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Abstract

Background: Celiac disease (CD) is an intestinal inflammation driven by gluten-reactive CD4+ T cells. Due to lack of selective
markers it has not been determined whether defects in inducible regulatory T cell (Treg) differentiation are associated with
CD. This is of importance as changes in numbers of induced Treg could be indicative of defects in mucosal tolerance
development in CD. Recently, we have shown that, after encounter of retinoic acid during differentiation, circulating gut-
imprinted T cells express CD62LnegCD38+. Using this new phenotype, we now determined whether alterations occur in the
frequency of natural CD62L+Foxp3+ Treg or mucosally-imprinted CD62LnegCD38+Foxp3+ Treg in peripheral blood of CD
patients. In particular, we compared pediatric CD, aiming to select for disease at onset, with adult CD.

Methods: Cell surface markers, intracellular Foxp3 and Helios were determined by flow cytometry. Foxp3 expression was
also detected by immunohistochemistry in duodenal tissue of CD patients.

Results: In children, the percentages of peripheral blood CD4+Foxp3+ Treg were comparable between CD patients and
healthy age-matched controls. Differentiation between natural and mucosally-imprinted Treg on the basis of CD62L and
CD38 did not uncover differences in Foxp3. In adult patients on gluten-free diet and in refractory CD increased percentages
of circulating natural CD62L+Foxp3+ Treg, but normal mucosally-imprinted CD62LnegCD38+Foxp3+ Treg frequencies were
observed.

Conclusions: Our data exclude that significant numeric deficiency of mucosally-imprinted or natural Foxp3+ Treg explains
exuberant effector responses in CD. Changes in natural Foxp3+ Treg occur in a subset of adult patients on a gluten-free diet
and in refractory CD patients.
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Introduction

Celiac disease (CD) is a chronic inflammatory disease of the

small intestine that develops in genetically susceptible individuals

in response to the ingestion of gluten from wheat, barley and rye.

Inflammatory gluten-specific CD4+ T cells that are restricted to

HLA-DQ2 or HLA-DQ8 molecules can be isolated from the small

intestinal mucosa of CD patients but not from healthy individuals

[1,2]. These inflammatory gluten-specific T cells produce large

amounts of interferon-c [3] and are expected to be key

contributors to intestinal tissue damage. Currently, the only

treatment for CD is a lifelong gluten-free diet (GFD), resulting in

complete remission and recovery of the normal intestinal

architecture. However, a severe complication occurs in a small

proportion of CD patients who become unresponsive to the GFD

and develop refractory celiac disease (RCD). RCD is defined by

the identification of malabsorption and persisting duodenal villous

atrophy, despite adherence to a GFD and absence of other

enteropathies [4,5]. A subgroup of RCD patients, denoted as type

II, have aberrant populations of T cells lacking the surface

expression of CD3 rendering these patients at high risk to develop

an enteropathy-associated T-cell lymphoma (EATL) [6].

Despite our increasing knowledge of the pathogenesis of CD,

it is still unclear why oral tolerance to gluten is so often lost and
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why the excessive pro-inflammatory T-cell response in CD is

not suppressed by a regulatory T-cell response. Several

regulatory T cell (Treg) subsets have been described to be

important for immune tolerance. On the basis of their origin

they can be divided in thymus-derived natural Treg cells and

the peripherally induced Treg cells [7]. Both subsets share the

transcription factor forkhead box P3 (Foxp3). Natural Treg cells

primarily maintain tolerance to self-antigen and prevent auto-

immunity [8]. On the basis of murine models it has been

postulated that natural Treg cells are dispensable for protein

specific oral tolerance [9]. In contrast, induced Tregs that have

differentiated from naive T cells in the tolerogenic environment

of the gut-draining lymph nodes can mediate protein specific

oral tolerance in these models [10,11,12,13,14]. Currently, it is

technically impossible to study gluten-specific Treg in patients.

However, changes in peripheral blood Foxp3+ Treg cells and

lamina propria Foxp3+ cells have been reported in CD patients.

Most studies describe an increase of Foxp3+ cells in CD patients

compared to controls either in peripheral blood [15] or in the

small intestinal mucosa [16,17,18,19,20]. However, in other

studies, no difference in Foxp3+ cells was observed between CD

patients and controls [21,22,23]. As CD patient populations

with different ages and clinical status were investigated and

because of the large variability in data we hypothesize that

changes in Foxp3+ T cells may be transient and possibly related

to a particular subset of CD patients.

