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Purpose: Metal artifact reduction has long been an important topic in x-ray CT image reconstruction.
In this work, the authors propose an iterative method that sequentially minimizes a reweighted total
variation (TV) of the image and produces substantially artifact-reduced reconstructions.
Methods: A sequentially reweighted TV minimization algorithm is proposed to fully exploit the
sparseness of image gradients (IG). The authors first formulate a constrained optimization model that
minimizes a weighted TV of the image, subject to the constraint that the estimated projection data
are within a specified tolerance of the available projection measurements, with image non-negativity
enforced. The authors then solve a sequence of weighted TV minimization problems where weights
used for the next iteration are computed from the current solution. Using the complete projection
data, the algorithm first reconstructs an image from which a binary metal image can be extracted.
Forward projection of the binary image identifies metal traces in the projection space. The metal-free
background image is then reconstructed from the metal-trace-excluded projection data by employing
a different set of weights. Each minimization problem is solved using a gradient method that alternates
projection-onto-convex-sets and steepest descent. A series of simulation and experimental studies are
performed to evaluate the proposed approach.
Results: Our study shows that the sequentially reweighted scheme, by altering a single parameter in
the weighting function, flexibly controls the sparsity of the IG and reconstructs artifacts-free images
in a two-stage process. It successfully produces images with significantly reduced streak artifacts,
suppressed noise and well-preserved contrast and edge properties.
Conclusions: The sequentially reweighed TV minimization provides a systematic approach for
suppressing CT metal artifacts. The technique can also be generalized to other “missing data”
problems in CT image reconstruction. © 2013 American Association of Physicists in Medicine.
[http://dx.doi.org/10.1118/1.4811129]
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I. INTRODUCTION

Streak artifacts caused by metallic implants degrade the image
quality and limit the diagnostics in various CT applications.
Two major types of methods have been proposed for CT metal
artifact correction: analytical one-shot algorithms1, 2 and it-
erative reconstruction algorithms.3–6 Conventionally, metal
corrupted projections are segmented out and replaced by
interpolated values based on surrounding “clean” projections.
CT image is then reconstructed from the completed sino-
gram using filtered-back-projection typed algorithms. The
interpolation-based schemes may involve unrealistic assump-
tion about the corrupted data. In alternative iterative methods,
metal projections are usually segmented out and ignored.
Iterative algorithms are applied to interpret the incomplete
projection data with prior assumptions made on some phys-
ical properties of the image to be reconstructed. In this way,
iterative algorithms usually lead to better reconstructions. An
iterative approach generally consists of two parts: segmen-
tation of metal projections from the complete sinogram and
reconstruction of the metal-excluded background image con-
sistent with the remaining measurement data. A prerequisite

of all these methods is the accurate segmentation of metal
projections,7 either in image or projection domain. A major
source of reconstruction artifacts is the inaccuracy of metal
segmentation before or during calculation.

Conventionally, CT imaging system is assumed to be ap-
proximately linear and the image reconstruction is formu-
lated as a Bayesian inference problem in which the image
is estimated by maximizing the posterior probability. There-
fore, the prior probability can encode information on the im-
age to be reconstructed.8 When the measurement data are
incomplete, or the data are severely corrupted by noise, the
prior knowledge can play a vital role in successfully recov-
ering of the image. Recent research on image reconstruction
of sparse data using compressed sensing9–16 presents a good
example of this. To reconstruct the x-ray linear attenuation
coefficients, we solve the following constrained optimization
problem:

⇀
μ∗ = argmin

∑
i

∑
j
|μi+1,j − μi,j |+|μi,j+1 − μi,j |.

(1)
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Subject to

‖A⇀
μ − ⇀

p‖ ≤ ε, (2)

⇀
μ ≥ 0, (3)

where matrix A represents the discrete model of the CT imag-
ing system, ⇀

μ is the vector of attenuation coefficients to be
reconstructed,

⇀

p is the vector of log-transformed projection
measurements, and ε is the tolerance specified to enforce data
fidelity constraint. For positive ε values, this is a variant of
the LASSO model17 in compressed sensing where sparsity
of the image gradient (IG) is described by l1-norm, i.e., TV
of the signal.

