on the new

framework of spatial autocorrelation expressed through linear

algebra, especially, equations (11), (25), (31), and (32), four simple

approaches to computing Moran’s index are proposed as follows.

The first is a three-step calculation method, the second is the

matrix scaling method, the third is the linear regression method,

and the fourth is the standard deviation method. The four

approaches are theoretically equivalent to one another. However,

in practice, each method has its own advantages and disadvan-

tages (Table 2).

(1) Three-step calculation method. This is the basic

method, which can be readily mastered by the beginners of

spatial autocorrelation analysis. Based on the standardized vector z

and the spatial weights matrix W, the three steps of calculating

Moran’s index are as follows. Step 1: standardize the variable. In

other words, convert the initial vector in equation (1) into the

standardized vector in equation (5). According to the original

definition of Moran’s index [15,33], the PSD rather than the SSD

should be used to standardize the data. Step 2: calculate the

USWM. The weights matrix is defined in equations (7) and (8).

Step 3: compute Moran’s index. According to equation (9), the

USWM is first left multiplied by the transposition of z, and then

the product of zT and W is right multiplied by z. The final product

of the continued multiplication is the value of Moran’s index (see

File S1 for details).

(2) Matrix scaling method. It can also be termed ‘‘charac-

teristic value method’’. The key is to find the maximum eigenvalue

of the matrix M* = zzTW or M = nW by using equation (11) or

equation (25). In fact, if M* is obtained through equation (12), the

local Moran’s index can also be calculated. The values of the

principal diagonal elements are just the local Moran’s indexes.

The trace of M* is actually the global Moran’s index which can be

determined by the equation below:

I~TT(M�)~TT(zzT W ), ð50Þ

where Tr denotes finding the sum of the numbers in the principal

diagonal of a matrix.

(3) Regression analysis method. Linear regression can be

employed to solve equations (31) and (32) and evaluate Moran’s

index. Suppose that z acts as an independent variable (i.e.,

argument), and f* = M*z or f = Mz as the corresponding dependent

variable (response variable). A regression analysis can be

conducted by letting the constant equal zero. The regression

coefficient (slope) gives the value of Moran’s index.

(4) Standard deviation method. It can be proved that the

PSD of f* is just the absolute value of Moran’s index. In terms of

equation (31), the average value of f* is zero since the mean of z is

zero. Considering equation (6), the population variation of f* is

1

n
f �Tf �~

1

n
zTzI2~I2: ð51Þ

Thus the value of Moran’s index can be given by

I~+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n
f �Tf �

r
: ð52Þ

This suggests an alternative approach to estimating Moran’s

index.

The first method is the most important one in this framework of

spatial autocorrelation analysis. The second, third, and fourth ones

are in fact derived from the first method. The process of data

preparation, parameter estimation, and analysis of results based on

Moran’s index can be illustrated with a flow chart (Figure 1). As an

alternative measurement of Moran’s index, Geary’s coefficient can

be utilized to make a spatial analysis. A new approach comprising

five steps to computing Geary’s coefficient has been found by

analogy with the first approach to evaluating Moran’s index.

However, compared with determining Moran’s index, calculating

Geary’s coefficient is complex to some extent. The first step is to

standardize data using the formula zD = (x-m)/s, where s denotes

SSD. The second step is to the compute the squares of difference

using the formula Zij = (zi
D- zj

D)2. The results compose a matrix

Z = [(zi
D- zj

D)2] = [Zij]. The third step is to transform the spatial

contiguity matrix (V) into the spatial weights matrix (W = V/W0).

The fourth step is to calculate the sum of the products of the
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Table 1. The threshold values of Moran’s index, Geary’s coefficient and the revised results.

Parameter In this paper (new results) In previous literature (old results)

Spatial population Spatial sample Spatial population Spatial sample

Moran’s index 0 0 0 21/(n21)

Geary’s coefficient 1 (n21)/n 1 1

doi:10.1371/journal.pone.0068336.t001

Table 2. Comparison of the advantages and disadvantages of the four methods.

