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Abstract

Human immunodeficiency virus type 1 encoded viral protein Vpr is essential for infection of macrophages by HIV-1.
Furthermore, these macrophages are resistant to cell death and are viral reservoir. However, the impact of Vpr on the
macrophage proteome is yet to be comprehended. The goal of the present study was to use a stable-isotope labeling by
amino acids in cell culture (SILAC) coupled with mass spectrometry-based proteomics approach to characterize the Vpr
response in macrophages. Cultured human monocytic cells, U937, were differentiated into macrophages and transduced
with adenovirus construct harboring the Vpr gene. More than 600 proteins were quantified in SILAC coupled with LC-MS/
MS approach, among which 136 were significantly altered upon Vpr overexpression in macrophages. Quantified proteins
were selected and clustered by biological functions, pathway and network analysis using Ingenuity computational pathway
analysis. The proteomic data illustrating increase in abundance of enzymes in the glycolytic pathway (pentose phosphate
and pyruvate metabolism) was further validated by western blot analysis. In addition, the proteomic data demonstrate
down regulation of some key mitochondrial enzymes such as glutamate dehydrogenase 2 (GLUD2), adenylate kinase 2
(AK2) and transketolase (TKT). Based on these observations we postulate that HIV-1 hijacks the macrophage glucose
metabolism pathway via the Vpr-hypoxia inducible factor 1 alpha (HIF-1 alpha) axis to induce expression of hexokinase (HK),
glucose-6-phosphate dehyrogenase (G6PD) and pyruvate kinase muscle type 2 (PKM2) that facilitates viral replication and
biogenesis, and long-term survival of macrophages. Furthermore, dysregulation of mitochondrial glutamate metabolism in
macrophages can contribute to neurodegeneration via neuroexcitotoxic mechanisms in the context of NeuroAIDS.
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Introduction

Human immunodeficiency virus type 1 (HIV-1) viral protein R

(Vpr) is a small 96-amino acid multifunctional protein [1–6]. Vpr

is essential for HIV-1 infection of macrophages since virus

deficient in Vpr is less efficient in replication in macrophages

[7]. Furthermore, extracellular Vpr can rescue replication of Vpr-

deficient HIV strains in macrophages [8]. HIV-1 LTR activation

by Vpr results in increased viral replication [9,10]. Vpr-mediated

transcriptional induction of HIV-1 involves interaction between

Vpr with specific sequences that span the C/EBP and adjacent

NFkB sites of HIV-1 LTR [11], and transcription factor, Sp1

[12,13]. Vpr induces apoptosis in several cell types, including

lymphocytes, monocytes, astrocytes, and neurons [14–19]. How-

ever, HIV-1 infected macrophages are resistant to apoptosis [20].

These observations suggest that Vpr modulates macrophage

proteome to promote viral replication and induce anti-apoptotic

pathways. This acquired anti-apoptotic phenotype may promote

reservoir formation in this cell type. Therefore, analysis of the

macrophage proteome in Vpr expressing macrophages can help to

better understand mechanisms involved in HIV-1 replication and

survival.

A variety of stable-isotope labeling strategies, such as isotope-

coded affinity tag (ICAT), isobaric tags for relative and absolute

quantitation (iTRAQ) and stable-isotope labeling by amino acids

in cell culture (SILAC) coupled with mass spectrometry (MS)-

based proteomics allows reliable identification and quantitative

analysis of multiple proteins in complex samples [21–23]. We used

SILAC, as a metabolic labeling method, since it is simple, efficient,

and allows for almost complete heavy isotope incorporation in cells

[23,24]. To explore novel mechanisms underlying Vpr-mediated

modulation of macrophage proteome, we employed LC-MS/MS,

along with SILAC to assess quantitatively Vpr-induced perturba-

tion of protein expression in U937 derived macrophages.

More than 600 proteins were quantified in SILAC coupled with

LC-MS/MS measurement, among which 136 were significantly

altered upon Vpr overexpression in macrophages. Importantly, we

observed, for the first time, that Vpr-induced up-regulation of
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enzymes in the pyruvate metabolism, pentose phosphate pathway,

and mitochondrial dysfunction.

Materials and Methods

Cell Line
The human monocytic cell line U937 was obtained from

American Type Culture Collection (Manassas, VA).

