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Summary

All materials undergo an aging process which is characterized
essentially by changes of the rigidity (stiffness), of the ability
to absorb the stresses (toughness) and then ultimately in the
mechanical resistance (strength). Both cortical and trabecular
bone undergo a continuous process of structural remodeling
with the main aim to preserve their biomechanical properties.
An imbalance in this process, which promotes bone resorption,
results in a quantitative loss of bone tissue and in a qualitati-
ve alteration of the skeletal microarchitecture, as you can see
in osteoporosis, rheumatoid arthritis or bone metastases.
Cortical component  has a prominent role on strength therefore
loss of cortical bone that is prevalent in elderly may explain the
higher frequency of fractures of bones composed mainly of cor-
tical bone such as the proximal femur.
Remodeling inhibition with denosumab improved structural
strength without altering material properties, that can be pri-
marily explained by the combined effects of increased trabe-
cular and cortical bone mass, and reductions in trabecular ero-
ded surfaces and particularly cortical porosity.
Denosumab for its mechanism of action and pharmacokinetics
results in a significant, early and continued increase in BMD with
enhanced bone strength improving both cortical and trabecu-
lar bone.
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Background

From a historical perspective, clinical researchers were fo-

cused primarily on the pathogenesis of bone fragility interpret-

ed as an effect of the increase in bone remodeling of the tra-

becular tissue, especially at the spine. It’s well known, howev-

er, that the most of fragility fractures occurs at non-vertebral

sites where bone is composed mainly by compact (or cortical)

tissue. This tissue accounts for 80% of the total bone mass of

an adult skeleton (1). Both cortical and trabecular bone under-

go a continuous process of structural remodeling with the main

aim to preserve their biomechanical properties. It’s well known,

in fact, that all materials undergo an aging process that is char-

acterized essentially by changes in rigidity (stiffness), ability to

absorb the stresses (toughness) and in the mechanical resis-

tance (strength). Bone strength relies on many factors as

shown in Figure 1.

Bone remodeling is carried out by multicellular units that work

in sequence in certain micro-clusters of the skeleton. In partic-

ular, osteoclasts provide to bone resorption and osteoblasts re-

form more or less the same amount immediately after. An im-

balance in this process, which promotes bone resorption, re-

sults in a quantitative loss of bone tissue and in a qualitative al-

teration of the skeletal microarchitecture, as you can see in

clinical conditions such as osteoporosis, rheumatoid arthritis

and bone metastases (2).

Soon after menopause, the remodeling process proceeds

rapidly in the trabecular bone leading to trabecular resorption

and disruption resulting in progressive lower remodeling sur-

faces. On the contrary the remodeling is progressively increas-

ing with age in the cortical bone as a consequence of increas-

ing resorption at endosteal and intracortical surfaces, with pro-

gressive increase of cortical porosity and “spongiosization” of

subendosteal bone. 

Bjornerem et al. wrote that “intracortical remodeling may be

self perpetuating by creating intracortical porosity and so more

bone surface for remodeling to occur upon, while remodeling

upon the trabecular bone surface is self limiting because it re-

moves trabeculae with their surface”(3). As the trabecular bone

is lost, the remaining cortical bone becomes even more impor-

tant for bone strength.

Zebaze et al. in a cross-sectional study, using a high-resolution
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Figure 1 - Components of bone strength.



peripheral CT to quantify cortical and trabecular bone loss from

the distal radius of adult women, and measuring porosity by

scanning electron microscopy, demonstrated that rapid bone

loss after menopause is mainly trabecular, whereas the majori-

ty of bone loss in the 65-79 year age group is cortical, and after

the age of 80, almost 90% of bone loss is cortical (4).

These data could partly explain the increasing incidence of hip

fractures with age. According to the analyses performed on the

National Hospitalizations Database, the overall number of hip

and other “minor” fragility fractures occurring each year in Italy

has been estimated of almost 410,000 events. The annual inci-

dence of the overall most common fragility fractures (hip, wrist,

vertebral, humeral, and ankle fractures) per 100 inhabitants

has been estimated up to 1.53 in men aged older than 65

years and up to 3.94 in women of the same age group. The in-

cidence per 100 inhabitants reached 2.35 and 4.67 in men and

women aged older than 75 years, respectively (with women

aged older than 75 years the age group in which the highest

number of fragility fractures was detected); and if the current

trends continue, this number is expected to triple in the next 50

years (5).