In metal artifact reduction, the concept of compressed
sensing can be utilized to exploit the sparse assumption and
recover image from partially missing, noise corrupted pro-
jection data. Although sparsity is in general not a valid as-
sumption on the image itself, the IG is usually sparse for
medical images. A prior representing the image sparsity in
a certain domain can play a vital role in reconstructing im-
ages with desired properties. In this work, we propose a se-
quentially reweighted TV minimization algorithm that ac-
complishes metal artifact reduction in a two-stage process:
binary reconstruction and background reconstruction. This al-
gorithm exploits the sparseness of the IG and sequentially
enhances it by updating a weighting function. It first iden-
tifies the metal objects by encouraging an extremely sparse
IG that leads to an image from which metal objects are well
separable. Forward projection of the metal objects to the pro-
jection space provides accurate information of the metal cor-
rupted projection data, which is crucial to ensure the success
of the subsequent iterative reconstruction of the background
image.18 By employing a different set of weights, the algo-
rithm is then applied to the metal-trace-excluded projection
data to reconstruct the background image with significantly
suppressed noise, preserved edge properties, and enhanced
resolution.

The idea of reweighted TV originates from the effort
of minimizing a concave function that approximates the l0-
norm, which can eventually be converted to solving a se-
quence of reweighted l1-norm problems. It has been explored
in various areas of theory and practice in signal processing.
Candes et al. proposed a reweighted l1 minimization algo-
rithm and presented analytical justifications on the weights
choice by minimizing a log-sum function that closely resem-
bles the l0-norm.19 Figueiredo et al. have used an l1 penalty
to majorize the nonconvex lp penalty for solving penalized
likelihood signal restoration problem.20, 21 Similarly, Char-
trand and Yin exploit the lp-norm for computing local minima
of the nonconvex problem.22 Wipf and Nagarajan have pro-
posed an iterative reweighted l1 minimization with a concave,
nondecreasing penalty for a feature selection problem.23 Zou
has proposed an iterative reweighted version of the LASSO
algorithm.24 In medical imaging, nonconvex approaches25, 26

that employ the lp-norm and weighted TV strategy27 have
been explored in breast tomosynthesis and computed tomog-
raphy. In this work, the idea of reweighted l1-norm inspired

the development of a systematic iterative approach for CT
metal artifact reduction.

In Secs. II–IV, we will first describe the sequentially
reweighted TV minimization algorithm and the two-stage im-
age reconstruction in Sec. II. In Sec. III, evaluation of the
proposed algorithm is shown with a digital quality assur-
ance (QA) phantom, a dental head phantom, the experimental
CatPhan R©600 and an anthropomorphic head phantom, fol-
lowed by discussions in Sec. IV.

II. METHODS AND MATERIALS

II.A. Sequentially reweighted TV minimization

II.A.1. Constrained optimization with weighted TV

Consider the weighted TV minimization problem

⇀
μ∗ = argmin

∑
i

∑
j
wi,j |μi+1,j − μi,j |

+ w̃i,j |μi,j+1 − μi,j |. (4)

Subject to

‖A⇀
μ − ⇀

p‖ ≤ ε, (5)

⇀
μ ≥ 0, (6)

where wi,j and w̃i,j are positive weights for each (i, j)-pair.
The unweighted counterpart (1) is a special case with all
weights set equal to unity. As a parameter in the constrained
optimization, ε is based on our estimation of data incon-
sistency from all sources in the system, including noise, x-
ray scatter, and a simplified data model. Sidky and Pan have
shown in their work13 that the best image root-squared-error
(RSE) is achieved when the selected ε is around the actual
error in the projection data when solving an unweighted TV
minimization problem. In reality, the noise level of a system
is generally unknown. The ε value is chosen in such a way
that best reconstruction is obtained.

II.A.2. Sequential optimization
with updated weights

In the objective function Eq. (4), the weights are imposed
on the individual entries of the IG to encourage sparsity. In
general, a large weight should be applied to a small gradi-
ent and vise versa. An intuitive choice is to set the weight in-
versely proportional to the IG. To proceed along this line, a se-
quential optimization scheme that keeps updating the weights
based on the current reconstruction is necessary because the
IG is not known until the image is reconstructed.

The sequential optimization scheme alternates between
solving the constrained optimization problem and updating
the weights wi,j and w̃i,j for all (i, j) pairs. The following
summarizes the proposed calculation procedure:

1. Initialize the weights w0
i,j = 0, w̃0

i,j = 0 for all (i,j)
pairs.
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2. Solve the weighted TV minimization problem

⇀
μk = argmin

∑
i

∑
j

wk
i,j |μi+1,j − μi,j |

+ w̃k
i,j |μi,j+1 − μi,j |.

Subject to

‖A⇀
μ − ⇀

p‖ ≤ ε,
⇀
μ ≥ 0.