Chemicals and Antibodies
Heavy lysine and arginine ([13C6, 15N2]-L-lysine and [13C6]-L-

arginine) were obtained from Cambridge Isotope (Andover, MA)

and light amino acids (L-lysine and L-arginine) were obtained

from Sigma-Aldrich (St. Louis, MO). All components of cell

culture media were obtained from Life Technologies (CA) and

protease inhibitor cocktail was obtained from Sigma-Aldrich (St,

Louis, MO). SILAC DMEM Media was obtained from Pierce

Biotechnology and the dialyzed FBS was purchased from HyClone

(Logan, UT). Trypsin was purchased from Promega (Madison,

WI). All the chemicals were HPLC-grade unless specifically

mentioned. The antibodies against HK-1, HK-2, G6PD, PKM2

and Grb2 were obtained from Cell Signaling Technology

(Danvers, MA); HIF-1 alpha antibody was obtained from BD

Biosciences (San Jose, CA).

Cell Culture
U937 cells were cultured in RPMI containing 10% FBS

supplement with penicillin and streptomycin at 37uC in humidified

atmosphere with 5% CO2.

Construction of Recombinant Adenoviruses
To construct recombinant adenoviral vector harboring HIV-

1 Vpr, Vpr cDNA from the dual-tropic (CCR5 and CXCR4)

strain of HIV-1 89.6 [25] was used. Vpr cDNA (288 bp) was

excised from pcDNA3-Vpr and cloned into the EcoRI and NheI

sites of the adenovirus-shuttle plasmid pDC515 under the

control of the murine cytomegalovirus promoter (purchased

from Microbix Inc., Ontario, Canada). Adeno-Vpr recombinant

shuttle containing Vpr sequence (pDC515-Vpr) was transfected

into HEK-293 cells with pBHGfrt (del) E1, 3FLP, and a

plasmid that provides adenovirus type 5 genome deleted in E1

and E3 genes. Plaques of recombinant adenovirus arising as a

result of frt/FLP recombination were isolated, grown, and

purified by cesium chloride density equilibrium banding. Empty

shuttle plasmid, pDC515, was used to construct control

adenoviral vector (Adeno-null, a virus without a transgene).

Differentiation of U937 Cells into Macrophages and
Culture in SILAC Media

SILAC DMEM media was supplemented with 10% dialyzed

fetal bovine serum, 1% streptomycin/penicillin. The medium

was then divided and supplemented with 13C6 L-arginine and
13C6, 15N2-L-lysine or normal L-arginine and L-lysine, to

produce heavy or light SILAC medium, respectively. U937

cells were treated with 100 ng/ml of phorbal myristate acetate

(PMA) for 3 hrs in complete RPMI medium at 37uC and then

washed with 1XPBS and cultured for an additional 24 h in

complete RPMI medium at 37uC. For SILAC experiments, the

PMA differentiated cells were then grown in parallel in either

light or heavy media for 5 days, with media replacement every

24 h.

Transduction of SILAC Labeled Cells with Adenoviral
Constructs

The PMA differentiated cells (macrophages) grown in SILAC

media were then transduced with adenoviral stock corresponding

to a multiplicity of infection (MOI) of five plaque-forming units per

cell. The heavy labeled cells were transduced with Adeno-Vpr,

while the light-labeled cells were transduced with Adeno-Null. The

cells were harvested at 72 h post infection.

Preparation of Protein Samples, 1-D SDS-PAGE
Separation and In-gel Trypsin Digestion

Proteins were processed for gel electrophoresis-liquid chroma-

tography-mass spectroscopy (GeLC-MS/MS) proteomics analysis.

Total cell proteins were extracted from cells transduced with

Adeno-Vpr and control cells using RIPA buffer (25 mM TrisNHCl

pH 7.6, 150 mM NaCl, 1% NP-40, 1% sodium deoxycholate,

0.1% SDS). Protein quantification was performed using the

method of Bradford (Bio-Rad Protein Assay). 60 mg of total

proteins (30 mg ‘‘heavy’’ and 30 mg ‘‘light’’) were diluted with

Laemmli sample buffer (Bio-Rad) containing 5% b-mercaptoeth-

anol. The mixture was heated for 5 min at 90uC and loaded onto

10% polyacrylamide gel. 1-D SDS-PAGE separation was

performed using a mini Protean II system (BioRad) at 200 V for

45 min. Bands were visualized with Simply Blue Safe Stain and

lanes were sliced into 11 sections, which were diced into , 161

mm. After distaining with 50% v/v Acetonitrile (ACN) in 25 mM

ammonium bicarbonate buffer (bicarbonate buffer), proteins

within gel pieces were reduced with 10 mM DTT in bicarbonate

buffer and alkylated by incubation with 50 mM iodoacetamide in

bicarbonate buffer. After gel dehydration with 100% ACN, the gel

pieces were covered with approximately 40 mL of 12.5 mg/mL

trypsin in bicarbonate buffer. In gel digestion was done at 37uC for

12 h, trypsin was inactivated with formic acid at 2% final volume

and peptides were extracted and clean-up using C18 Tip column

(ZipTipsH) as previously described [24].