Method Simplicity Global Moran’s I Local Moran’s I Test

Three-step calculation Very simple Directly yield Indirectly yield Complicated

Matrix scaling Simple Directly yield Directly yield Complicated

Linear regression Moderate Directly yield Indirectly yield Simple

Standard deviation Moderate Directly yield Indirectly yield Complicated

doi:10.1371/journal.pone.0068336.t002

Figure 1. A flow chart of data processing, parameter estimation, and autocorrelation analysis.
doi:10.1371/journal.pone.0068336.g001
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algebraic quantities of W and the numeric quantities of Z using the

following formula S =ggwijZij. The fifth step is to evaluate

Geary’s coefficient using the formula C = S/2.

Empirical Analysis
The improved framework of spatial autocorrelation can be

applied to China’s cities to make an example of methodological

practice. For simplicity, only the capital cities of the 31 provinces,

autonomous regions, and municipalities directly under the Central

Government of China are considered in this case study (Figure 2).

The urban population is employed as a size measurement, while

the distances by train between any two cities is used as a spatial

contiguity measurement. The census data of the urban population

in 2000 are available from the Chinese website (http://pdfdown.

edu.cnki.net), and the railroad distance matrix can be found in

many Chinese road atlases (see File S2 for details). Because the two

cities of Haikou and Lhasa are not connected to the network of

Chinese cities by railway in 2000, 29 cities are actually included in

the dataset. In other words, the size of the spatial sample is n = 29

(Table 2).

In order to construct a spatial weights matrix, a spatial

contiguity matrix must be created by using a weight function

[21,34]. For n elements in a geographic system, a spatial contiguity

matrix, V, can be expressed as

V~ vij

� �
n|n

~

v11 v12 � � � v1n

v21 v22 � � � v2n

..

. ..
.

P
..
.

vn1 vn2 � � � vnn

2
66664

3
77775, ð53Þ

in which vij is a measure used to compare and judge the degree of

nearness or the contiguous relationships between location i and

location j (i, j = 1,2,…,n). No matter what the entry vii equals, it will

be converted into zero (for i = j, vii;0). Thus a spatial weights

matrix, W, can be given by

W~
V

V0
~

w11 w12 � � � w1n

w21 w22 � � � w2n

..

. ..
.

P
..
.

wn1 wn2 P wnn

2
6666664

3
7777775

or

W�~
nV

V0
~n

w11 w12 � � � w1n

w21 w22 � � � w2n

..

. ..
.

P
..
.

wn1 wn2 P wnn

2
6666664

3
7777775

,

ð54Þ

where

Figure 2. A sketch map of the geographic relationship of the principal cities of China.
doi:10.1371/journal.pone.0068336.g002
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V0~
Xn

i~1

Xn

j~1

vij , wij~
vijPn

i~1

Pn
j~1

vij

,
Xn

i~1

Xn

j~1

wij~1

The value vii;0 results in the value wii;0. It is clear that W is

mathematically equivalent to W*. In the literature, W* is often

used to represent the spatial weights matrix. However, I employ W

to make an empirical analysis of China’s cities because the models

and methods presented in Results are based on W instead of W*.

Compared with W*, W make the mathematical process of spatial

autocorrelation become simple and graceful.

Three types of functions can be used as a spatial weight

function: inverse power function, negative exponential function,

and staircase functions [21]. In this case, two functions will be

adopted. The first is the inverse power function, which indicates

action at a distance or global correlation in geography. Generally,

the inverse powerfunction is in the form below:

vij~
r{b

ij ,i=j

0,i~j

(
, ð55Þ

where rij refers to the distance between location i and location j,

and b denotes the distance decay coefficient (generally, b = 1). This

kind of weight function comes from the impedance function of the

gravity model [7]. Cliff and Ord [4,35] used this function to

construct the spatial congruity matrix. The second function is the

negative exponential function indicative of quasi-global correlation

or even quasi-local correlation [27]. The exponential function can

be expressed as

vij~
exp ({rij=�rr),i=j

0,i~j

�
, ð56Þ

where �rr denotes the average distance between any two locations,

and it can be defined as the arithmetic mean of all the numbers in

Table 3. Classification of spatial autocorrelation based on population size of the principal cities in China (2000).