Earlier studies have not investigated whether the increase of

circulating Foxp3+ Treg cells occurred in the natural Treg cell

or induced Treg cell population. This is of importance as

changes in numbers of induced Treg could be indicative of

defects in mucosal tolerance development in CD. Previously,

there was a lack of cell surface markers to distinguish mucosally-

imprinted Treg cells from natural Treg cells. Recently, we have

demonstrated that mucosally-imprinted CD4+ T cells can be

identified by the expression of CD62LnegCD38+ [24]. In mice,

this mucosal CD62LnegCD38+ T-cell phenotype is efficiently

induced during differentiation in the gut-draining lymph node

which can be mimicked by differentiation in the presence of

retinoic acid (RA) and TGF-b. For human CD4+ T cells [24],

RA alone is sufficient for CD62LnegCD38+ induction. In human

peripheral blood these mucosally-imprinted

CD4+CD62LnegCD38+ T-cells have enriched expression of the

gut-homing chemokine receptor C-C chemokine receptor type 9

(CCR9) and b7-integrin whereas expression of the skin-homing

marker cutaneous leukocyte-associated antigen is almost absent

[24]. Crucially, staining of peripheral blood from CD patients

who underwent a challenge revealed that virtually all gluten-

specific DQ2 tetramer-positive T cells had the CD62LnegCD38+

phenotype [24]. With this new set of markers we can now

distinguish between the mucosally-imprinted Foxp3+ T cells and

the non-mucosally-imprinted cells.

In this study, we determined whether alterations in the

frequency of circulating mucosally-imprinted CD62LnegCD38+-

Foxp3+ Treg cells are detected in CD patients. We analyzed the

percentage of Foxp3+ Tregs in the whole circulating CD4+ T cell

population and within the mucosally-imprinted CD62LnegCD38+

population. In view of the variability in the results of previous

Foxp3+ quantification we focused our analysis on a relatively

homogenous patient population of pediatric untreated CD patients

aiming to select for disease at onset. For comparison we analyzed

adult patients with RCD, adult patients receiving a GFD and

compared them with healthy adult controls.

Methods

Patients (see Table 1 and 2)
Pediatric patients who underwent an esophagogastroduodeno-

scopy (EGD) with suspicion of CD were approached for

participation in our study at the Erasmus Medical Centre –

Sophia Children’ s Hospital, Rotterdam, The Netherlands. After

diagnosis, those with biopsy-proven CD and positive auto-

antibodies (n = 34) or with a Marsh score 1–2, positive auto-

antibodies and response to GFD (n = 2) were included in the

patient group (n = 36). Whereas children with a normal intestinal

histology and negative auto-antibodies were included in the

control group (n = 20). Patients diagnosed with other diseases were

excluded from the study. Adult patients with treated CD (i.e. CD

patients responding to a GFD) and RCD (i.e. CD patients not

responding to a GFD) from the VUMC, Amsterdam, The

Netherlands were included in the study. The studies were

approved by the medical ethical committee of the Erasmus

Medical Centre and all participants or parents of participants gave

written informed consent before enrollment.

Serology
Antibodies (IgA) against tissue transglutaminase (tTG) were

determined in serum by enzyme-linked immunosorbent assay

using either a commercial assay (Thermo Fisher/Phadia, Freiburg,

Germany), according to the manufacturer’s instructions, or an in-

house assay based on recombinant human tTG (Diarect AG,

Freiburg, Germany) as a substrate. Antibodies (IgA) against

endomysium were determined in serum by indirect immunoflu-

orescence analysis (IFA) using either commercial primate esoph-

agus slides (Inova, San Diego, CA), according to the manufactur-

er’s instructions, or in-house primate esophagus slides according to

a previously described procedure [25]. All antibody assays used

were validated and subjected to both internal and external quality

assessment.

Flow Cytometry
After erythrocyte lysis, whole blood samples were stained for

flow cytometry using monoclonal antibodies against CD3

(HIT3a), CD4 (RPA-T4), CD38 (HIT2), CD62L (DREG-56,

all BD-Pharmingen), CD45RA (MEM-56, Invitrogen, Breda,

The Netherlands), CCR9 (248621, R&D Systems, Abingdon,

UK). Intracellular staining was performed with the Foxp3

staining buffer kit, according to manufacturer’s protocol

Table 1. Demographic features of pediatric celiac disease
(CD) and controls.