The medical and social cost of hip fractures in Italy is about 1

billion euros, most of which for surgery and rehabilitation (6). A

comparative analysis based on national hospitalization records

shows that the burden of hip fractures in Italy is comparable to

that of AMI and strokes (7). Half of people surviving a hip frac-

ture can no longer live independently and about 20% die within

the first year after hip fracture. 

Pharmacological approach to osteoporosis

According to the guidelines promoted by the Italian Society of

Orthopedics and Traumatology (SIOT), a comprehensive sec-

ondary prevention should include both osteoporosis assess-

ment and treatment (pharmacological and non pharmacologi-

cal approaches) (8).

Nowadays, there are drug therapies able to prevent or re-

verse the excessive bone resorption by inhibiting osteoclasts.

Nitrogenous Bisphosphonates are still the gold standard of

anti-resorptive drugs. They bind to hydroxyapatite crystals

with high affinity and the complex hydroxyapatite/bisphospho-

nate is phagocytosed by the osteoclast during the phase of

resorption and the nitrogenous bisphosphonate, non-di-

gestible by lysosomal enzymes, inhibits the metabolic path-

way of mevalonate, the same that leads to the synthesis of

endogenous cholesterol, with locking of the production of

some small proteins and thus apoptosis of the same osteo-

clast. In this way there is a marked reduction of bone resorp-

tion, which will determine as effect of the coupling, a subse-

quent reduction of new bone apposition (9,10). For their phar-

macokinetic characteristics, bisphosphonates are distributed

electively in gaps of bone resorption present mainly in trabec-

ular bone, and in smaller amount in compact bone where ex-

ert a quantitatively lower action. For this reason the bisphos-

phonates have a smaller activity on the risk of fracture at lev-

el of compact bone, especially at the level of the radio. A new

approach, which is also targeted to the inhibition of osteoclas-

tic bone resorption, is the inhibition of RANKL. 

Several pathways, involving cytokines, hormones and growth

factors, affect bone loss; among them an important role is

played by RANK/RANKL/OPG interaction (11). Discovery and

characterization of a new pathway involving the receptor acti-

vator of nuclear factor-kB (RANK) ligand (RANKL), its recep-

tor RANK, and its soluble decoy receptor osteoprotegerin

(OPG) has been a crucial step towards the understanding of

bone biology, disclosing an innovative way to develop a tar-

geted treatment for bone diseases characterized by unbal-

anced osteoclastic activity (12-16). RANKL, by binding to os-

teoclast surface receptor RANK is a key factor for maturation,

proliferation and fusion of pre-osteoclasts, furthermore it is

crucial to osteoclast activation and survival. OPG is a soluble

glycoprotein receptor that is a competitive inhibitor of RANKL

responsible for fine tuning of RANKL activation of osteoclasts

(17). The ratio of RANKL-OPG is strictly balanced, allowing

physiological bone remodeling, essential for bone health and

a functional skeleton (18-21).

Starting from peri-menopause and continuing in the immediate

postmenopausal period, levels of estrogens fall, resulting,

throughout a complex and diverse cascade of factors, in a sig-

nificant raise of RANKL secretion by osteoblast and, as a con-

sequence, in an increase of osteoclasts. This enhanced bone

resorption activity is not anymore balanced by the osteoblast

bone formation activity, causing a loss in bone mass and a pro-

gressive destruction of bone microarchitecture. 

Induced androgen and estrogen deficiency, systemic glucocor-

ticoid exposure (22), T cell activation as in rheumatoid arthritis

and skeletal malignancies (23, 24) also enhance the release of

RANKL, ending up in promoting osteoclastogenesis and induc-

ing unbalanced bone loss.

Denosumab is a fully human monoclonal antibody that binds

with high affinity and high specificity to RANKL, thereby pre-

venting RANKL from binding to RANK (25).  RANKL inhibition

causes an important inhibition of osteoclast activity, resulting in

restoring a better balance between bone resorption and forma-

tion, ending up in an increase in bone mass (26, 27).

