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Purpose: Kinetic modeling is widely used to analyze dynamic imaging data, estimating kinetic pa-
rameters that quantify functional or physiologic processes in vivo. Typical kinetic models give rise to
nonlinear solution equations in multiple dimensions, presenting a complex fitting environment. This
work generalizes previously described separable nonlinear least-squares techniques for fitting serial
compartment models with up to three tissue compartments and five rate parameters.

Methods: The approach maximally separates the linear and nonlinear aspects of the modeling equa-
tions, using a formulation modified from previous basis function methods to avoid a potential math-
ematical degeneracy. A fast and robust algorithm for solving the linear subproblem with full user-
defined constraints is also presented. The generalized separable parameter space technique effectively
reduces the dimensionality of the nonlinear fitting problem to one dimension for 2K-3K compartment
models, and to two dimensions for 4K-5K models.

Results: Exhaustive search fits, which guarantee identification of the true global minimum fit, re-
quired approximately 10 ms for 2K-3K and 1.1 s for 4K-5K models, respectively. The technique
is also amenable to fast gradient-descent iterative fitting algorithms, where the reduced dimension-
ality offers improved convergence properties. The objective function for the separable parameter
space nonlinear subproblem was characterized and found to be generally well-behaved with a well-
defined global minimum. Separable parameter space fits with the Levenberg-Marquardt algorithm
required fewer iterations than comparable fits for conventional model formulations, averaging 1
and 7 ms for 2K-3K and 4K-5K models, respectively. Sensitivity to initial conditions was likewise
reduced.

Conclusions: The separable parameter space techniques described herein generalize previously
described techniques to encompass 1K-5K compartment models, enable robust solution of the
linear subproblem with full user-defined constraints, and are amenable to rapid and robust fit-
ting using iterative gradient-descent type algorithms. © 2013 Author(s). All article content, except
where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License.
[http://dx.doi.org/10.1118/1.4810937]
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NOMENCLATURE

b(t) Input function

l;(t) Temporal term (integral of b(¢)); used in
1K, 3K, and 5K models

B(?) Tracer concentration in whole-blood

3 Fractional contribution of B(f) to the
imaging measurement

K; Net influx macroparameter, K; = K;k3/
(ks + k3)

K, ky — ks Rate constants for 1K-5K serial compart-

KB, Kp, K1, K2
R(?)
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ment models

Linear parameters of the separable param-
eter space formulations

Modeled time-activity curve

S1(t; vy; b(1))

Sy(t; v1, v2; b(D)

Temporal term present in 2K-5K compart-
ment models
Temporal term present in 4K-5K compart-
ment models

vy, U Nonlinear parameters of the separable
parameter space formulations

Vb Volume of distribution

. INTRODUCTION

Dynamic imaging techniques can measure and character-
ize temporal changes in imaging signals for many modal-
ities, providing more indepth functional information than
static images that provide a snapshot or time-average over the
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FIG. 1. Generic serial compartment models, each consisting of an input
driving 1-3 tissue compartments in series that exchange according to the
labeled rate parameters. We use a shorthand nomenclature to quickly ref-
erence each generic model as shown. For example, the “3K” model refers
to the model with input plus two additional compartments and three rate
parameters.

acquisition period. Analysis of dynamic images usually in-
volves applying a kinetic model that describes the temporal
behavior of image voxels or regions in terms of a set of un-
known scalar parameters. Many types of kinetic models ex-
ist, most involving a combination of scalar coefficients that
weight temporal terms. These temporal terms are functions of
time and may also depend on additional scalar parameters.
The archetypal example kinetic model is the compartment
model,'* which comprises a series of homogenous compart-
ments driven by an input function, and where temporal ex-
change between compartments is governed by rate parame-
ters and simple linear differential equations. The solutions to
such equations, however, are nonlinear and present a complex
fitting environment. Figure 1 presents several generic serial
compartment models in order of increasing complexity, along
with a shorthand nomenclature that will be used in this pa-
per to quickly reference each generic model. This paper is
focused on the mathematical problem of fitting compartment
model equations to dynamic imaging data in order to estimate
best-fit kinetic rate parameters for a predetermined fitting
criterion (e.g., weighted least-squares). Other related issues,
such as measurement of the input function or selection of fit-
ting weights, fall outside the scope of this work and are not
discussed.