Pediatric CD Controls

Number 36 20

Age in years, mean 5.9 6.1

Male, n (% ) n = 9 (25%) n = 8 (40%)

Marsh score, n (%) Marsh 0 n = 0 (0%) n = 20 (100%)

Marsh 1 n = 2, (6%) n = 0 (0%)

Marsh 2 n = 0 (0%) n = 0 (0%)

Marsh 3A n = 9 (25%) n = 0 (0%)

Marsh 3B n = 17 (47%) n = 0 (0%)

Marsh 3C n = 8 (22%) n = 0 (0%)

CD, celiac disease.
doi:10.1371/journal.pone.0068432.t001

Circulating Mucosally-Imprinted Treg in CD
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(eBioscience), followed by Foxp3 (PCH101, EMELCA Biosci-

ence, Bergen op Zoom, The Netherlands), Helios (Biolegend,

San Diego, US) and the appropriate isotype controls. Flow

cytometric analysis was performed on a FACSCantoTMII (BD-

Biosciences).

Immunohistochemistry
Immunohistochemical Foxp3 stainings were performed on

paraffin-embedded duodenal biopsies as described previously

[26]. Prior to staining the samples were blocked with 10%

normal human serum in a solution containing Tris buffer

(10 mM), EDTA (5 mM), NaCl (0.15 M), gelatine (0.25%) and

Tween-20 (0.05%). Tissue sections were incubated overnight

using the primary antibody to Foxp3 (eBioscience) or isotype

control mouse IgG1. Sections were incubated with VECTAS-

TAIN ABC Elite Kit (Vector Laboratories) and stained with

biotinylated horse-anti-mouse (Vector Laboratories) as described

previously [26].

Cytokine Analysis
IL-15 concentrations in plasma were analyzed using an enzyme-

linked immunosorbent assay set (BD Biosciences) according to the

manufacturer’s instructions.

Statistics
Linear regression analysis was performed using Prism software

(GraphPad, Software Inc) the Kruskal-Wallis one-way analysis of

variances. Differences between multiple groups were first evalu-

ated by ANOVA using the Kruskal-Wallis test. Differences

between groups were analyzed using the Mann-Whitney U test.

P,0.05 was considered statistically significant.

Results

Pediatric Patients
As we hypothesize that changes in numbers of circulating

Foxp3+ T cells may be transient and possibly different in pediatric

and adult CD, we first collected a well-defined cohort of newly

diagnosed pediatric patients. Blood was drawn from children aged

1 to 17 years who underwent an EGD with a suspicion of CD that

were not on a GFD. After diagnosis, those with biopsy-proven CD

and positive auto-antibodies (n = 34) or with a Marsh score 1–2,

positive auto-antibodies and response to GFD (n = 2) were

included in the patient group (n = 36). Whereas children with a

normal intestinal histology and negative auto-antibodies were

included in the control group (n = 20). CD patients were diagnosed

with Marsh I (2 patients), Marsh IIIA (9 patients), Marsh IIIB (17

patients) or Marsh IIIC (8 patients). Patients who were diagnosed

with other diseases were excluded from analyses. There was no

difference in age between pediatric CD patients and control

patients. Demographic features are summarized in Table 1.

No Difference in Numbers of Circulating Treg Cells or
Mucosally-imprinted Treg Cells between Pediatric CD
Patients and Controls

Previously, we have established that mucosally-imprinted T cells

in peripheral blood can be identified by the expression of

CD62LnegCD38+ [24]. As this is the first cohort of CD patients

in which the phenotype of the mucosal the CD62LnegCD38+

population was extensively analyzed we controlled for several

other markers to validate the use of the CD62LnegCD38+

phenotype in this cohort. It is known that the distribution of

lymphocyte subsets in peripheral blood varies with age [27].

Therefore, we first determined whether the distribution of CD4+ T

Table 2. Demographic features of adult celiac disease (CD) patients and controls.