GeLC-MS/MS and Data Analysis
Peptides were dried in a vacuum centrifuge then resuspended in

30 mL of 0.1% v/v TFA/H2O. Peptide samples were loaded onto

2 mg capacity peptide traps (CapTrap; Michrom Bio-resources)

and separated using a C18 capillary column (15 cm 75 mm,

Agilent) with an Agilent 1100 LC pump delivering mobile phase at

300 nL/min. Gradient elution using mobile phases A (1% ACN/

0.1% formic acid, balance H2O) and B (80% ACN/0.1% formic

acid, balance H2O) was as follows (percentages for B, balance A):

linear from 0 to 15% at 10 min, linear to 60% at 60 min, linear to

100% at 65 min. The nano ESI MS/MS was performed using a

HCT Ultra ion trap mass spectrometer (Bruker). ESI was

delivered using distal-coating spray Silica tip (id 20 mm, tip inner

id 10 mm, New Objective, Ringoes, NJ). Mass spectra were

acquired in positive ion mode, capillary voltage at 21200 V and

active ion charge control trap scanning from 300 to 1500 m/z;

Using an automatic switching between MS and MS/MS modes,

MS/MS fragmentation was performed on the two most abundant

ions on each spectrum using collision-induced dissociation with

active exclusion (excluded after two spectra, and released after

2 min). The complete system was fully controlled by HyStar 3.2

software.

Mass spectra data processing was performed using Mascot

Distiller (Version 2.4.3.3) with search and quantitation toolbox

options. The generated de-isotoped peak list was submitted to an

in-house Mascot server 2.4.0 for searching against the SwissProt

database version 2013_01 (538849 sequences; 191337357 resi-
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dues). Mascot search parameters were set as follows: species, Homo

sapiens (20,233 sequences); enzyme, trypsin with maximal 2 missed

cleavage; fixed modification: cysteine carbamidomethylation;

variable modifications: methionine oxidation, Gln-.pyro-Glu

(N-term Q), Glu-.pyro-Glu (N-term E), Label:13C(6)15N(2) (K),

Label:13C(6) (R); 0.90 Da mass tolerance for precursor peptide

ions; and 0.6 Da for MS/MS fragment ions. SILAC quantitation

was performed in Mascot Distiller using SILAC K+8 R+6

quantitation method, SILAC ratios for heavy and light peptide

pairs were calculated by Simpsons integration method, minimum

1 peptide with unique sequence and 0.05 of significant threshold.

The following criteria were used to evaluate protein identification:

one or more unique peptides with ion score $45 and two or more

unique peptides with ion score $30 (p#0.05 threshold); proteins

identified were extracted using MS Data Miner (MDM) [26].

Quantified proteins with $1.5 and #0.7 fold change were selected

and clustered by biological functions, pathway and network

analysis using Ingenuity computational pathway analysis (IPA)

software (www.ingenuity.com) for bioinformatics analysis.

Western Blot Analysis
Protein samples (40 mg) were separated by 10% gradient SDS-

PAGE and then transferred to a nitrocellulose membrane in a

blotting chamber (BioRad) at 100 V for 30 min. The membrane

was blocked with 5% powdered milk in Tris-buffer saline solution

(pH 7.6) containing 0.05% Tween-20 (TBS/T) then probed with

antibodies against (PKM2, HK-1, HK-2, G6PD, HIF-1a and Vpr)

diluted 1:500. Membranes were incubated with primary antibod-

ies overnight at 4uC, washed, and then incubated with appropriate

HRP-conjugated secondary antibodies at room temperature for

1 h. ECL Plus kit (GE healthcare) for HRP was used according to

the manufacturer’s instructions and signals were captured onto X-

ray film.

Statistical Analysis
Statistics for IPA analysis can be found at http://www.

ingenuity.com/index/html. For western blot analysis Student’s t-

test was used for statistical analysis and p # 0.05 was considered

statistically significant.