Exchange of tracer between connected compartments is
governed by linear differential equations of the form

d

% = ZkinCin - <Z kout) Ci, 1)

where the subscripts in and out refer to rate parameters that
describe exchange into (from compartment Cj,) or out of
compartment C;, respectively. The input function, b(f), drives
the system; it is assumed in this work that the input function
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is known a priori from direct measurement or some other
estimation technique. We also assume that all tracer activ-
ity concentrations are decay corrected, although the effects
of radioactive decay could also easily be included in the mod-
eling equations with a few simple modifications. The imag-
ing measurement R(?) typically cannot measure each com-
partment individually; rather, the imaging signal comprises
the sum over all compartments, C(t; b(t), {k;}), often with
the addition of a vascular term due to imaging signal from
whole-blood, B(?),

R(@)=feB®)+ 1 — fp)Ct:b(0), {ki}), @)

where f5 is the fractional contribution of B(f) to the imaging
measurement. The rate parameters {k;}, along with fg, com-
prise the unknown parameters of the model to be estimated.
While the differential equations are linear in these unknowns,
the solution equations are nonlinear, containing weighted
sums of exponentials convolved with the input function. As
such, fitting compartment models to measured datasets in-
volves a nonlinear minimization problem.

A large body of work has been performed in address-
ing the compartment model fitting problem. Perhaps the
most robust—but also most computationally demanding—
approaches for estimating individual rate parameters for mul-
ticompartment models involve nonlinear least-squares esti-
mation (NLLS) in a variety of forms. Numerous nonlin-
ear curve-fitting algorithms have been investigated, including
gradient-based algorithms such as Levenberg-Marquardt,>®
ridge-regression,”!! and simulated annealing methods.'>>
When using conventional compartment model formulations,
the multidimensional fitting space can be large and com-
plex, and it often contains local minima and/or broad shal-
low valleys that slow or confound iterative minimization rou-
tines. The result is sensitive to initial conditions, and one
can never be certain that the true global optimum has been
reached.

One of the most promising approaches to improving ro-
bustness and fitting speed is to reformulate the compartment
model solution equations into separable linear and nonlin-
ear components prior to fitting. Separable nonlinear least-
square techniques'®~'? can then be used, either directly or in-
directly, to simplify and accelerate the fitting problem. This
approach has been used for years in fitting 2K compartment
models,”?%2* and more recently has been extended to 3K and
4K models.>~2® The nonlinear components of the reformu-
lated equations have largely been interpreted as forming ba-
sis functions for the kinetic model, and the fitting algorithm
searches among these bases to identify (weighted sums of)
curves that best-match the measured data. The best-fit ba-
sis functions and linear weighting parameters are then used
to compute corresponding kinetic rate parameters (and/or
macroparameters) of the compartment model. We collectively
refer to these approaches as basis function methods through-
out this paper.

Basis function methods bring the advantage of simpli-
fying the nonlinear compartment model fitting problem by
effectively separating the nonlinear aspects of the fit (i.e.,
identification of the best-fit basis functions) from the linear
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aspects (i.e., finding best-fit scalar weights for a given set
of basis functions). However, current basis function meth-
ods have a few limitations. The basis function formulations
for 4K models exhibit a potential degeneracy in the non-
linear parameters of the fit (see Sec. II.LA below), which
can lead to indeterminate results. Similarly, full implemen-
tation of boundary conditions and user-definable constraints
on kinetic rate parameter estimates has not yet been de-
scribed. Moreover, the algorithms employed for identifying
the best-fit basis functions have largely been based on exhaus-
tive search or simplex strategies, and fast iterative gradient-
descent algorithms have not been broadly applied in this
context.

In this work, we describe an alternate mathematical for-
mulation of basis function methods that generalizes separable
parameter space techniques for serial compartment models
with up to three tissue compartments and five rate parame-
ters. The alternate formulation avoids a potential degeneracy
that may arise for previously described basis function formu-
lations. A theoretical perspective of interpreting the result-
ing equations as effectively reducing the dimensionality of
the solution space of the fitting problem is then discussed,
followed by a description of a rigorous method for solv-
ing the linear subproblem with full user-defined constraints.
The reformulated modeling equations are validated against
conventional model formulations, and we demonstrate that
both formulations provide identical time-activity curves and
have the same least-squares global minimum. The application
of fast iterative gradient descent algorithms for solving the
nonlinear subproblem is then explored by characterizing sepa-
rable parameter space objective functions. Finally, the perfor-
mance of both exhaustive search and the iterative Levenberg-
Marquardt algorithms are studied for separable parameter
space fits and compared to fits using the conventional model
formulations.