3. Refine the weights for each (i, j) pair

wk+1
i,j = e

− |μk
i+1,j

−μk
i,j

|
ς(

1 + e
− |μk

i+1,j
−μk

i,j
|

ς

)2 ,

w̃k+1
i,j = e

− |μk
i,j+1−μk

i,j
|

ς(
1 + e

− |μk
i,j+1−μk

i,j
|

ς

)2 .

4. Terminate when k attains a prespecified number of it-
erations kmax or the solution satisfied a certain optimal
criterion. Otherwise, go to step 2.

The key idea of choosing the form of weights refining func-
tion in step 3 is based on formalism by Candes et al.19 Ideally,
we want to minimize the l0-norm, i.e., the number of nonze-
ros, to recover a sparse signal. The l1-norm serves as an ap-
proximation that eases the implementation and is proved to be
effective in practice. Unlike the l0-norm, larger signal mag-
nitudes are penalized more heavily than smaller ones in the
l1-norm. Therefore, by choosing a function closer to the l0-
norm in terms of magnitude dependence, the sparse recovery
is expected to be improved. In our work, the improved sparse
recovery of the IG usually leads to better image quality and
edge performance. It also creates an opportunity for identify-
ing the shape and location of metal objects in image domain.
A detailed justification of our weight function is available in
Appendix A.

There are various ways of solving the intermediate con-
strained optimization problem in step 2. We use a gradient
method that constantly alternates between projection-onto-
convex-sets (POCS) and gradient descent of the objective
function13, 28, 29 (see Appendix B). While with no theoretical
guarantee to converge to the mathematically optimal solution,
this method can efficiently reconstruct images with practically
optimal qualities. The value of kmax is empirically determined
by setting a threshold for the differences between two succes-
sive solutions. For example, the entire sequential process of
the background image reconstruction in our simulation study
is ended when k reaches kmax = 5, as the resulted image only
differs slightly from when k = 4.

II.B. Two-stage image reconstruction

II.B.1. Binary image reconstruction

The idea of binary reconstruction30 is to obtain a binary
image with the metal objects having high attenuation of 1 and

the remaining background tissues having low attenuation of
0. Metal traces in the projection space are then determined by
a forward projection of the binary metal image. The problem
is to reconstruct an image from which the metal objects can
be accurately extracted. In an image containing metal objects,
the linear attenuation coefficients at the boundary of the metal
change drastically. Ignoring the relatively much smaller gra-
dient values, IG is approximately sparse only with substan-
tial values on the boundary of the metal objects. The prob-
lem thus becomes reconstructing an image with extremely
sparse gradient. The sequentially reweighted algorithm in
Sec. II.A.2 is applied here with

⇀

p representing the scanner-
acquired projection data. By sequentially encouraging the im-
age to have a highly sparse IG, we can recover the sharp
edges of the metal boundary, leading to roughly two substan-
tially different parts in the reconstructed image: the metal ob-
jects and the background, which can be binarized by simple
thresholding.

ς is the essential parameter that regulates the sparsity of
the IG. Following the argument in Sec. II.A.2, ς should be set
arbitrarily small to discourage the relatively low variations in-
side and outside the metal. However, when ς is close to zero,
the reweighted algorithm becomes unstable and less capable
of correcting inaccurate gradient estimates.19 This means that,
if streak artifacts are generated somewhere in the sequential
process, they are likely to persist in the image estimates and
propagate along the subsequent optimizations. In our evalua-
tions, ς is set empirically according to the variations of the at-
tenuation coefficients to be reconstructed. For our digital QA
example, the difference of attenuation coefficients between
metal objects and tissues is around 0.5, while the variations
within tissues or metals are [0.02, 0.16]. We chose ς = 0.01
because it eventually penalizes the smaller variations at least
1015 more and is sufficient to separate the image into two
parts.

II.B.2. Background image reconstruction

To reconstruct the background image, i.e., the image ex-
cluding metal objects, the algorithm in II.A.2 is applied with
⇀

p representing the projection measurements excluding the
metal corrupted part identified in the previous stage. In this
case, the sparse assumption is used to recover image from
noisy, incomplete projection data. Unlike the binary recon-
struction, we need to recover all the structures in the image
without introducing oversmoothness, i.e., losing subtle varia-
tions within each specific structure. Enhanced IG sparsity is
expected to lead to better preserved edges and improved im-
age contrast. An appropriate ς enables SeqTV to steadily gain
competitive edge over the unweighted counterpart in Eq. (1).
In this work, the value of ς is manually chosen. A good value
to start with would be the 90th percentile of the gradient mag-
nitude of the FDK reconstructed image. We then move up and
down to test out a few values and select the one that works
best for the specific case. Once the background image is re-
constructed, it is fused with the binary metal mask to form the
complete image.
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II.C. Data acquisition