Refractory CD Treated CD Healthy controls

Number 14 13 14

Age in years, mean (SD) 60.5 (11.0) 46.1 (14.7) 36.5 (11.5)

Male, n (%) 6 (43%) 6 (55%) 4 (29%)

Positive antibodies

(EmA, tTG), n (%) 1 (7%)* 0 (0%) 0 (0%)

Marsh score, n (%) Marsh 0 6 (43%) 7 (54%) not determined

Marsh 1 3 (21%) 6 (46%)

Marsh 2 0 (0%)

Marsh 3A 2 (14%)

Marsh 3B 2 (14%)

Marsh 3C 1 (7%)

Diagnosis, n (%) RCD 1 7 (50%)

RCD 2 5 (35%)

EATL 3 (21%)

Treatment, n (%) No 0 (0%) 0 (0%) 14 (100%)

GFD 13 (93%) 13 (100%)

Immunoregulatory drugs 9 (64%) 0 (0%)

Unknown 1 (7%) 0 (0%)

CD, celiac disease; EmA, anti-endomysial antibodies; tTG anti-tissue transglutaminase antibodies; RCD, refractory celiac disease; EATL, enteropathy-associated T cell
lymphoma; GFD, gluten free diet. All patients were tested for anti-tissue transglutaminase and anti-endomysial antibodies. * This patient was positive for anti-tissue
transglutaminase antibodies.
doi:10.1371/journal.pone.0068432.t002

Circulating Mucosally-Imprinted Treg in CD
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cells within the CD62L and CD38 T cell subsets varied with age.

Gating of CD4+ T cells based on the expression of CD62L and

CD38 was performed as shown in Figure 1a.

CD4+CD62L+CD38+ T cells gradually decreased from a very

high percentage (85.6% 6 SD 5.02) in children between 1 and 2

years of age to a much lower and more variable percentage in

children over the age of 5 (56.6% 6 SD 18.02, Figure 1b). In

contrast to the other CD62L/CD38 subsets, the population of

CD4+CD62LnegCD38+ mucosally-imprinted T cells was not

subjected to age-related changes (Figure 1b). Hence, no age

distinction was made for analysis of the pediatric CD patient group

for the CD4+CD62LnegCD38+ cells. In addition, no differences

were found between pediatric patients and controls in the overall

percentage of mucosally-imprinted CD62LnegCD38+ T cells

within the total CD4 population (Figure 2a). The percentages of

gut-homing CCR9 positive cells did not differ between patients

and controls (Figure 2b). The frequency of naive CD45RA+ cells

within the mucosal population was also similar in both groups

(Figure 2c). It should be noted that the group of CD patients had a

significantly higher WBC count in comparison with the control

group (Figure 2d). However, all WBC subpopulations were slightly

increased and no selective enhancement of CD3+ or CD4+ cells

was seen in patients when compared to controls (data not shown).

To establish whether overall differences in the frequency of

Foxp3+ cells were detectable we determined the percentage of

Foxp3+ T cells within the total CD4+ T cell population. No

difference in the percentage of Foxp3+ cells within the total CD4+

T cell population was detected between the pediatric CD patient

group and the control group (Figure 2e). As only 4% of peripheral

blood CD4+ T cells have the CD62LnegCD38+ mucosal phenotype

the sensitivity of detection of differences in the mucosally-

imprinted Foxp3 population is greatly enhanced. Therefore in

our pediatric CD cohort we determined whether these circulating

mucosal Tregs were altered in frequency. Despite a clear

detectable population of Foxp3+ within the CD62LnegCD38+

population, no difference in the percentage of Foxp3 was detected

in the CD62LnegCD38+ mucosally-imprinted T cell subset upon

comparison of pediatric CD with controls (Figure 2f). In addition,

no difference was found in the percentage of CCR9+ cells within

the mucosally-imprinted CD62LnegCD38+ Foxp3+ T cell subset

from patients (26.5% 6 SD 13.7) when compared to controls

(31.0% 6 SD 25.4). These data infer that patient and control

mucosally-imprinted Tregs should have similar capacity to receive

CCR9-mediated CCL25 signals. Also no differences in the

percentages of Foxp3 were observed in the other three CD62L

and CD38 subsets of pediatric CD patients versus controls (not

shown).

Overall, this demonstrates that in a well-defined patient cohort

of pediatric CD patients no difference in the frequency of total or

mucosally-imprinted Foxp3+ T cells can be observed.