Il. THEORY

Without loss of generality, the theory for the general-
ized separable parameter space modeling formulation is pre-
sented in the context of kinetic modeling in dynamic nuclear
medicine imaging, e.g., positron emission tomography (PET)
and single-photon emission computed tomography (SPECT).
As such, quantities are described as tracer radioactivity con-
centrations. The concepts and mathematics, however, are gen-
eralizable to other dynamic imaging modalities and nonimag-
ing applications of kinetic modeling.

Il.LA. Generalized kinetic modeling formulation

Let kg, kp, k1, k2, U1, and vy be scalar parameters that will
be further described below, and let B(¢) be the whole-blood
activity concentration. Further, define the following temporal
terms that depend on the input function, b(#), as well as scalar
parameters v; and vy,

b(t) = / b(t)dr, 3)
0

Medical Physics, Vol. 40, No. 7, July 2013

D. J. Kadrmas and M. B. Oktay: Separable parameter space compartment modeling

072502-3
t

St 01 b(1)) = / (), @)
0

So(t;vr, L2;b(1)) = / (e7UD) — o= p(r)d T, (5)
0

Note that the temporal terms S;(#; vi; b(¢)) and S»(t; v, va;
b(1)) are convolutions of exponentials with the input function.
We can now write a generalized modeling equation

R(t) = kg B(t) + iepb(1) + 11 S1(t; v1; b(t))
+ k282(t; vy, V2; B(1)), 6)

which is linear in {«k g, K, k1, K2} and nonlinear in {vy, vy }.
Defining « g, kp, k1, k2, U1, and v, as listed in Tables I and I,
it can easily be shown that this general formulation encom-
passes the solution equations for well known 1K-4K serial
compartment models,>2%3% as well as the lesser-used 5K se-
rial compartment model.>!

We refer to Eq. (6) as the “generalized separable parameter
space formulation.” For 2K models, the formulation presented
above is equivalent to that previously used with the applica-
tion of separable nonlinear least-squares for these models.?’
Similarly, for 3K models it is identical to the basis function
for plasma input compartment (BAFPIC) method of Hong
et al.”® The proposed generalized formulation extends the ap-
proach to include the 5K compartment model, and for >4K
models, there is a subtle difference as compared to previously
described basis function methods.?” The difference lies in our
definition of the S, term, which in previous approaches was
defined as S (¢;up; b (1)) = fot e~ Dp (1) dr. Subtracting
e V" in the S, term as in Eq. (5) ensures that S; and S, are de-
terminant and distinguishable (i.e., S; # S, for all nonzero
values of vy ), which avoids the potential degeneracy in
the previous approach that could arise for v; = v,. Further,
our formulation of S, immediately leads to the constraint
0 < vy < v in order to ensure positivity for this tempo-
ral term, which is required in order to limit Eq. (6) to repre-
sent valid compartment model solutions. Similarly, the special
case of v| = v, in our formulation implies that both k4 and ks
must be zero in order to represent a valid compartment model,
which corresponds to simplification to a 3K model (see be-
low). Analogous constraints and boundary conditions could
be applied when using previously described basis function
formulations,?’ for example, by implementing a constraint to
ensure that v and v, differ by some minimum value. How-
ever, we find that the description and interpretation of these
cases may be more straightforward when using the formula-
tion described in Eq. (5).

The constraints listed in Tables I and II limit the general-
ized formulation to valid compartment model solutions with
positivity constraints on the conventional kinetic rate param-
eters Ky, ko — ks. For 4K and 5K models, the constraint
0 < v, < v is equivalent to requiring & to be positive and k3
and k4 to be non-negative, and 0 < k, < k| ensures positivity
for ky — k4. Of note, we have used positivity constraints here
(except for the vascular term «p) rather than non-negativity
constraints, thus the constraints preclude solutions with rate
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TABLE I. Nonlinear parameter definitions for 1K-5K compartment models.