Two simulation phantoms are used to evaluate the perfor-
mance of the proposed algorithm. The first is a digital 2D
QA phantom consisting of 350 × 350 pixels, 1 × 1 mm2 per
pixel. The outer circle is composed of water, and the inner cir-
cular area is tissue equivalent material. The two circles have
diameters of 210 and 90 mm, respectively. We have four ob-
jects lying within the inner circle, which are iron (left), brass
(right), aluminum (upper), and bone (lower), each with a di-
ameter of 12 mm. The iron object is designed to have a con-
cave structure. The second is a 2D dental head phantom (350
× 350 pixels, 1 × 1 mm2 per pixel) designed similar to Ref. 6.
Three disk-shaped dental fillings (silver, diameters 9, 8, and
7 mm) were inserted into the teeth. Four circular ROIs (diam-
eter 18 mm) with a contrast of 150 HU respect to the soft tis-
sue background were located between the teeth and dental fill-
ings. Projection data are generated through a simulated pro-
jector for fan-beam CT geometry. The source-to-axis distance
is 128.9 cm and the source-to-detector distance is 193.2 cm.
The projection of each view consists of 500 × 1 pixels with
detector bin size being 1 × 1 mm2. A total of 339 views are
simulated over 360◦ rotation. A monochromatic spectrum is
assumed and the photon energy is set to 80 KeV. Each projec-
tion value is computed from the known densities of the phan-
tom along the ray and its intersection lengths with the cor-
responding pixels. The projection data

⇀

p generated from the
simulator is noise-free. To simulate the noisy measurements,
we use the following model:28, 31

Ii = Poisson(I0 exp(−pi)) + Normal
(
0, σ 2

e

)
, (7)

where I0 is the incident x-ray intensity and σ 2
e is the back-

ground electronic noise variance. The noisy projection data
are calculated as

pi =
⎧⎨
⎩

ln
(

I0
Ii

)
Ii ≥ 1

ln (I0) Ii < 1,

(8)

where we set the threshold of Ii to 1 to enforce that the loga-
rithm transform is applied on positive numbers.

A commercial calibration phantom CatPhan R©600 (The
Phantom Laboratory, Inc., Salem, NY) and an anthropo-

morphic head phantom are used in our experimental study.
Cone-beam CT projection data are acquired by an Acuity sim-
ulator (Varian Medical Systems, Palo Alto, CA). The tube
voltage was set to 125 kVp. The duration of x-ray pulse at
each projection view was 10 ms during the acquisition of
CBCT projection data. The x-ray tube current was set to
10 mA for CatPhan R©600 and 80 mA for the head phantom.
The projection data were acquired in full-fan mode with a full-
fan bow-tie filter. The distance of source-to-axis is 100 cm and
the source-to-detector distance is 150 cm. The number of pro-
jections for a full 360◦ rotation is 680. The dimension of each
acquired projection image is 397 × 298 mm, containing 1024
× 76 8 pixels. The projection data at each projection view
were down-sampled by a factor of 2 and only the average
of the central two slices along axial direction was selected.
The size of reconstructed image is two-dimensional with
350 × 350 pixels, 0.776 × 0.776 mm2 per pixel.

III. RESULTS

III.A. Digital QA phantom

The projection data for the digital QA phantom are
simulated by setting I0 = 2 × 104, and σ 2

e = 10. Figure 1
shows the stage 1 reconstruction results with kmax = 10. The
sequentially reweighted TV (SeqTV) optimization yields an
image in which the two metal objects can be separated from
the surrounding structures, as shown in Fig. 1(b). Simple
thresholding extracts all pixels associating with metal and
gives the metal mask in Fig. 1(c). To better show the compar-
ison between SeqTV and unweighted TV, we designed two
more challenging scenarios for stage 2 background image
reconstruction: (1) An enhanced-noise scenario with I0 = 5
× 103, and σ 2

e = 10; (2) A limited-view scenario by simu-
lating only 29 views, equally spaced over 360◦ rotation. In
Figs. 2(a) and 2(b), we show the reconstructed background
images from metal-trace-excluded projection data for the
enhanced-noise scenario using SeqTV and unweighted
TV methods. In Fig. 2(f), we show the complete SeqTV
reconstruction with the binary metal mask combined. SeqTV
was compared with several analytical and iterative algorithms

(a) (b) (c)