Adult Patients
Having established that significant numeric deficiency of

mucosal or systemic Foxp3+ T cells cannot explain the exuberant

effector response in untreated pediatric CD, we hypothesized that

alterations in Foxp3+ T cell frequencies may occur in more

chronic forms of disease or only in adult patients. As our pediatric

cohort contained only patients with active disease before diagnosis

and before GFD, we collected peripheral blood of patients with a

severe form of CD that is refractory to a GFD (RCD) (n = 14) and

adult patients with treated CD (n = 13). Adult patient blood was

compared with blood of healthy volunteers (n = 14). Demographic

features of the adult patient groups and controls are depicted in

Table 2. All treated CD patients were on a GFD for at least 6

months and, as a result of this treatment, their Marsh scores had

improved from Marsh 3A–C at the time of diagnosis to a Marsh 0

or 1 and auto-antibody concentrations were negative at the time of

blood sampling. Patients who were not responding to a GFD and

diagnosed with RCD type I or type II were included in the RCD

group. As shown in table 2, the RCD patient group consisted of a

heterogeneous population of patients. All RCD patients had an

earlier diagnosis of RCD and had a history of treatment with

immunomodulatory drugs, including cladribine or 6-thiogua-
nine. The latest available Marsh scores of RCD patients varied

from Marsh 0 to Marsh 3C. Mucosal healing was seen in RCD

patients who received treatment with immunomodulatory drugs,

such as cladribine. Three patients with an EATL were also

included. No differences in the WBC count were detected between

the different patient groups and controls (data not shown).

Increased Numbers of Circulating Natural Treg Cells in
Adult RCD and Treated CD Compared to Controls

Strikingly, a higher percentage of circulating Foxp3+ T cells was

observed in the total CD4+ T cell population in patients with RCD

in comparison with healthy controls (Figure 3a). Analysis of the

different CD62L/CD38 T cell subsets in RCD patients revealed

that this increase in circulating CD4+Foxp3+ cells was explained

by higher proportions of Foxp3+ cells in both CD62L+ cell subsets

suggestive of a more naive phenotype (Figure 3b). Moreover, no

changes were observed the mucosally-imprinted

(CD62LnegCD38+) or in the other memory T cell containing

CD62Lneg T cell subset (Figure 3c). In treated CD patients, the

percentage of Foxp3+ cells was significantly increased in the

CD62L+CD38+ subset, a subset which contains about 70%

CD45RA+ cells [24]. Together, these data infer that the increase

in Foxp3 in RCD and treated CD patients can be attributed to

changes in the natural Treg cell population but not to changes in

percentages of the mucosally-imprinted Foxp3+CD62LnegCD38+

Treg cells.

Recent studies have reported that expression of the transcription

factor Helios is heterogeneous in Foxp3+ Treg [28], [29]. Helios is

a marker for T cell activation and in Foxp3+ cells Helios

expression may select for more proliferative cells that secrete low

levels of effector cytokines [30], [31]. Therefore, we examined

Foxp3 and Helios expression in CD3+CD4+ T cells in peripheral

blood of 4 RCD patients. The Foxp3+ cells virtually all co-

expressed Helios (Figure 3d). Representative flow cytometric dot-

plots of Foxp3 and Helios expression and the isotype negative

controls are shown in Figure 3e.

These data established that numeric increases in systemic

Helios+ Foxp3+ T cells, but not mucosally-imprinted Foxp3 are

associated with more chronic forms of disease in adult patients.

Similar to our findings with pediatric CD patients, we did not

observe any significant differences in the percentage of total CD4+

T cells nor in the distribution of the four CD62L and CD38 T cell

subsets in any of the patients groups (Figure S1a). As such, the

frequency of mucosally-imprinted CD62LnegCD38+ T cells was

not increased in CD patients with active small-intestinal inflam-

mation (data not shown). We found no differences in the

percentage of CD45RA+ cells within the CD4+ T cell population

between patients and controls (Figure S1b). Neither did we

observe differences in the expression of CCR9 (Figure S1c and

S1d). As seen in pediatric patients, no difference was found in the

percentage of CCR9+ cells within the mucosally-imprinted

CD62LnegCD38+ Foxp3+ T cell subset from adult RCD patients

(20.6% 6 SD 14.1), treated CD patients (14.3% 6 SD 6.9) when

compared to controls (15.2% 6 SD 5.4).