City z Based on inverse power function Based on negative exponential function

f f* z* LISA Type f f* z* LISA Type

Beijing 2.2876 0.0236 20.0720 20.7510 0.0019 H-H 20.0784 20.0939 1.9105 20.0062 H-L

Changchun 20.2685 0.1215 0.0084 219.1155 20.0011 L-H 0.1015 0.0110 21.6814 20.0009 L-H

Changsha 20.4840 0.1389 0.0152 29.3401 20.0023 L-H 0.1061 0.0199 23.3632 20.0018 L-H

Chengdu 0.1544 20.0091 20.0049 21.0662 0.0000 H-L 20.0436 20.0063 21.5679 20.0002 H-L

Chongqing 0.8516 20.0761 20.0268 21.7266 20.0022 H-L 20.0711 20.0350 21.2534 20.0021 H-L

Fuzhou 20.5373 0.0622 0.0169 22.0959 20.0012 L-H 0.1019 0.0221 21.6559 20.0019 L-H

Guangzhou 1.2998 20.0291 20.0409 23.8635 20.0013 H-L 20.0160 20.0533 22.4726 20.0007 H-L

Guiyang 20.5943 0.0509 0.0187 20.8618 20.0010 L-H 0.0420 0.0244 21.6313 20.0009 L-H

Hangzhou 20.3606 0.6607 0.0113 5.9883 20.0082 L-H 0.1736 0.0148 3.0223 20.0022 L-H

Harbin 0.0167 0.0271 20.0005 210.4506 0.0000 H-H 0.0670 20.0007 23.2167 0.0000 H-H

Hefei 20.7321 0.1499 0.0230 221.0039 20.0038 L-H 0.1456 0.0300 24.2294 20.0037 L-H

Hohehot 20.9095 0.0543 0.0286 24.7648 20.0017 L-H 0.0514 0.0373 23.5477 20.0016 L-H

Jinan 20.3100 0.1776 0.0098 21.9766 20.0019 L-H 0.1360 0.0127 22.4831 20.0015 L-H

Kunming 20.3503 20.0158 0.0110 24.2615 0.0002 L-L 20.0087 0.0144 23.2791 0.0001 L-L

Lanzhou 20.5996 20.2605 0.0189 25.6450 0.0054 L-L 20.0810 0.0246 23.3135 0.0017 L-L

Nanchang 20.6544 0.1341 0.0206 23.7769 20.0030 L-H 0.1346 0.0269 22.5163 20.0030 L-H

Nanjing 0.0137 0.3287 20.0004 3.0971 0.0002 H-H 0.1320 20.0006 0.5454 0.0001 H-H

Nanning 20.7728 0.0400 0.0243 24.4145 20.0011 L-H 0.0709 0.0317 22.5859 20.0019 L-H

Shanghai 3.4994 20.1884 20.1101 0.9254 20.0227 H-L 20.1240 20.1436 0.3894 20.0150 H-L

Shenyang 0.3512 0.0659 20.0110 21.2712 0.0008 H-H 0.0680 20.0144 21.7284 0.0008 H-H

Shijiazhuang 20.5563 0.2938 0.0175 2.4202 20.0056 L-H 0.1380 0.0228 1.7320 20.0026 L-H

Taiyuan 20.3279 0.0335 0.0103 0.2891 20.0004 L-H 0.0644 0.0135 1.0620 20.0007 L-H

Tianjin 0.7153 0.6013 20.0225 21.6172 0.0148 H-H 0.0690 20.0294 21.0227 0.0017 H-H

Urumchi 20.6326 20.0232 0.0199 0.5011 0.0005 L-L 20.0465 0.0260 0.2124 0.0010 L-L

Wuchang 1.1835 20.0974 20.0372 2.1288 20.0040 H-L 20.0224 20.0486 0.6314 20.0009 H-L

Xi’an 0.0882 20.0670 20.0028 8.2811 20.0002 H-L 20.0259 20.0036 1.9734 20.0001 H-L

Xining 20.9608 20.1557 0.0302 4.9494 0.0052 L-L 20.0551 0.0394 1.3425 0.0018 L-L

Yinchuan 21.0646 20.0789 0.0335 2.5088 0.0029 L-L 20.0215 0.0437 0.5231 0.0008 L-L

Zhengzhou 20.3457 0.1188 0.0109 0.7379 20.0014 L-H 0.1033 0.0142 1.1327 20.0012 L-H

doi:10.1371/journal.pone.0068336.t003
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a distance matrix. The exponential function can be derived from

the entropy- maximizing model proposed by Wilson [36].