FIG. 1. Stage 1 SeqTV reconstructions for the digital QA phantom. (a) Ideal phantom; (b) SeqTV reconstruction (metal), sigma = 0.01, kmax = 10; (c) binary
extraction from (b).
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FIG. 2. Digital QA reconstructions for the enhanced-noise scenario. (a) SeqTV reconstruction (background), sigma = 0.1, kmax = 5; (b) TV reconstruction
(background); (c) FDK reconstruction; (d) linear interpolation; (e) POCS reconstruction; (f) SeqTV, fused with metal mask.

through Figs. 2(c)–2(e). Among them, FDK was applied
to the original metal-corrupted projection data [Fig. 2(c)].
Severe streak artifacts can be observed in the FDK recon-
struction and the image appears to be very noisy. Linear
interpolation refers to that the projection is first linearly inter-
polated in the metal traces region based on the neighboring
values and then back projected to the image domain. As
shown in Fig. 2(d), streak artifacts were reduced but noise was
not effectively suppressed. In Fig. 2(e), POCS was applied
to the metal-trace-excluded projection by iteratively solving
the data constraints (2) and (3) alone. Apparently, POCS had
very noisy reconstruction with extensive artifacts across the
entire image domain. SeqTV not only removed the artifacts
completely but also had the noise reduced significantly in the
reconstructed image. Compared to TV, better preserved bone
structure and soft tissue edges can also be observed in SeqTV
reconstruction. Similar conclusions can be drawn from the
observations through Figs. 3(a)–3(f), where SeqTV well re-
flected the ground truth even with significantly undersampled
measurements. In comparison, FDK reconstructed an image
completely dominated by artifacts. Linear interpolation
and POCS had prominent artifacts residuals with severely
blurred structures. In this case, SeqTV was superior to TV
with vastly suppressed artifacts and better preserved image
structures.

As can be seen, SeqTV and TV both perform well in sup-
pressing streak metal artifacts with nearly invisible residu-
als. SeqTV, however, preserves the resolution better, espe-
cially along the edges of different structures. The complete
SeqTV reconstruction, compared with the standard FDK, lin-

ear interpolation and POCS, is superior in terms of both arti-
facts reduction and noise suppression. Several criterions were
used to quantify the performance and show further compar-
isons between SeqTV and TV. In Fig. 4, vertical profiles of
the reconstructed linear attenuation coefficients through col-
umn 175 illustrate that, even for very noisy measurements
[Fig. 4(a)] and limited number of views [Fig. 4(b)], SeqTV
was able to recover the image that is fairly close to the ground
truth and outperform TV especially on the edges. Further-
more, the modulation transfer function (MTF) that charac-
terizes the spatial resolution of images was calculated for
SeqTV, TV, and the ground truth. The line segment indicated
by the black arrow in Fig. 5(a) provides a step function (edge
spread function) from which the line spread function can be
calculated by taking gradient and the MTF is obtained by one
dimensional discrete Fourier transform. It can be observed
from Fig. 5 that SeqTV produces better image resolution for
both scenarios, which agrees with the observation in Figs. 2
and 3. Root-mean-square error (RMSE) is also computed to
assess the image quality at three different regions shown in
Fig. 6(a). The ROI is defined as a 10 × 10 square and the
RMSE is calculated by

RMSE =
√∑

i (μi − μ̄)2√∑
i μ

2
i

, (9)

where the summation is over the ROI. Lower RMSEs for
SeqTV are consistent with the observations from previous
figures.
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FIG. 3. Digital QA reconstructions for the limited-view scenario. (a) SeqTV reconstruction (background), sigma = 0.1, kmax = 5; (b) TV reconstruction
(background); (c) FDK reconstruction; (d) linear interpolation; (e) POCS reconstruction; (f) SeqTV, fused with metal mask.

III.B. Dental head phantom

The 2D dental phantom [as shown in Fig. 7(a)] was con-
structed to represent one of the most challenging cases in CT
metal artifact reduction. Four circular ROIs were designed to
locate inbetween the metal fillings and teeth specifically to
quantify the soft tissue contrast in regions most affected by the
streak artifacts. The stage 1 SeqTV reconstruction, as shown
in Fig. 7(b), roughly separates the image into two parts: den-
tal fillings and the background with blurred structures. The
binary metal mask was extracted from Fig. 7(b), as shown in
Fig. 7(c). Figures 7(d) and 7(e) show the stage 2 background
reconstructions using SeqTV and TV, respectively. It can be
seen that SeqTV reconstruction is fairly close to the ideal
phantom image and no streak artifacts are visually observ-
able. In comparison, TV has slight residuals in regions near
the metals, where a slight oversmoothing effect can also be
observed. However, both methods significantly outperformed
the FDK method, as shown in Fig. 7(f). In FDK reconstruc-
tion, the streak artifacts are so extensive that they almost ob-
scured all the detailed structures in the image.