Model U1 Uy Constraint

1K 0 0 n/a

2K ko 0 0<uvp

3K ko + k3 0 0<vy

4K 3t + ks + ko) + Vil + s + ka)? = dhoka [k ks 4 k) = ks ka)” — dkoks | 0<v2<vi
1| ko + k3 + kg + ks) + 1| ko + k3 + kg + ks) —

5K 3 5 3 > 0<vy <

Vo + k3 + ks + ks)? — 4 (kaks + koks + ksks) Vs + k3 + ks + ks)? — 4 (kaks + koks + k3ks)

parameters equal to zero. Solutions where a rate parameter
is zero are encompassed via model simplification, e.g., a 4K
model with k4 = 0 simplifies to a 3K model. This approach
also ensures that the modeling formulation does not attempt to
compute inestimable rate parameters. For example, if k3 = 0,
then no information is available regarding k4 and ks (as there
is no tracer exchange with the unobservable compartment),
and the estimable model reduces to a 2K model.

I.B. Construction of the WSSE objective function

For dynamic imaging, the measured data are generally
discrete samples in time. Depending on the modality and
other factors, two discretization schemes are commonly
encountered—instantaneous samples, and samples averaged
over time-frame durations. For each case we define the fol-
lowing discretizations, where j = I... M represents the time
(time-frame) index:

Instantaneous samples:

R;=R(tj) B;=B(t) b;=Db)

S1,j(wi D)= 81t v1:b) 8o, j(v1, va; D)= 85(2;v1, V23 b).

(N

Averaged over time-frame durations:

1 12
R; = —/ R(t)dt
(ti2 —tj1) Ju,

1 t
— / B(t)dt
(tj2 —tj1) Ju,

B;

TABLE II. Linear parameter definitions for 1K-5K compartment models.

bj

1 i _
— | bydr
(tj2 —tj1) /tj,

1 b
S1.j(1b) = —/ S1(r: v b)d
LA (tj2 —tj1) Juy, l I
1 12
Sz,j(Ul,Uz;b)E—/ So(t; v, vy b)dT. (8)
(ti2 —tj1) Ju,

In addition, we distinguish between modeled values R ; and
noisy measurements R ; using a carat and tilde, respectively.

Using either discretization, the generalized kinetic model
at each time sample j is written

Iéj = KBBj =+ Kbl;j +K1S1’j(U1;b) + K2SZ,j(U17 UZ;b)'
)

The model fitting problem amounts to finding the values of
the parameters kg, kp, K1, kK2, U1, and v, that minimize some
objective function. We consider the weighted least-squares
(WLS) criterion, and write the weighted sum-squared error
objective function as

T
WSSE =Y w;(R; — R;)?
j=1

T
= ZU)J'[KBBJ' + kpbj + k151, j (V13 b)

J=1

+ 1285, (1, v2;b) — R, 1%, (10)

where w; are the weights for each time sample j.

Model KB Kp K1 K2 Constraints
1K /B (1 - fp)K; 0 0<kp<1;0<kp
2K /B 0 (1 —fp)K; 0<kp=<1;0 <k
3K I8 7“}2?2'“ 7“}2‘2,5"‘2 0 0<kp<1;0<kp;0<xy
4K J 0 (1= fw)kKi CHLEL (2 — ks — ka) 0=kp=L0<ky <k
1— fp)K k3k 1= fp)K Ky (ky+k 1-fp)K ksk
oK I k;kztizz)ksl‘*'zszs : kzljf‘fj—kzlkszg-g;;csv ((vzf—Blzz)l [(k3 thkitks —vo) - 375} 0<kp=<1;0<kp;0<kr <k
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Il.C. Application of separable nonlinear least-squares

The generalized formulation of Eq. (6) has 6 degrees-of-
freedom (kp, k3, K1, K2, U1, U2), as does the conventional
model formulation for the 5K model (fz, K, ko — ks); how-
ever, the generalized formulation is written to be explicitly
linear in kg, kp, k1, and k,, and nonlinear in v; and v,
(which appear as exponents in the convolutions of temporal
terms S; and S,). Inspection of the 2K and 3K models (see,
e.g., Tables I and II) reveals that there is inherently one
convolution integral containing a single free parameter in the
exponent (v), resulting in one nonlinear degree-of-freedom;
the remaining degrees-of-freedom are linear. Likewise,
inspection of the 4K and 5K models reveals two inherent
convolution integrals with differing exponents. The free
parameters in the exponents, v; and v,, are independent
parameters: v cannot be written in terms of (kp, kp, k1, K2,
v7), and likewise v, cannot be written in terms of (k g, kp, k1,
K2, U1). As such, two separate free parameters are required
to represent these convolution integrals, and these models
inherently have two nonlinear degrees-of-freedom. Since the
generalized formulation of Eq. (6) is written explicitly to
have the minimum number of nonlinear free parameters (one
for 2K-3K models, two for 4K-5K models), and likewise
the maximum number of linear free parameters (the «s), this
formulation can be considered to maximally separate the
linear and nonlinear parameters.