Circulating Mucosally-Imprinted Treg in CD
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Increased Numbers of Foxp3+ Cells in the Lamina Propria
of Pediatric and Adult CD Patients

Maintenance of intestinal homeostasis requires that Foxp3+

Tregs are recruited to the small intestinal tissue. To examine a

possible defect in Foxp3+ T cell recruitment we performed

immunohistochemical stainings to detect Foxp3+ cells in duodenal

biopsies from pediatric CD patients, adult CD patients, RCD

patients and controls. Correlation with disease score revealed an

increase in numbers of Foxp3+ cells which was already detectable

in patients with lower Marsh scores 1–2 (Figure S2). Similar to the

pediatric CD patient group, we found increased numbers of

Foxp3+ cells in the lamina propria of adult CD patients compared

to controls (Figure S3). In the treated CD group the numbers of

Foxp3+ cells were variable between patients. However, in the small

number of RCD patients that was evaluated no increased Foxp3

positivity was seen. These data show that in our cohorts of

pediatric and adult CD patients increased numbers of Foxp3+ cells

are detected locally in the inflamed intestinal mucosa and infer

that recruitment of Foxp3+ cells to the intestine is intact.

No Increase of IL-15 Plasma Levels in CD Patients
The cytokine interleukin (IL)-15 has been reported to stimulate

Foxp3+ Treg cells [32]. In CD patients, IL-15 mRNA is over

expressed in the small intestine and increased IL-15 concentrations

are detected in serum [33,34,35]. Therefore, we investigated

whether IL-15 plasma levels were related to increased frequencies

of Foxp3+ Treg cells in peripheral blood of, adult CD patients. We

were able to detect low levels IL-15 in plasma of some CD patients

Figure 1. Distribution of CD62L/CD38 subsets within CD4+ peripheral blood lymphocytes; changes with age. Peripheral blood from
pediatric CD patients was stained for flow cytometric analysis. (a) Representative gating strategy for analysis of CD62L/CD38 subsets within the CD4+

T cell population. Two representative CD62L/CD38 analyses of peripheral blood CD4+ T cells in CD patients aged 1 and 5 years old. (b) The
percentages of cells in each of the four CD62L/CD38 T-cell subsets were calculated (Kruskal-Wallis test). CD, celiac disease.
doi:10.1371/journal.pone.0068432.g001

Circulating Mucosally-Imprinted Treg in CD
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and controls. However, no relation between IL-15 plasma levels

and increased frequencies of Foxp3+ Treg cells was detected

(Figure 4).

Discussion

Here we show that the frequency of natural and mucosally-

imprinted Foxp3+ Treg cells is unaltered in the circulation of

pediatric CD patients. In contrast, in treated adult CD and RCD

patients increased frequencies of natural Foxp3+ Treg were

detected whereas the mucosally-imprinted CD62LnegCD38+

subset remained unchanged. As such, systemic changes in natural

CD4+Foxp3+ frequency are not inherent to all CD patients and

appear related to a particular phase of disease. This is in contrast

to the increased frequency of Foxp3+ cells within the lamina

propria on histology which was observed in biopsies from both

pediatric as well as adult CD patients.

In murine models for oral tolerance to dietary antigen inducible

Foxp3+ T cells have been shown to differentiate from naive T cells

in the mesenteric lymph node under the control of CD103+ DC

that secrete TGF-b and RA [11]. Recently, we have shown that, in

both human and mouse; mucosal imprinting in the mesenteric

lymph node leads to a particular T cell phenotype characterized

by low levels of CD62L expression and increased levels of CD38.

In agreement, DQ2 tetramer staining revealed that gluten-specific

T cells appearing in blood of treated celiac disease patients after

oral gluten challenge were predominantly CD4+CD62LnegCD38+.

As this CD62LnegCD38+ T cell phenotype is maintained upon

entering the circulation [24] it was used in the current study to

distinguish mucosally-imprinted T cells within the total CD4+ T

cell pool. Here we report that no detectable changes are found in

the frequency of circulating mucosally-imprinted

CD4+CD62LnegCD38+ Foxp3+ cells in pediatric or adult CD

patients. These data establish that there are no gross defects in

mucosal Treg induction in non-treated CD. However, it is not

excluded that transient alterations in gluten-specific Foxp3+ Treg

differentiation occur during the disease process.