Denosumab is available as a subcutaneous prefilled injection

to be administered subcutaneously every 6 months. Half-life of

approximately 25 days, allows extended-interval dosing (27). 

Large reductions in bone resorption markers, specifically serum

type 1 C-telopeptide (CTX), are measurable within 3 days,

reaching maximum reduction of 89% at one month (28, 29).

Interestingly, after discontinuation of denosumab, markers of

bone resorption return to baseline in one year (29-32). Deno-

sumab, coherently with its IgG2 nature, has a nonlinear,

dose-dependent pharmacokinetics. Studies did not show any

pharmacokinetic difference between postmenopausal women

in relation to age, ethnicity, or body weight (30). Furthermore,

it shows the typical distribution of a monoclonal antibody, it

allows the activity at both the trabecular bone and the com-

pact bone.

The role of denosumab in the treatment of osteoporosis 

The FREEDOM trial started in 2004, aimed at evaluating the

anti-fracture efficacy of denosumab in women with post-

menopausal osteoporosis (31). Dosing schedule, as estab-

lished after the phase 2 trial, was 60 mg administered subcuta-

neously every 6 months.

A total number of 7,868 women, ages varying between 60 and

90 years, were enrolled in the study, 3,933 in the denosumab

group and 3,935 in the placebo.

BMD measured in terms of T-score at lumbar spine or at total

hip was between –2.5 and –4.0 SD. Eligibility criteria excluded

women having at baseline any severe or more than two moder-

ate prevalent vertebral fractures. Further exclusion criteria

were having prior three-year treatment with oral bisphospho-

nates, treatment with i.v. bisphosphonates, fluorides, glucocor-

ticoids, PTH, strontium, calcitonin, or other agents, potentially

affecting BMD during the 6 weeks prior to the start of the trial.

At the end of the third year of study the relative risk reduction

versus placebo of new vertebral fractures was 68%

(P<0.001); denosumab also showed a relative risk reduction

of hip fracture of 40% (P=0.04) and of non vertebral fractures

of 20% (P=0.01).
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There was no increase in the risk of cancer, infection, cardio-

vascular disease, delayed fracture healing, or hypocalcemia,

and there were no cases of osteonecrosis of the jaw and no

adverse reactions to the injection of denosumab. A statistically

significant increase of eczema and of cellulitis (including

erisipela) was measured. 

In order to explore further long term efficacy and safety of

denosumab in women with post-menopausal osteoporosis, a

10 year extension of the FREEDOM study was planned. Re-

sults of the second year of extension (accounting for 5 years of

continuative denosumab treatment) were recently published.

Remarkably BMD continued to rise throughout all five years,

achieving a 13.7% increase versus baseline at lumbar spine

and a 7.0% increase versus baseline at total hip, showing no

sign of loss of efficacy in 5 years time. Furthermore the inci-

dence of new vertebral fractures and non-vertebral fractures

remained low and there was no increase in the incidence of

adverse events up to the end of the fifth year of treatment with

denosumab (32).

Effect of denosumab on BMD and bone turnover markers has

been evaluated in several further phase III studies.  In 2008 a

24 month study exploring efficacy and safety of treatment with

denosumab of postmenopausal women with low bone mass

(lumbar spine T-scores between −1.0 and −2.5) was published.

Results of this study, named DEFEND (Denosumab Fortifies

Bone Density), proved denosumab to significantly increase

BMD at the lumbar spine of 6.5% versus baseline and of 7.1%

versus placebo (33).  Significant BMD increases were also de-

scribed at total hip, one-third radius, and total body (p<0.0001

each vs placebo). Bone turnover markers (CTX and P1NP) de-

creased significantly compared to placebo. Overall incidence of

adverse events that was similar to placebo.

As previously explained, the different mode of action of deno-

sumab, involving inhibition of osteoclast formation, activation

and survival, had a peculiar reflection on his action on BMD

and bone turnover markers (BTM).

Differences among denosumab and other antiresorptive

drugs

To better examine this difference, in particular with bisphos-

phonates, denosumab was compared with alendronate, as the

current gold standard for PMO treatment, in two large random-

ized, multicentric, double-blind, double-dummy studies: the

DECIDE and the STAND studies (34-36).