D. J. Kadrmas and M. B. Oktay: Separable parameter space compartment modeling

T

T
ijB? ijle;j ijsl,j(vl;b)Bj

j=1 j=1 j=1

L)
E ijj
j=1

T
ijSLj(Ul;b)bj

j=1

A=
T
> w;St (vish)
j=1 j=1
T
Z w;R;B;
Jj=1
T ~
“r ijRJbJ
Kb j=1
X = 5 b - I
K1 T
K > wiR;S) j (vi:b)
j=1
T
ijRjSZ,j (v1, v2; b)

j=1

and “.” denotes symmetric matrix elements.
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Separating the linear and nonlinear parameters in this
manner provides for the full benefit of separable nonlinear
least-squares techniques.'®'* The fitting problem is essen-
tially separated into two problems: a nonlinear fit in (v, v5),
coupled simultaneously with a linear fit in (kp, kp, k1, K2).
Previous basis function methods have largely used exhaus-
tive search or downhill simplex algorithms to search among
the (v, v;) “basis functions,” analytically solving the linear
subproblem to find the best-fit (k g, «p, k1, k2) for each point
(vy, vy) encountered along the way. In this section, we show
that the linear subproblem can also be directly incorporated
into the nonlinear fit, providing a “Reduced Parameter Space
Reformulation” with interesting theoretical perspectives that
illustrate the value of separable parameter space fitting
techniques.

Consider the linear subproblem that arises at each itera-
tion/step of the nonlinear fit: finding (x5, kp, k1, k2) that
minimizes WSSE given the current value of (v, v;). For the
moment, we ignore constraints on the «s and consider
the unconstrained linear subproblem. Taking the derivative
of WSSE [Eq. (10)] with respect to each linear param-
eter and setting the result to zero, we obtain the linear
subproblem

T
D w3 (vr, vy b)

j=1

(1)
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The conventional approach, as used with previously de-
scribed basis function methods, is to analytically invert the
linear subproblem (& = A~'b) to directly compute the best-
fit ks that minimize WSSE given the current values of v; and
v,. The estimated «'s are then fed back to the nonlinear fitting
algorithm, and the fit in (v, v,) progresses accordingly.

Consider an alternative approach, however, where the
inverted linear subproblem (which computes best-fit ks as

D. J. Kadrmas and M. B. Oktay: Separable parameter space compartment modeling

T

ij' Bijle)jSl’j(Ul;b)Bj
2
J

T
2 §
Bj U)j
j=1 j=1
T
E w;b
j=1

~

T

=1

T —
Z szl,_,‘(l)];b)bj
j=1

=
I

Jj=1 Jj=1

B;
b,
Sy, (v1;b)
$2,j(v1, v2;b)

In essence, the reformulated model equation has been con-
strained to only permit solutions that minimize the WSSE ob-
jective function in the linear sense. Inspection of each term in
Eq. (12) reveals that the reformulated model depends on vy,
vy, and the measurements; however, no linear free parame-
ters (ks) remain. One interpretation of this is that the appli-
cation of separable nonlinear least-squares can be considered
to constrain the solution space to only include solutions that
minimize the objective function in the linear sense, effectively
reducing the dimensionality of the fit to only the nonlinear
free parameters. More specifically, the dimensionality of the
“reduced” fitting space for 1K-5K serial compartment models
becomes:

Conventional Reduced parameter
Model formulation space reformulation
1K 2D (fp, K1) 0D (no free parameters)
2K 3D (f, K1, k2) 1D (vy)
3K 4D (fg, K1, ko — k3) 1D (vy)
4K 5D (f, K1, ko — k4) 2D (vy, v2)
5K 6D (fp, K1, ko — ks) 2D (vy, v2)
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functions of v;, vy, and measured/known quantities) is sub-
stituted back into the original modeling Eq. (6). The result is
a reformulated modeling equation, which we call the Uncon-
strained Generalized Reduced Parameter Space Reformula-
tion, which effectively removes the linear parameters from the
model:

Unconstrained generalized reduced parameter space
reformulation:

T -1 T T
> w;Sy j(v1, vy b)B; > w;R;B;
j=1 j=1
T _ T ~
ijSZ,j(UhUZ;b)bj ijR]bj
Jj=1 j=1
T
> w;R; S j(vi:b)
Jj=1
T T
ijsij(vla v2; b) ZwJ'RjSZ,j(Ul,Uz;b)
j=l1 j=1
(12)

While of limited practical interest (due to difficulty in con-
straining the «s with this approach), this theoretical perspec-
tive illustrates the value of separable parameter space fitting
techniques (including basis function methods). The effective
dimensionality of the nonlinear fitting problem is greatly re-
duced, simplifying and speeding the fit. Of note, any iterative
minimization procedure employed to solve the nonlinear sub-
problem would act effectively the same regardless of whether
it uses Eq. (11) or (12), except for approaches which imple-
ment constraints on the ks.

I.D. Constraining fitted parameters
in the linear subproblem

The constraints listed in Tables I and II ensure that the gen-
eralized separable parameter space formulation [Eq. (6)] rep-
resents valid compartment models with positivity constraints
on all kinetic parameters (plus O < fp < 1). In practice, one
may well wish to impose additional constraints on parame-
ter estimates for the particular application at hand. In either
case, constraints on the nonlinear parameters (v, v;) can be
imposed in the standard fashion for whichever nonlinear fit-
ting algorithm is employed. Implementing constraints on the
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linear subproblem, however, is less straightforward. Direct in-
version of the linear subproblem of Eq. (11) does not account
for any constraints on the «s, and the direct analytical solu-
tion to the linear subproblem is unconstrained. Ad hoc ap-
proaches to implementing a certain level of constraint for the
linear subproblem have been proposed;*> however, these ap-
proaches do not guarantee that the resulting fitted parameters
minimize the objective function within the parameter ranges
allowed.

The Appendix describes a pseudo-code algorithm for solv-
ing the linear subproblem with full user-defined constraints on
the estimated parameter values (ks). The algorithm first com-
putes the direct inversion solution. If any parameter is out of
range, then an exhaustive search over that parameter is per-
formed, analytically computing the direct inverse for the re-
maining parameters at each step. When more than one param-
eter goes out of range, nested loops are used to exhaustively
search among those parameters whose analytical solution is
out of range while computing analytical solutions for those
parameters remaining in range. While this algorithm can re-
quire a large number of steps (i.e., when exhaustive searches
are required for more than one «), each step is extremely fast
as no new convolution integrals need be performed and many
of the sums can be reused for each step. The resulting com-
putational cost per step is orders-of-magnitude lower than the
cost per step (or iteration) of the nonlinear subproblem [where
changing v, and/or v, requires recalculation of convolution
integral(s)].

One may also desire to apply physiologic equality con-
straints to certain parameters, e.g., setting K/k, to some fixed
value known a priori. A number of different such scenar-
ios could arise for different tracers and modeling applica-
tions, and discussion of each falls outside the scope of this
work. However, separable parameter space fitting approaches
could still be used by applying the equality constraint to the
original modeling equations and rederiving the separable pa-
rameter space formulation. Depending on the equality con-
straint(s) applied, the resultant formulations may have fewer
linear and/or nonlinear free parameters than shown in this
work for the generalized formulations.

I.LE. Fitting algorithms for the nonlinear subproblem

Two fitting algorithms for solving the nonlinear subprob-
lem were used in this work. The first algorithm, exhaustive
search, is equivalent to the basis function search algorithms
used with much of the prior work on basis function modeling
methods (with some slight differences in the details of imple-
mentation). In some sense, this algorithm can be considered
as searching among the temporal terms (“basis functions”)
that correspond to each nonlinear model parameter (v, v;).
Taking a somewhat different perspective, one can also treat
the nonlinear parameters themselves as parameters of the fit
and apply iterative gradient-descent fitting approaches. In this
work, we study the Levenberg-Marquardt algorithm for this
purpose.
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Il.E.1. Exhaustive search algorithm