The four approaches discussed above can be employed to

estimate Moran’s index of the 29 Chinese cities. The process of the

basic computation is described below. Using equations (1)–(5), we

can standardize the vector of the urban population sizes of the 29

cities x and yield z. Then, applying equations (55) or (56) to the

matrix of railway distances between the 29 cities yields a spatial

contiguity matrix, indicated by equation (53). Let the entries of

diagonals, vii, equal zero (vii = 0). By referring to the method in

Figure 3. The improved Moran’s scatterplots with trendlines of spatial autocorrelation for the principal cities of China (2000). [a.
Based on inverse power function; b. Based on negative exponential function].
doi:10.1371/journal.pone.0068336.g003
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which equation (53) transforms into equation (54), we can convert

the spatial contiguity matrices (V) into the spatial weight matrices

(W) based on railway distance. Finally, equation (9), or (11), or (31)

is utilized to calculate Moran’s index. The local Moran index,

LISA, can be determined by equation (12) or (13). The diagonal

elements of M* = zzTW are simply the value of LISA. The main

results are displayed in Table 3.

It has been demonstrated that the thresholds of Moran’s index

for both populations and samples are zero (Discussion). Based on

the inverse power function, equation (55), the value of Moran’s

Figure 4. The inverse Moran’s scatterplots with trendlines of spatial autocorrelation for the principal cities of China (2000). [a. Based
on inverse power function; b. Based on negative exponential function].
doi:10.1371/journal.pone.0068336.g004
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index is I<20.0315,0, which implies a weak negative autocor-

relation; Based on the exponential function, equation (56), the

index value is I<20.0410,0, which also suggests a weak negative

autocorrelation between the capital cities. These results are

consistent with the conclusion drawn from the error sums of

square. Using equations (34) and (35), we can compute the squared

sum of the residuals between f and f* and the corresponding

standard errors. Based on the power function, the error sum of

square is around Sf = 1.2570, the standard error is about

sf = 0.2082; Based on the exponential function, we have

Sf = 0.1878 as well as sf = 0.0805. These results show that, for the

city sizes of China in 2000, the spatial autocorrelation based on the

exponential function (confidence level is greater than 99%) is more

significant than the correlation based on the power function

(confidence level is greater than 59%). This suggests that China’s

cities are locally spatial autocorrelation rather than global spatial

autocorrelation.

Moran’s scatterplots can be employed to make an analysis of

spatial autocorrelation. It is easy to create Moran’s scatterplots and

the inverse Moran’s scatterplots by means of the data in Table 3.

Using z to represent x-axis, and f and f* to represent y-axis, we can

draw the revised Moran’s scatterplots, which are displayed in

Figure 3. In the plot, the coordinates of observed values (z, f) yield

the scatter points, while the coordinates of expected values (z, f*)

give the trend line. Accordingly, using f* to represent x-axis, and z

and z* to represent y-axis, we can generate the inverse Moran’s

scatterplots, which are shown in Figure 4. In this plot, the

coordinates of expected values (f*, z*) give the scatter points, while

the coordinates of observed values (f*, z) yield the trend line.

Obviously, the inverse Moran’s plot is the mirror image of a

Moran’s plot. In other words, a Moran’s scatterplot and its inverse

scatterplot are reciprocal to one another. The reciprocal of the

slope of the trend line in an inverse scatterplot equals the value of

Moran’s index.

By employing the values of LISA and the revised or inverse

Moran scatterplots, we can find the patterns of the spatial

autocorrelation of China’s cities in 2000. According to Moran’s

scatterplots, spatial autocorrelation falls into four types: the high-

high correlation (H-H type: e.g. Tianjin, Shenyang, Harbin) in the

first quadrant, the low-high correlation (L-H type: e.g. Hangzhou,

Hefei, Nanchang) in the second quadrant, the low-low correlation

(L-L type: e.g. Lanzhou, Xining, Yinchuan) in the third quadrant,

and the high-low correlation (H-L type: e.g. Shanghai, Guang-

dong, Chongqing) in the fourth quadrant. The cluster result based

on the power law is similar to that based on the exponential law;

however, Beijing is an exception. In terms of the power function,

Beijing belongs to the high-high type, but it falls into the high-low

type in terms of the exponential function (Table 3). This indicates

that, as a whole, spatial weight functions have no significantly

different influence on the autocorrelation pattern of China’s cities.