Results

Proteome of Vpr Transduced Macrophages
To get a global perspective of the molecular pathways perturbed

by Vpr in macrophages, we employed SILAC in conjunction with

LC-MS/MS to assess Vpr-induced differential expression of the

whole proteome of U937 derived macrophages (Figure 1).

In this study, PMA differentiated U937 macrophages were

cultured in both light and heavy media. The light labeled cells

were transduced with Adeno-Null virus and the heavy labeled cells

were transduced with Adeno-Vpr. Cell pellets prepared 72 h post

transduction were lysed, and the lysates were combined and

subsequently fractionated by SDS-PAGE. After in-gel digestion,

the proteins were identified and quantified by LC-MS/MS. This

analysis was performed once and a total of 614 proteins were

identified and quantified. Details of all quantified proteins can be

found in File S1).

For quantitative analysis of differences between paired exper-

imental samples we chose a ratio of $1.5 or #0.7 as threshold for

screening significantly changed proteins. Using this criterion we

identified a total of 136 proteins that displayed significant changes

in Vpr expressing macrophages, among which 67 and 69 were up-

and down- regulated, respectively as shown in the differential

protein expression list (Sup. info. 1).

Functional Characterization of Identified Proteins and
Bioinformatics Analysis

We next used the 136 differentially expressed proteins identified

in response to Vpr over expression, to perform a biological

function, pathway and network analysis using the Ingenuity

Pathway Analysis (IPA) software. According to the molecular

function analysis (Figure 2), most of the proteins were related with

metabolic pathways (39%), protein metabolism (17%), cell cycle

regulation (15%), signal transduction (12%), phagosomal activity

(10%), membrane trafficking (10%), gene expression (8%), RNA

metabolism (8%), cell cycle (6%), extracellular matrix organization

(6%), signal transduction (5%), cell adhesion molecules (4%) and

unclassified (22%).

The list of the proteins that were altered and are related with

metabolic pathway is listed in Table 1 (also listed in File S2). The

canonical pathways that were identified at statistically significant

levels (p#0.05) are depicted in Figure 3, highlighted are the TCA

cycle, glycolysis, NRF2 mediated oxidative stress response and

mitochondrial dysfunction. The other pathways that were

identified at statistically significant levels (p#0.05) include virus

entry via endocytic pathway, viral exit from host cells, fatty acid

beta-oxidation, HIF-1 alpha signaling and others (Figure 3; also

see File S2). The scores (-log [p values]) reflect the probabilities of

such associations occurring by chance, with the threshold value for

significance set at 1.25.

Proteins that changed significantly in Vpr expressing macro-

phages were mapped to 6 specific functional networks, with each

network containing 13 or more ‘‘focus’’ members (Table 2). The

top three networks of interest correspond to (1) organ morphology,

nucleic acid metabolism, small molecule biochemistry (score = 49),

(2) carbohydrate metabolism, energy production, nucleic acid

metabolism (score = 41), and (3) nucleic acid metabolism, small

molecule biochemistry, DNA replication, recombination, and

repair (score = 33). Figure 4A and B shows the ‘‘interactomes’’ of

the top 2 (out of 9 significant scoring, Sup. Info 2) local connecting

networks and functional associations within those networks.

Validation of Protein Identification and Quantification
Since the functional characterization and bioinformatics anal-

ysis revealed that the pathways that were significantly altered

involved glycolysis, mitochondrial dysfunction, and HIF-1a
signaling, we therefore focused on the validation of relative

abundance of some of the proteins in these pathways by western

blot analysis. The western blot analysis demonstrates that the

changes in the ratios of representative proteins (HK-1, HK-2,

PKM2, G6PD), between adeno-null transduced and adeno-Vpr

transduced macrophages (Figure 5A and B) are consistent with

that derived from SILAC studies. In tune with our earlier

observation that Vpr induces HIF-1 alpha [27] we have observed

a significant increase in HIF-1 alpha levels in Vpr transduced

macrophages. In contrast, Figure 5A, shows data for Grb2

(Growth factor receptor-binding protein 2) protein remained

unchanged between null and Vpr transduced cells. Taken

together, these data indicate that the SILAC strategy can

efficiently detect specific protein alterations in macrophages that

overexpress HIV-1 Vpr.