The dimensionality of the separable parameter space non-
linear subproblem—only one or two free parameters for 2K-
3K and 4K-5K compartment models, respectively—is small
enough that the entire solution space (within appropriate pa-
rameter ranges) can be exhaustively searched to an arbitrary
precision with a reasonable amount of computational effort.
Such brute-force exhaustive search guarantees identification
of the global minimum to within the selected search precision
and parameter ranges. As such, exhaustive search provides the
most robust fit for the given data, weights, and input functions.
In this work, we implemented exhaustive search routines in C
for solving the nonlinear subproblem (finding best-fit v; and
vy). The routine loops over v; from 0.0 to 2.0 min~! in 1000
steps, sampling v, at a precision of 0.002 min~'. Here, we
chose uniformly spaced sampling in order to simplify discus-
sion of the precision of the algorithm; for practical applica-
tion, logarithmic spacing would likely be more appropriate as
used in most previous implementations of these algorithms.
For the 4K and 5K models, a nested loop over v, was like-
wise included for each value of v;. Recalling that v, should
be constrained less than v in order to represent a valid com-
partment model, this inner loop ranged from 0.0 up to the
current value of v in steps of 0.002 min~!. This resulted in
1000 total steps for the 2K-3K models, and ~500000 steps
for the 4K-5K models. For comparison, consider that exhaus-
tive search with conventional compartment model formula-
tions would require 10°, 10'2, and 10V steps for 2K, 3K,
and 4K models, respectively—becoming computationally in-
tractable.

I.LE.2. Levenberg-Marquardt algorithm

Nonlinear minimization with the Levenberg-Marquardt al-
gorithm was also implemented in C for both the gener-
alized separable parameter space formulation and for con-
ventional 1K-5K compartment model formulations. Single-
threaded coding was used with no parallelization. Close
attention was paid to code optimization for both model for-
mulations, and all concurrent routines applicable to both al-
gorithms were shared in order to match the implementations
as closely as possible and to ensure valid comparisons be-
tween the two implementations could be performed. For the
conventional implementation, the vascular fraction (fz) and
all applicable rate parameters (K|, k, — ks5) were estimated by
the fitting algorithm, whereas only the nonlinear parameters
v, vy were fit for the separable parameter space implemen-
tation. The algorithm was implemented as described in Press
et al.,>> where the second derivative term of the Hessian ma-
trix was ignored. Iterations were stopped after a successful
update when the fractional change in WSSE reached 0.0001
or less, indicating convergence to a (possibly local) minimum.
The magnitude of the update vector was bound to fall within
the range [0.01,1.00] in order to avoid wild steps as well as to
reduce the number of steps required to traverse a shallow val-
ley of complicated topology. Various initial conditions were
used for the evaluation studies as described in Sec. IV.
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TABLE III. Recovery of kinetic rate parameters.
Model s K ko k3 ky ks
K
IK KB { 17le) 0 0 0 0
2K KB (]fﬁ U] 0 0 0
KptK| K1v] LX)
3K KB E=573) P KkpFiy 0 0
K1 (K1 —K2)V|+K2 V2 k) (k| —k2) Wy —vy ) K1vjv)
4K ke (—=f) K1 K1 [(k1 —K2)v1+K202] (k1 —K2)U1+Hov) 0
k(U1 —v2)tkp Uy + K1YV _
5K P Kp+Ki (k1 —Kk2)V1 +K2 12 (kptK1) (kK1 —Kk2)V K202 Kpui v
B (=fp) Kkp+Ki Koup (V=) Kpui v k3(kp+xy)
(k1 —Kk2)U1 +ho V) k3(kp+u1)

Il.F. Recovery of individual rate parameters K;-ks

After completing the fit, the kinetic rate parameters K, k»
— ks, as well as f3, are easily calculated from the best-fit pa-
rameters K g, Kp, K1, K2, U1, and v,. The calculation does merit
some discussion of parameter estimability, however. Table III
provides conversions for the 1K-5K serial compartment mod-
els. In all cases fp = k3. When macro parameters such as the
volume of distribution or net influx are desired, they can either
be computed using the individual rate parameters, or more di-
rectly in some cases (e.g., the net influx parameter for the 3K
model is more directly calculated as K; = «,/(1 — f3)).