Alternatively, the loss of tolerance to gluten in CD could be due

to a defect in the effector phase of Treg function within the lamina

propria rather than at the level of Foxp3 T-cell differentiation

within the mesenteric lymph node. Indeed, multiple studies have

provided evidence for such a localized loss of Foxp3 T-cell

function. In particular, presence of IL-15 has been reported to

abrogate suppression of isolated lamina propria effector T cells by

intestinal Foxp3+ cells in co-culture [20]. This defective suppres-

sion may in part be explained by an IL-15 induced resistance of

Figure 2. No differences in numbers of circulating Treg cells or mucosally-imprinted Treg cells between pediatric CD patients and
controls. (a) The percentage of CD62LnegCD38+ mucosally-imprinted T cells were observed within the peripheral blood CD4+ T cell population of CD
patients (n = 36) and controls (n = 20). (b) The percentage of CCR9+ cells within the CD62LnegCD38+CD4+ T cell subset in pediatric CD patients (n = 34)
and controls (n = 9). (c) Percentages of naive (CD45RA+) cells within CD62LnegCD38+CD4+ T cell in pediatric CD patients (n = 19) and controls (n = 9).(d)
WBC counts per liter peripheral blood for pediatric CD patients (n = 36) and controls (n = 20). (e) The frequency of total Foxp3+ cells (gated on CD4+

lymphocytes) in pediatric CD patients (n = 36) and controls (n = 20). (f) The percentage of mucosally-imprinted Foxp3+CD62LnegCD38+ cells in
pediatric CD patients (n = 36) and in controls (n = 20). * Statistically significant (P,0.05), n.s. not significant (Mann-Whitney U test). CD, celiac disease.
doi:10.1371/journal.pone.0068432.g002
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Figure 3. Increased numbers of circulating natural Treg cells in adult RCD and treated CD compared to controls. Peripheral blood was
obtained from adult patients with RCD (n = 14), CD patients responding to a GFD (treated CD, n = 13) and healthy controls (n = 14). (a) The
percentages of Foxp3 cells within the total CD3+CD4+ T cells and within the different CD4+CD62L/CD38 T cells were determined. (a) Percentage of

Circulating Mucosally-Imprinted Treg in CD

PLOS ONE | www.plosone.org 7 July 2013 | Volume 8 | Issue 7 | e68432



effector T cells to suppression [34]. Similarly, IL-21 has been

suggested to abrogate Foxp3+Treg function [36]. Loss of sensitivity

to Treg mediated suppression may in consequence allow

inflammatory T cells to respond to gluten and to self antigen

that is exposed upon tissue damage.

Treg mediated suppression requires sufficient Treg numbers to

be present in the inflamed area to counteract the effector T cells.

As has been reported in several other studies we observed

increased frequencies of Foxp3+ cells in tissue biopsies of both

pediatric and adult CD patients suggesting that recruitment of

Foxp3+ T cells to the inflamed tissue is intact or even increased

[16,18,19,20,34]. Unfortunately, immunohistochemistry can not

distinguish between natural Tregs and mucosally imprinted Tregs.

However, a large proportion of mucosally-imprinted

CD4+CD62LnegCD38+ Foxp3+ cells from CD patients expressed

the chemokine receptor CCR9 which should enable them to

respond to CCL25, the chemokine required for small intestinal

homing. Also in treated CD patients, numbers of lamina propria

Foxp3+ cells were increased. We speculate that this may be due to

residual inflammation despite a GFD [37]. Contrary to our

expectations, in the small number of RCD patients (n = 5) no

increased Foxp3 positivity was observed. Further investigation in a

larger cohort of patients with defined immunosuppressive treat-

ment is required to establish whether the absence of increased

Foxp3+ T cell numbers in lamina propria is a general phenom-

enon associated with RCD.

Changes in circulating Foxp3+ T cells in CD patients have been

observed in previous studies. However, until now it had not been

investigated whether these cells were natural Tregs or induced

Tregs. Here we demonstrate that the frequency of CD62L+

natural Foxp3+ T cells is increased in a subset of adult CD and

RCD patients that are treated with a GFD but not in pediatric

CD. Interestingly, these Foxp3+ cells virtually all expressed Helios.