Discussion

Over the last few years, proteomics has contributed significantly

in HIV research to investigate not only HIV pathogenesis but also

for identification of potential biomarkers [28–35]. In this study, we

utilized the high-throughput quantitative proteomic approach

using SILAC to obtain information about the macrophage

SILAC Proteomics of Vpr Transduced Macrophages
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proteome in the context of Vpr-host interaction since Vpr from

strain 89.6 demonstrates PP2A-dependent apoptosis in CD4+ T

cells and Vpr gene polymorphism is known to influence clinical

outcomes [19,36]. A total of 136 different proteins were identified

as having altered abundances in Vpr transduced macrophages,

including those involved in pyruvate metabolism, pentose phos-

phate pathway, mitochondrial dysfunction, oxidative stress, HIF-1

alpha signaling, and cell cycle: G2/M DNA damage checkpoint

regulation. Previous reports have demonstrated the effects of HIV-

1 on metabolic and neurological pathways at the level of

transcriptome in diverse cell types including the brain [37–41].

Our proteomics data are in concordance with the transcriptome

analysis that also demonstrated the interference of HIV-1 in host

energy metabolism pathways [38,41].

In this study we have found increased expression of numerous

enzymes involved in glycolytic and citrate pathways viz.,

Figure 1. Experimental strategy for SILAC based proteomics. PMA differentiated U937 cells cultured in light or heavy media and then
transduced with Adeno-Null or Adeno-Vpr virus, respectively. Protein lysates were prepared and mixed in 1:1 ratio. Sample complexity was reduced
prior to LC-MS/MS analysis by fractionation at the protein level by SDS-PAGE. Expression levels of selected proteins were validated by western blot
analysis.
doi:10.1371/journal.pone.0068376.g001

Figure 2. Categorization of molecular function of differentially expressed proteins in Vpr transduced macrophages. The pie graph
demonstrates that among the 136 differentially expressed proteins majority of them cluster in the metabolic pathways and metabolism of proteins.
doi:10.1371/journal.pone.0068376.g002

SILAC Proteomics of Vpr Transduced Macrophages

PLOS ONE | www.plosone.org 4 July 2013 | Volume 8 | Issue 7 | e68376



Hexokinase (HK), Glucose-6-phosphate dehydrogenase (G6PD),

pyruvate kinase M2 (PKM2), and Fumarate hydratase (Fumarase).

HK is the rate-limiting enzyme that converts glucose in to

glucose-6-phosphate (G6P), while G6PD a member of the pentose

phosphate pathway (PPP) is involved in the conversion to G6P to

6PG [42]. Furthermore, upregulation of hexokinase expression

and shunting of glucose through the pentose phosphate pathway

(PPP) creates a restrictive environment for cytochrome c-mediated

apoptosis as a result of increased translocation of HK to outer

mitochondrial membrane (OMM), and generation of NADPH,

respectively (Figure 6) [43,44]. Cellular redox status is maintained

by scavenging ROS by glutathione whose synthesis is regulated by

NADPH [44]. In addition, upregulation of PPP and activation of

G6PD also promotes nucleotide biosynthesis that provides the

nucleotide pool [45] required for sustained HIV-1 replication

(Figure 6).

PKM2 acts as a glycolytic enzyme, transferring a phosphate

group from phosphoenolpyruvate (PEP) to ADP to yield one

molecule of pyruvate and one molecule of ATP [42]. Earlier

studies from our laboratory have demonstrated the role of

oxidative stress in Vpr mediated regulation of HIF-1 alpha [27].

Interestingly, HIF-1 alpha not only induces PKM2 expression but

also other enzymes involved in glucose metabolism [46]. Earlier

studies have demonstrated upregulation of PKM2 in HIV-1

infected macrophages and in HIV-1 infected human astrocytes

treated with cocaine [47,48] however, its role in HIV-1 LTR

activation remains unknown. Recent studies demonstrate that

PKM2 has non metabolic functions and plays significant role in

regulating gene transcription [49,50].

PKM2 is apparently a dual-specificity protein kinase since it

phosphorylates Stat3 at Y705 and histone H3 at T11 [49,50].

Furthermore, phosphorylation of H3-T11 by PKM2 leads to the

induction of Myc gene transcription following dissociation of

HDAC3 [50]. Interestingly, HDAC3 inhibition leads activation of

latent HIV-1 [51]. HIV-1 (BaL) and HIV-1 (LAI) are known to

selectively induce phosphorylation of Stat3, and repression of

Figure 3. Top network functions generated using Ingenuity protein analysis for U937 cells transduced with Vpr. Graph represents
host cell functions with highest score (y-axis) based on the number of differentially regulated proteins.
doi:10.1371/journal.pone.0068376.g003
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Stat3 expression inhibits HIV-1 replication [52]. Based on these

observations, it can be proposed that Vpr mediated PKM2 up

regulation might play a role in Stat3 mediated HIV-1 LTR

activation or HDAC3 dissociation from HIV-1 LTR in HIV-1

latency. Future studies are to be undertaken to elucidate the

proposed mechanism.