Going a step further, we can find the most prominent Chinese

cities through the process of spatial autocorrelation. Several

evidences show that the city of Shanghai seems to be an

exceptional case in Moran’s scatterplots. First, the standardized

sizes of two cities, Shanghai and Beijing, are greater than 2, the

value of double standard deviation. Second, the maximum value

of LISA belongs to Shanghai. Third, if we remove Shanghai from

the sample, the trendline in Figure 3(a) will become nearly flat.

These calculations show that the most prominent city of China in

the spatial autocorrelation process is Shanghai followed by Beijing,

Tianjin, and Hangzhou. This conclusion lends further support to

the spatial correlation analysis of China’s cities [28].

If we examine the error frequency distributions, we can

determine the difference between the effect of the inverse power

function and that of the negative exponential function. By the

results displayed in Table 3, the residual values of spatial

autocorrelation can be calculated using equation (33). Then, the

bar graphs of frequency distributions based on the power function,

equation (55), and the exponential function, equation (56), can be

illustrated as follows (Figure 5). The graphs are expected to be bell-

shaped histograms. However, both of the histograms fall short of

expectations, but the second one, shown in Figure 5(b), is closer to

the bell curve than the first one, shown in Figure 5(a). Based on the

power function, the squared sum of the errors between the real

frequency distribution and the theoretical normal distribution is

about 0.1963, while based on the exponential function, the

Figure 5. The normal histograms of error distributions based on different spatial weight functions for China’s cities (2000). (Note:
These graphs are created using standardized error series. The filled bars represent the actual distributions based on observed values, while the
unfilled bars with double frames represent the normal distributions based on the expected values, which form bell-shaped histograms.) [a. Based on
inverse power function; b. Based on negative exponential function].
doi:10.1371/journal.pone.0068336.g005
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corresponding error sum of square is about 0.1487. This seems to

suggest that the negative exponential function is more appropriate

for the spatial autocorrelation analysis of China’s cities than the

inverse power function as a spatial weight function. As a matter of

fact, the dataset consisting of only 29 elements is not large enough

to form an unambiguous normal curve or bell histogram. The

above-stated analytical process of normal histograms is just to

demonstrate an application of a method, but the conclusion is for

reference only.

In practice, the spatial population and the spatial sample are

relative. Whether a dataset is treated as sample or population

depends on the aim of spatial analysis. For the above example, the

29 cities in China can be regarded as a spatial population or a

sample. If we investigate the capital cities only, the set of cities can

be thought of as a population; but if we examine all the cities of

China by means of this subset of cities, the 29 cities will make up a

sample. Applying the approaches to evaluating Moran’s index and

Geary’s coefficient to the dataset of the 29 China’s cities yields a

series of results of Moran’s index and Geary’s coefficient, which

are tabulated below (Table 4). Clearly, the values of the different

autocorrelation parameters based on different weight functions led

to the same conclusion: weak negative spatial autocorrelation. This

also suggests that if the size of dataset n is large enough, the

parameter values based on SSD are not significantly different from

those based on PSD.

Conclusions
The significance of this work is that it provides a new approach

to and a new way of understanding spatial autocorrelation

analysis. In particular, based on the reformative expression of

Moran’s index, the spatial autocorrelation can be associated with

scaling analysis. By mathematical transform, the relationship

between Moran’s index and the geographical scaling process can

be revealed, and the results will be reported in an upcoming

article. Now, three conclusions can be drawn from this study.

First, the spatial autocorrelation analysis can be sim-
plified by means of matrix calculus. Using equations of

matrices, we can calculate Moran’s index or Geary’s coefficient by

several steps with ease. If the global Moran’s index is evaluated,

then the local Moran’s index can be incidentally obtained. What is

more, based on the matrix expression, Moran’s scatterplot can be

improved and the inverse Moran’s scatterplot can be put forward.

Second, the scopes of application of Moran’s index and
Geary’s coefficient are different. Moran’s index is based on

spatial population, while Geary’s coefficient is based on spatial

sampling results. If we plan to apply Moran’s index to spatial

samples, the formula of Moran’s index should be revised; if we

plan to apply Geary’s coefficient to spatial population, the formula

of Geary’s coefficient should also be revised. Third, the error
frequency distribution can be employed to choose a
spatial weight function. One academic contribution of this

paper to geographical analysis is the error formula of spatial

correlation. More than one type of weight functions has been used

to make spatial autocorrelation analysis; however, using the one

resulting in an error frequency distribution which is more similar

to Gaussian distribution is more advisable.
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