The contrast values of the four circular ROIs respect to the
surrounding tissue are calculated as the absolute difference
between the mean value of the region inside the ROI and the
mean value of the background soft tissue. For SeqTV, the con-
trast values are (from upper to lower) 142.0, 143.5, 147.7, and
153.5 HU, as opposed to the ground truth of 150 HU. For TV,
the values are 131.3, 110.3, 144.7, and 136.6 HU. Obviously,
SeqTV achieves overall better soft tissue contrast, especially
in regions severely affected by artifact residuals (ROI2, which
locates in the center of three disk fillings).

III.C. Experimental CatPhan R©600

Initial experimental study was conducted using the
CatPhan R©600 with a regular hexagon-shaped metal screw
embedded in the central region. The projection data were
acquired using low-dose protocol. Extensive streak arti-
facts are present in the FDK result as shown in Fig. 8(a).
Figure 8(b) presents the FDK reconstruction without metal
presence, which serves as a reference image for subsequent
quantifications. The stage 1 SeqTV reconstruction and the
extracted binary metal image are shown in Figs. 8(c) and
8(d). Combined with the reconstructed background image, the
complete reconstructions using TV and SeqTV are shown in
Figs. 8(e) and 8(f), in which the streak artifacts almost com-
pletely subsided.

Several circles of different intensities in the CatPhan R©600
can be used to quantify the contrast-to-noise ratio (CNR) of
the reconstructed images. Four circles indicted by black ar-
rows in Fig. 8(b) are selected as the ROI for the calculation of
CNRs for different algorithms. The contrast was calculated as
the absolute difference between the mean value of the region
inside the ROI and the mean value of the uniform background
region, which is characterized by a uniform area of size
10 × 10 (in pixels) indicated by the black square. Standard
deviation of the region inside the square was calculated to
indicate the noise level. The CNR was defined as the con-
trast divided by the standard deviation. Table I lists the CNRs
of FDK, the FDK reference image, unweighted TV, and Se-
qTV for the four indicated ROIs. Results indicate that, com-
pared with the FDK algorithm, both unweighted TV and
SeqTV are significantly better at suppressing noise without

Medical Physics, Vol. 40, No. 7, July 2013
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FIG. 4. Vertical profiles of the reconstructed attenuation coefficients through
the 175th column for TV and SeqTV in Figs. 2 and 3. (a) Enhanced-noise
scenario; (b) limited-view scenario.

compromising much of the image contrast, while SeqTV in
general outperforms the unweighted TV by producing better
CNRs in all four ROIs.

III.D. Anthropomorphic head phantom

Figure 9 illustrates the results with five ball bearings in-
serted in an anthropomorphic head phantom. This is a case

TABLE I. CNR values of CatPhan R©600 for the four ROIs indicated
in Fig. 8.

FDK REF TV SeqTV

ROI 1 2.93 3.29 35.7 43.3
ROI 2 3.41 4.56 45.4 55.3
ROI 3 1.09 1.33 12.1 14.9
ROI 4 1.05 0.98 8.42 10.5

FIG. 5. MTF curves for TV and SeqTV reconstructions in Figs. 2 and 3,
calculated from the indicated line segment. (a) Enhanced-noise scenario;
(b) limited-view scenario.

commonly seen in image-guided radiation therapy due to
the existence of metallic fiducial markers. The FDK method
[Fig. 9(a)] exhibits prominent artifacts caused by the BBs,
which degrades the quality of the reconstructed image and
makes accurate identification of the BBs difficult. Figure 9(b)
shows the stage 1 SeqTV reconstruction from which the BBs
are easily separable from the surrounding structures and the
extracted binary metal image is shown in Fig. 9(c). The recon-
structed BBs appear in slightly different sizes because they
are not placed exactly on the same plane when the CBCT
data are acquired. Figures 9(d) and 9(e) are the metal-fused
reconstructions using TV and SeqTV, respectively. Streak ar-
tifacts were effectively suppressed in both reconstructions.
But for SeqTV, image was reconstructed with seemingly bet-
ter contrast and preserved edges. In the regions indicated by
arrows in Fig. 9(e), it is seen that the structures were well
preserved in the image reconstructed using SeqTV. The same
structures were slightly blurred in TV reconstruction. This
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FIG. 6. RMSEs for TV and SeqTV reconstructions in Figs. 2 and 3, calcu-
lated from the indicated squares. (a) Enhanced-noise scenario; (b) limited-
view scenario.

result is consistent with the observation and quantitative eval-
uation in the previous simulation and experimental studies.