Fumarate hydratase (Fumarase) is member of the tricarboxylic

acid (TCA) cycle in mitochondria and converts fumarate to malate

[53]. The cytosolic isoform of fumarase plays a role in DNA repair

by translocating from the cytoplasm to nucleus [54].

The upregulation of PKM2, G6PD and fumarate hydratase in

our study are in tune with an earlier study that demonstrated

increased levels of pyruvate, NADPH and malate in the metabolite

pool of activated U1 cells (HIV-1 infected U937 cells) by LC-MS/

MS analysis [55]. Interestingly, some of the other proteins that are

upregulated are transferrin receptor-1 (TfR1), hypoxia up-

regulated protein 1 (HYOU1) also known as oxygen-regulated

protein 150 (ORP-150), USO1 vesicle docking protein homolog

(USO1), matrin 3, and glutathione S-transferase Pi 1. Among

Table 1. Macrophage proteins within metabolic pathways altered in response to HIV-1 Vpr.

ID Symbol Fold change Entrez Gene name

P51659 HSD17B4 2.69 hydroxysteroid (17-beta) dehydrogenase 4

P15586 GNS 2.50 glucosamine (N-acetyl)-6-sulfatase

P62873 GNB1 1.94 guanine nucleotide binding protein, beta polypeptide 1

Q8TC12 RDH11 1.87 retinol dehydrogenase 11 (all-trans/9-cis/11-cis)

P09211 GSTP1 1.86 glutathione S-transferase pi 1

Q9Y6N5 SQRDL 1.85 sulfide quinone reductase-like (yeast)

Q02218 OGDH 1.67 Oxoglutarate (alpha-ketoglutarate) dehydrogenase (lipoamide)

Q92945 KHSRP 1.66 KH-type splicing regulatory protein

P11413 G6PD 1.65 glucose-6-phosphate dehydrogenase

O60488 ACSL4 1.64 acyl-CoA synthetase long-chain family member 4

P07954 FH 1.59 fumarate hydratase

P36957 DLST 1.58 dihydrolipoamide S-succinyltransferase

P52789 HK2 1.52 hexokinase 2

Q13510 ASAH1 1.52 N-acylsphingosine amidohydrolase (acid ceramidase) 1

P14618 PKM 1.52 pyruvate kinase, muscle

P19367 HK1 1.51 hexokinase 1

O95831 AIFM1 21.43 apoptosis-inducing factor, mitochondrion-associated, 1

P30101 PDIA3 21.44 protein disulfide isomerase family A, member 3

O14880 MGST3 21.53 microsomal glutathione S-transferase 3

O95571 ETHE1 21.55 ethylmalonic encephalopathy 1

P09972 ALDOC 21.55 aldolase C, fructose-bisphosphate

Q9Y2Q3 GSTK1 21.55 glutathione S-transferase kappa 1

P05455 SSB 21.60 Sjogren syndrome antigen B (autoantigen La)

P40939 HADHA 21.66 hydroxyacyl-CoA dehydrogenase

P31040 SDHA 21.66 succinate dehydrogenase complex, subunit A

P04406 GAPDH 21.67 glyceraldehyde-3-phosphate dehydrogenase

P49448 GLUD2 21.68 glutamate dehydrogenase 2

P60174 TPI1 21.78 triosephosphate isomerase 1

P42126 ECI1 21.79 enoyl-CoA delta isomerase 1

Q9H3P7 ACBD3 21.82 acyl-CoA binding domain containing 3

P04075 ALDOA 21.82 aldolase A, fructose-bisphosphate

P40926 MDH2 21.93 malate dehydrogenase 2, NAD (mitochondrial)

P48735 IDH2 22.20 isocitrate dehydrogenase 2 (NADP+), mitochondrial

Q99714 HSD17B10 22.27 hydroxysteroid (17-beta) dehydrogenase 10

P06744 GPI 22.31 glucose-6-phosphate isomerase

P24752 ACAT1 22.62 acetyl-CoA acetyltransferase 1

P29401 TKT 22.75 transketolase

Q96AB3 ISOC2 22.78 isochorismatase domain containing 2

P54819 AK2 23.32 adenylate kinase 2

doi:10.1371/journal.pone.0068376.t001
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these proteins upregulation of HYOU1 and USO1 was demon-

strated in HIV-1 infected CD4+T cells [33].