These data infer that changes in the frequency of circulating

natural Foxp3+ T cells are not inherent to CD but are restricted to

a subgroup of CD patients. In first instance, when combining all

studies, increased frequencies of circulating Foxp3+ cells seem

restricted to adult patients [15,21,23]. However, this is not

observed in all adult cohorts [34]. The variability of these data in

the different adult patient cohorts shows that the changes in

circulating Foxp3+ T cells may be transient and possibly related to

a particular stage of inflammation in CD patients. As increases in

peripheral Foxp3+ Tregs have also been reported for patients with

cancer [38,39], primary Sjögren’s Syndrome and rheumatoid

arthritis [40], psoriasis [41] and systemic sclerosis [42], we

hypothesize that a non-specific chronic inflammatory mediator

can cause this effect. To assess whether IL-15 levels in the

circulation were related to increased frequencies of circulating

Foxp3+ cells we determined IL-15 concentrations in patient

plasma. Overall the IL-15 levels did not reveal a possible role of

IL-15 in Foxp3 expansion in CD. From this we conclude that

circulating CD4+Foxp3+ T cell numbers are increased in adult

patients with RCD and treated CD and hypothesize that this

phenomenon may be related to a particular pattern of inflamma-

tion involving systemic immune activation.

Overall we conclude that the population of mucosally-imprinted

CD62LnegCD38+ Foxp3+ Treg cells has a normal frequency in

blood of CD patients suggesting that there are no severe general

defects in induction of mucosal Treg cells. Specific defects in gluten-

reactive mucosal Tregs can not be excluded but are currently

technically impossible to determine. Increased frequencies of

Foxp3+ natural cells are found in a subgroup of adult CD patients

and may be related to systemic inflammation. In the lamina propria

of all CD patients Foxp3+ T cells are present in the inflammatory

lesions but may be inactivated by the local inflammatory milieu.

Whether loss of tolerance to gluten in CD patients is caused by such

defective Foxp3+ cells remains to be established.

Supporting Information

Figure S1 Analysis of CD4+ CD62L/CD38 T-cell subsets
in peripheral blood of adult CD patients and controls.
Peripheral blood was obtained from adult patients with RCD

(n = 14), CD patients responding to a GFD (treated CD, n = 15)

and healthy controls (n = 14). (a) The percentages of total CD4+ T

cells (within CD3+ T-cell gate). (b) The percentage of CD45RA+

naive T cells within the CD3+CD4+ T cell gate. (c) De percentage

of total CCR9+ cells within the total CD3+CD4+ T cell gate or (d)
within the different CD62L/CD38 T cells. CD, celiac disease;

RCD, refractory celiac disease.

(EPS)

Figure S2 Increased numbers of Foxp3+ cells in the
lamina propria of pediatric CD patients. (a-d) Immuno-

histochemical detection of Foxp3 on paraffin embedded duodenal

biopsies from pediatric controls and CD patients. (e) Isotype

control antibody, mouse IgG1, staining. Original magnifica-

tion:620. Figures are representative for 16 different CD patients

and controls. CD, celiac disease.

(EPS)

Foxp3+ cells within the total CD4+ T-cell gate (b) The percentage of Foxp3+ T cells in the CD62L+CD38+ and CD62L+CD38neg subset. (c) The
percentage of Foxp3+ in the mucosally-imprinted CD62LnegCD38+ T cells or in the CD62LnegCD38neg T-cells in patient groups and controls. (d)
Lymphocytes of 4 RCD patients were gated on CD3+CD4+ T cells and Foxp3 and Helios positivity were analyzed. The large majority of the Foxp3+ cells
co-expressed Helios. (e) Representative dot-plots of Foxp3 and Helios expression (left panel) and isotype controls (right panel) are shown. Data
analyzed Mann-Whitney U test. CD, celiac disease; RCD, refractory celiac disease.
doi:10.1371/journal.pone.0068432.g003

Figure 4. No increase of IL-15 plasma levels in CD patients. The
IL-15 concentration in plasma was determined in pediatric controls
(n = 8), pediatric CD (n = 6), adult controls (n = 5), adult treated CD
(n = 13) and RCD patients (n = 13) by enzyme-linked immunosorbent
assay. Dashed line represents the detection limit. CD, celiac disease.
Data are representative for three independent measurements.
doi:10.1371/journal.pone.0068432.g004
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Figure S3 Increased numbers of Foxp3+ cells in the
lamina propria of adult CD. (a-e) Immunohistochemical

detection of Foxp3 on paraffin embedded duodenal biopsies from

healthy controls, treated CD and RCD patients. Original

magnification:620. Figures are representative for 12 different

patients and controls. CD, celiac disease; RCD, refractory celiac

disease.

(EPS)
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