Currently, the algorithm is not designed in favor of great
computation efficiency, which depends highly on the opti-
mization procedure in step 2. For the example in Fig. 1,
SeqTV takes around 25 s to finish one loop on a 2.4 GHz, 2G
RAM PC in step 2. Graphics processing unit (GPU) accelera-
tion can be used in the future to save time on some segments
of the algorithm.32

IV. DISCUSSION AND CONCLUSION

In this paper, we proposed a sequentially reweighted op-
timization algorithm that exploits the gradient sparseness of
general medical images for CT metal artifact correction. The
results showed that the proposed method can effectively re-
duce streak artifacts and produce significantly improved CT
images. Compared with the unweighted counterpart, it is ad-

vantageous in terms of improved image contrast and edge
properties, as well as less visible artifacts and image noise.
The reweighted scheme allows us to fully exploit the sparse
assumption imposed on the IGs and establish a versatile
method that reconstructs both the binary metal image and
the background in a two-stage process.

The sequentially updated weights originate from the ef-
fort to find a measure that better approximates the l0-norm
of the IG than the traditional l1-norm. By altering parame-
ter ς , we gain better control of the IG sparsity, which gives
the competitive edge over the unweighted TV minimiza-
tion. It is, of course, not the only way of improving im-
age quality by enhancing sparsity of the IG. In our previous
work,28–31, 33 we used a penalized smoothness (PS) function
with an anisotropic prior and showed improved resolution and
preserved edges in the reconstructed image. In the PS objec-
tive, the prior is adaptively changing with each update of the
image during the optimization process. From the computing
perspective, it is also a reweighting scheme in which weights
are updated after each iteration. Mathematically, however, it
makes more sense to fully evaluate a set of weights and up-
date them based on the information gathered during the pre-
vious evaluation. Another merit of the proposed algorithm is
that it provides a systematic way of updating weights based
on a reweighting function. It is understandable that one can
recover images with different levels of IG sparsity by choos-
ing different weights in the weighted TV optimization, but
these choices can be arbitrary and unguided. With the pro-
posed reweighting function, the choice goes down to choos-
ing parameter ς . The proposed algorithm is also systematic
in terms the integrated two-stage image reconstruction. It not
only reconstructs the background image, i.e., the image with-
out the metal parts, but also provides a way of recovering
the metal shapes and locations, which is by itself a valuable
method in image-guided radiation therapy. The binary recon-
struction is in fact crucial because the quality of background
reconstruction highly relies on the accuracy of metal trace
segmentations.

A possible limitation of the reweighted approach lies in
the sparsity assumption on the IG, which is a common prob-
lem for all the sparsity-driven iterative approaches in medical
image reconstruction. This affects SeqTV for background im-
age reconstruction when images only have a mere level of
sparseness on the IGs. Fortunately, the parameter ς allows
us to readily control the aggressiveness in encouraging spar-
sity with TV being the limiting case as ς approaches infin-
ity. By setting ς large the regularization of IG sparsity will
be reduced. Even when the IG sparsity assumption does not
hold, the algorithm should not yield worse images than ap-
plying EM-typed algorithms to comply with data constraints
(2) and (3) alone. Another potential problem is that, when ap-
plied to the metal-trace-removed incomplete projection data,
iterative algorithms sometimes tend to be sensitive to the ge-
ometry mismatch between the simulated forward projector
and the actual system configurations. This effect is eliminated
in simulation study by using the same forward projector (rep-
resented by system matrix A) to generate projection data and
do the reconstruction. In experimental and clinical studies, it
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(a) (b) (c)

(d) (e) (f)

FIG. 7. Dental phantom reconstructions. (a) Ideal phantom, three circular fillings embedded with diameters 9, 8, and 7 mm; (b) SeqTV reconstruction (metal),
sigma = 0.05, kmax = 5; (c) binary extraction from (b); (d) SeqTV reconstruction (background), sigma = 0.1, kmax = 5; (e) TV reconstruction (background);
(f) FDK reconstruction.