TfR1 is a cell membrane-associated glycoprotein responsible for

incorporation of the iron bound to transferrin through an

endocytotic process from the circulating blood [56]. Interestingly,

TfR1 is upregulated by HIF-1 activation [57]. HYOU1/ORP-150

belongs to heat shock protein 70 family and plays an important

role in protein folding and secretion in the ER [58,59].

Suppression of HYOU1/ORP150 expression leads to accelerated

apoptosis [60]. Physical interaction between HIV-1 gp120 and

HYOU1 was observed in human HEK293 and/or Jurkat cell lines

by using affinity tagging and purification mass spectrometry

analyses [61]. USO1 also known as Golgi complex-associated

protein p115 is known to play a critical role in the regulated

secretion of macrophage migration inhibitory factor (MIF) from

monocytes/macrophages [62]. Matrin 3 has been shown to bind

Rev/RRE-containing viral RNA and stabilize unspliced and

partially spliced HIV-1 transcripts that subsequently results in

increased cytoplasmic expression of these viral RNAs [63].

Glutathione S-transferases (GST) are involved in cellular protec-

tion against oxidative stress. Transcriptional induction of GSTP1

has been shown to be a part of an adaptive response to oxidative

stress [64], and also to protect 3T3 mouse fibroblasts against H2O2

mediated oxidative stress [65] and is postulated to be involved in

signaling during oxidative stress.

Among the proteins whose expression is down regulated in Vpr

transduced macrophages are Glutamate dehydrogenase 2

(GLUD2), Adenylate kinase 2 (AK2) and Transketolase (TKT).

GLUD2 is a mitochondrial enzyme involved in glutamate

metabolism it catalyzes the reversible oxidative deamination of

glutamate to alpha-ketoglutarate [66]. Dysregulation of glutamate

metabolism in macrophages therefore can contribute to neurode-

generation via neuroexcitotoxic mechanisms in the context of

NeuroAIDS. AK2 is a mitochondrial enzyme that regulates

adenine nucleotide interconversion [67]. AK2 is known to mediate

mitochondrial apoptosis through the formation of an AK2-FADD-

caspase-10 (AFAC10) complex [68]. Thus, down regulation of

AK2 by Vpr might play an anti-apoptotic role in macrophages.

TKT is a thiamine-dependent enzyme that plays a role in the

channeling of excess sugar phosphates to glycolysis in the pentose

phosphate pathway [69].

Conclusions
We have used a SILAC-based proteomic approach to

investigate alteration in the macrophage proteome by HIV-1

protein Vpr. Our studies demonstrate how a single viral protein as

opposed to the whole virus has comparable impact and

underscores the role of Vpr in modulating changes at the

transcriptome and proteome level in HIV-1 infected host. It

would be interesting to further investigate the role of the identified

Figure 4. Ingenuity Pathway Analysis of proteins that were significantly altered in U937 cells transduced with Adeno-Vpr. Two
relevant networks were generated from the Vpr-modulated proteins according to the Ingenuity Pathway Knowledge Criteria. A. Organ morphology,
nucleic acid metabolism, small molecule biochemistry (score = 49). B. Carbohydrate metabolism, energy production, nucleic acid metabolism
(score = 41). Red, up-regulated proteins; green, significantly down-regulated proteins; white, proteins known to be in the network but were not
identified or identified in our study. The color depth indicates the magnitude of the change in protein expression level. The shapes are indicative of
the molecular class (i.e., protein family). Lines connecting the molecules indicate molecular relationships. Dashed lines indicate indirect interactions,
and solid lines indicate direct interactions. The arrow styles indicate specific molecular relationships and the directionality of the interaction.
doi:10.1371/journal.pone.0068376.g004
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proteins, specifically PKM2 in HIV-1 replication, and HK and

G6PD in anti-apoptotic pathways in macrophages. We postulate

that HIV-1 hijacks the macrophage glucose metabolism pathway

via the Vpr-HIF-1 alpha axis to create an environment that is not

only advantageous for viral replication and biogenesis, but also for

long-term survival of infected macrophages (Figure 6). We

Table 2. List of relevant network that were constructed by IPA analysis from the 136 Vpr-modulated proteins in macrophages.