Both studies compared denosumab 60mg/Q6M + placebo

(tablets QW) to branded alendronate QW + placebo (sc injec-

tions Q6M) for a total of 12 months. For both studies, the pri-

mary endpoint was change from baseline in total hip BMD;

secondary endpoints were changes of BMD from baseline at

other skeletal sites (including lumbar spine, femoral neck, and

one-third radius) and in bone turnover markers (CTX1 and

P1NP).

Main difference between the two studies was that to participate

to the DECIDE study, subjects (n 1,189) had to be naïve to any

PMO treatment, whereas to be eligible for the STAND study,

subjects (n 504) had to have received alendronate treatment

equivalent to 70mg/week for at least 6 months before the be-

ginning of the study.

Both studies showed a higher effect of denosumab, in terms of

BMD increase, in all measured skeletal sites. Denosumab su-

perior efficacy was proved to be independent of the trabecu-

lar/cortical bone ratio of the skeletal sites examined and of the

presence and duration (up to ten years) of previous alen-

dronate treatment.

The effect of the two treatments on CTX and P1NP appeared

also to be very different. Whereas alendronate showed a con-

tinuous flat inhibition of both BTMs, denosumab demonstrated

a faster and deeper reduction of both BTM, followed to a slow

recovery across the 6 months of interval between one deno-

sumab injection and the subsequent.

Actions of denosumab on cortical and trabecular bone

Results from this head to head studies and the difference in

the mode of action of denosumab compared to bisphospho-

nates, suggested a difference in their effect on the diverse

compartments of bones (cortical and trabecular). This was fur-

ther explored in a 3-year sub-study of the FREEDOM trial. Pa-

tients enrolled in this analysis were assessed by whole-body

spiral computed tomography at baseline and months 12, 24,

and 36. Denosumab treated patients showed a significant in-

crease in QCT measured vBMD and DXA measured aBMD

from baseline and compared with placebo at the total hip,

spine, and femoral neck at every time point (37). At the end of

the study, treatment with denosumab produced an increase

from baseline in overall vBMD of 12.6% at the trabecular spine,

4.4% at the total hip region, and 2.9% at the femoral neck.

When compared to placebo group, denosumab treated pa-

tients overall vBMD showed a raise of 21.8% at the trabecular

spine, 7.8% at the total hip region, and 5.9% at the femoral

neck. Intriguingly, data from the total hip region demonstrated

an increase in both vBMD and BMC in the denosumab group,

whereas no change in volume was measured. This evidenced

an increase in both bone mass and density, likely due to the

large effect of denosumab treatment on cortical bone.

Kostenuik et al. examined the effects of denosumab, on bone

histomorphometry in adult ovariectomized cynomolgus mon-

keys, and demonstrated that remodeling inhibition with deno-

sumab improved structural strength without altering material

properties, that can be primarily explained by the combined ef-

fects of increased trabecular and cortical bone mass, and re-

ductions in trabecular eroded surfaces and particularly cortical

porosity (38). 

Genant et al. analyzing QCT scans of the radius of patients en-

rolled in DEFEND trial, obtained data about bone strength pa-

rameters such as the density-weighted polar moment of inertia

(PMI), which relates to the ability of a bone to resist torsion.

This study confirmed that denosumab significantly increased

BMD, BMC with positive changes in measures of bone geome-

try, leading to an increase in derived indices of bone strength

across the scanned length of the radius, a bone characterized

by a very different composition in cortical or cancellous tissue

along its length (39) (Figure 2).
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Figure 2 - Denosumab improves density and strength parameters as

measured by QCT of the radius in postmenopausal women with low

bone mineral density (Adapted from: Genant HK, et al. Bone 2010 Jul;

47(1):131-9).



Conclusion

Bone strength is determined by many factors, ranging from the

macroscopic geometry to ultramicroscopic arrangement of the

structural components, on which act complex biological phe-

nomena such as modeling, remodeling and aging of the bone

tissue.

Cortical component has a prominent role on strength therefore

loss of cortical bone that is prevalent in elderly may explain the

higher frequency of fractures, of bones composed mainly of

cortical bone such as the proximal femur.

Denosumab for its mechanism of action and pharmacokinetics

results in a significant, early and continued increase in BMD

with enhanced bone strength improving both cortical and tra-

becular bone.
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