(a) (b) (c)

(d) (e) (f)

FIG. 8. Reconstructions for CatPhan R©600 using 339 views. (a) FDK reconstruction; (b) FDK reconstruction without metal (REF image); (c) SeqTV re-
construction (metal), kmax = 5, sigma = 0.001; (d) binary extraction from (c), all pixels within the extracted contour were considered metal pixels; (e) TV
reconstruction; (f) SeqTV reconstruction, sigma = 0.001, kmax = 5. Both (e) and (f) are fused with metal mask.
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(a) (b)

(d) (e)

(c)

FIG. 9. Reconstructions for the anthropomorphic head phantom using 678 views. (a) FDK reconstruction; (b) SeqTV reconstruction (metal), kmax = 10, sigma
= 0.0001; (c) binary extraction from (b); (d) TV reconstruction; (e) SeqTV reconstruction, sigma = 0.001, kmax = 5. Both (d) and (e) are fused with metal mask.

requires us to cautiously model the forward projection and set
high standard on experimental set-up and data acquisition.

In conclusion, we have developed a sequentially reweighed
TV minimization method for CT image reconstruction in the
presence of implanted metallic objects. The approach sepa-
rates the reconstruction into two natural steps: (1) obtaining
the shapes and locations of the metal objects; and (2) recon-
struct the metal-excluded regions. With utilization of prior
knowledge about the implanted metals as derived from the
first step as well as the IGs of the reconstructed image through
an effective reweighting of the total-variation, the proposed
reweighted TV minimization provides a systematic approach
for dealing with CT metal artifacts. With minor modification,
the technique should be applicable to other “missing data”
problems in image reconstruction or alike.34
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APPENDIX A: A DETAILED JUSTIFICATION
OF THE WEIGHT CHOICES IN SEC. II.A.2

To connect with the l0-norm, a logistic function is selected
and a sequentially reweighted scheme is built on top of it.
Consider the following function:

f (x) = 1/(1 + e
− |x|

ς ). (A1)

Here we use the scalar case for simplicity. Consider the
problem

y∗ = argmin f (y) subject to y = |x| . (A2)

The change of variable is to overcome the fact that |x| is not
differentiable at the origin. f (y) is concave and thus below its
tangent.14 At a current solution yk, we can minimize a lin-
earization of f (y) for a new update of yk + 1, that is,

yk+1 = argminf′(yk) ∗ y

⇔ |x|k+1 = argmin
1

ς
· e

− |x|k
ς(

1 + e
− |x|k

ς

)2 · |x| . (A3)

Thus the problem can be solved via the iteratively reweighted
optimizations. This is a simple example of the Majorization
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Minimization algorithms and the linearization serves as a sur-
rogate function majorizing the original objective function (1).
By substituting |x| with the TV of the image, we have the
weighting function in step 3 in Sec. II.A.2.

The connection among the logistic function, the l1 and l0
norms gives analytical justification for why the reweighted
scheme can improve the sparse signal recovery. When ς ap-
proaches zero, f (x) goes close to 1 which resembles the l0-
norm for x 	= 0. The value of ς actually determines the slope
of f (x) at the origin. As ς → 0, f (x) is very steep near
x = 0 and the slope is much greater than 1. Compare to the
l1-norm it will give relatively large penalty to smaller x values
and more strongly encourage them to be set to zero when we
target on minimizing f (x). Therefore, the logistic function is
likely to have more democratic penalization across different
signal magnitudes than the l1-norm and thus better represents
the l0-norm in this sense.

APPENDIX B: GRADIENT ALGORITHM FOR
SOLVING THE WEIGHTED TV MINIMIZATION

In the sequentially reweighted TV algorithm, we need to
solve the intermediate weighted TV minimization in step 2.
In this study, it is performed using a gradient method that al-
ternates between POCS and gradient descent, similar to that
in Ref. 13.

The above gradient method does not guarantee the con-
vergence to the mathematically optimal solution. However, it
has been shown to be capable of finding a practically opti-
mal solution in previous literature. The optimality criterion
can be defined by setting a threshold on the number of itera-
tions or some indicator function values derived from optimal-
ity conditions13, 28 (such as KKT conditions). In this work,
we stopped the computations at a certain number of itera-
tions at which a practically good-quality image was observed
and good convergence was seen through the observation of
consecutive reconstructions. In addition, the comparison be-
tween TV and SeqTV for background image reconstruction
was made by setting the total number of iterations equal. For
example, the TV reconstruction in Fig. 7(b) was obtained
with 500 iterations, in comparison to the SeqTV reconstruc-
tion [Fig. 7(a)] with 200, 100, 100, 50, and 50 iterations
(kmax = 5). Fewer iterations were required eventually because
the end results from the current optimization were used to ini-
tialize the subsequent optimization in this study. By evaluat-
ing the performance under approximately the same compu-
tation time, we try to make the comparison between TV and
SeqTV fair practically, as SeqTV is presumably more time
consuming due to sequential optimizations with unweighted
TV being the initial one.
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