ID Top Functions Score Focus molecules Molecules in network

1 Organ Morphology, Nucleic Acid
Metabolism, Small Molecule
Biochemistry

49 25 ACTB, ACTG1, Akt, Alpha actin, ASAH1,CALR, DDX5, DLST, Fc gamma receptor, G-Actin,
glutathione transferase, GPI, GSN, GST, GSTK1, GSTP1,HLA-A, HNRNPD, ILF3, KHSRP,
LETM1, MATR3, MGST3, MHC Class I (complex), MYH11, NONO, OGDH, PDIA3, RAB7A,
Rho gdi, RTN4, TAGLN2,Tap, tyrosine kinase, USO1

2 Carbohydrate Metabolism,
Energy Production, Nucleic Acid
Metabolism

41 22 3-hydroxyacyl-CoA dehydrogenase, ALDOA, ALDOC, ATP synthase, Beta Tubulin, C1q,
C1QBP, CHI3L1, CIRBP, CTSD, CYC1,Cytochrome bc1, cytochrome C, cytochrome-c
oxidase, ERK1/2, ETFB, ETS, GAPDH, HADHA, HK1, HK2, HSD17B4, HSD17B10, HSPD1,
Nuclear factor 1, OPA1, PHB, Pkg, Secretase gamma, SLC25A5, STOML2, TOMM22,
VDAC1, VDAC2

3 Nucleic Acid Metabolism, Small
Molecule Biochemistry, DNA
Replication, Recombination, and
Repair

33 20 ACTA2, Actin, adenosine-tetraphosphatase, Alpha Actinin, Alpha catenin, ATP5A1,
ATP5B, ATP5D, ATP5F1, ATP6V1B2, ATPase, CaMKII, CAPG, CAPZA1, caspase, CD3, CLIC1,
CLTC,F Actin, FH, G6PD, Hsp27, Lamin, Lamin b, LMNA, LMNB1, LMNB2, MDH2,Mlc,
MYH9, PFN1, PI3K (complex), PLEC, Rock, VIM

4 Cancer, Gastrointestinal Disease,
Hepatic System Disease

28 17 26s Proteasome, 60S ribosomal subunit, AIFM1, AK2, CD44, Ck2, EEA1, estrogen receptor,
HDGF, Histone h3, Histone h4, Hsp70, Hsp90, HSP, HSP90AB1, HSPA2, HSPA5, Jnk, MTDH,
NPM1, P38 MAPK, PDGFBB, PKM, PP2A, Rb, RNA polymerase II, Rnr, RPL11, RPL13, RPL29,
RPLP0, Sos, SSB, trypsin, UBA52

5 Developmental Disorder,
Hereditary Disorder, Metabolic
Disease

27 16 ACBD3, ACTBL2, ATP6V1H, C20orf24, CTSA, ECI1, ETHE1, GLUD2, GNS, GOLGB1, ISOC2,
MAPKAP1, MYO1G, NAA38, NEU1, PGRMC2, PXK, SCAMP3, SHCBP1, SLC9A3R2, SNX27,
SQRDL, SRGAP2, SUCLG1, TFEB, TMEM33, TOM1L1, TP53I3, UBC, UNC93B1, USP1, USP46,
VAT1, WDR20,ZUFSP

6 Cellular Development, Cellular
Growth and Proliferation, Tissue
Morphology

18 13 ACAT1, calpain, Cathepsin, collagen, Collagen type I, Collagen type II, Collagen type III,
Collagen type IV, Collagen(s), CTSB, CTSH, DYSF, Ecm, Fibrin, Fibrinogen, Filamin, FTH1,
FTL, HYOU1, Integrin, Integrin alpha 2 beta 1, Integrin a, ITGAX, Laminin, LDL, Lfa-1,
MMP1, NFkB (complex), P4HB, PDGF (family), PECAM1, Rab11, RRBP1, TFRC

Proteins were named using HUGO gene nomenclature.
doi:10.1371/journal.pone.0068376.t002

Figure 5. Validation of protein expression by western blot analysis. A. Western blot analysis of protein lysates prepared from macrophages
derived from U973 cells transduced with Adeno-Null or Adeno-Vpr virus. Molecular weight of respective protein is shown in kDa. B. Densitometric
analyses of the representative proteins were done after normalization to Grb2 levels. Values represent means 6 S.E of three experiments. *indicate p
value,0.05, #indicate p value.0.05 or not significant.
doi:10.1371/journal.pone.0068376.g005
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anticipate that the information obtained from this and future

studies would enhance our understanding of the role of Vpr in

HIV-1 replication and may help formulate novel therapeutic

approaches that targets glucose metabolism to mitigate HIV

replication and survival in macrophages.
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