The above equations provide one-to-one correspondence
between any set of separable parameter space variables and a
set of conventional rate parameters, provided that divide-by-
zero singularities are not encountered. The majority of such
potential singularities are avoided through application of the
constraints listed in Tables I and II, which concurrently ensure
that the generalized modeling equations represent valid 1K-
5K compartment models. The remaining potential singular-
ities are avoided through model simplification (as described
in Sec. II.A). For example, consider the potential singularity
of fz = 1.0, affecting all K; calculations. If the best-fit value
of f is 1.0, this means the best-fit time-activity curve is pure
whole-blood and there is no extravascular tissue uptake. In
that case, K; is zero and all higher order rate parameters (k;
— ks) are undefined and not meaningful (one could consider
this a “OK” model).

lll. EVALUATION METHODS

Separable parameter space modeling techniques, which are
generalized in this work, have already been thoroughly eval-
uated in the research literature for both 2K models’?*->* and
more complex models with a basis function methods.>~>% As
such, the evaluation provided in this work is designed to first
broadly characterize separable parameter space model for-
mulations vs conventional compartment model formulations,
and then to evaluate the applicability and receptiveness of the
generalized separable parameter space formulations to fast
gradient-descent fitting algorithms. Sections III.A-III.D de-
scribe the evaluations performed in this work. The empha-
sis of this evaluation is focused on 2K, 3K, and 4K serial
compartment models, as these represent the most commonly
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used compartment models in dynamic PET imaging and cover
both 1D (3K) and 2D (4K) separable parameter space solution
equations.

llLA. Simulation of time-activity curves

A set of 24 typical input functions and whole-blood curves
were selected from dynamic PET exams using '3O-water (2K
model), '8 F-fluorodeoxyglucose (FDG; 3K model), and ''C-
acetate (4K model) in patients with malignant solid tumors at
our institution. Populations of kinetic parameters were then
generated with a pseudorandom number generator to be ran-
domly distributed within the following ranges: 0.001 < f3
<0.2,0.02 <K; 05,002 <k, <0.7,0.002 < k3 <04,
and 0.002 < k4 < 0.4. Here, each parameter was indepen-
dently and uniformly distributed over the given range except
for k,, which was set according to a uniform distribution of
0.7 < Kj/ky < 1.1. These distributions were not designed to
represent any particular tracer or target organ, but rather were
set to cover a broad range of values that might be encoun-
tered in a variety of applications. The input functions and
rate parameter ranges were used to simulate populations of
200-1000 time-activity curves each for the 2K, 3K, and 4K
models using the conventional model formulations. The num-
ber of curves in each population was heuristically selected to
include enough datapoints such that “outlier” points (repre-
senting best-fit differences between the separable parameter
space and conventional model fits—see, e.g., results Figs. 6
and 7) presented themselves for study. Progressive temporal
sampling schemes were used, for example, 18 x 10, 6 x 20, 4
x 30,5 x 60,5 x 120,4 x 300, 3 x 600 s for a total duration
of 72 m for the '8F 3K model simulations.

Noise-free curves were first simulated for each case. Sta-
tistical noise was then added using a noise model that approx-
imates the noise characteristics of iteratively reconstructed
PET images. Here, Gaussian deviates were simulated for
each datapoint with variance inversely proportional to the
time-frame durations, and scaled to five different noise lev-
els. When a noisy sample went negative, however, the abso-
lute value was used—providing an asymmetric non-negative
distribution roughly approximating the statistical distribu-
tion of iteratively reconstructed PET values. The resulting
noisy curves had Gaussian-like non-negative statistics that
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varied with time-frame duration, providing more realistic test
cases than simulating curves that were consistent with either
Gaussian or Poisson noise. The noise model did not account
for other factors, such as differences due to radioactive decay,
deadtime, randoms rates, or reconstruction algorithm, that
would be encountered in practice. Note that this noise model
is inconsistent with the L2-norm criterion typically used in
model fitting (which essentially assumes a Gaussian noise
model); however, such inconsistency is a real and present
challenge for actual dynamic PET data. Five different noise
levels were used, covering the approximate range encountered
in the dynamic PET datasets—ranging from high noise in in-
dividual voxels to lower noise curves representative of larger
tumor ROIs.

lll.B. Characterization of separable parameter space
WSSE objective functions

Given the reduction in the number of free parameters of-
fered by the separable parameter space formulations, the ob-
jective functions reside within 1D (2K-3K models) or 2D
(4K-5K models) solution spaces. Thus, they can be plot-
ted and analyzed much more easily than conventional ob-
jective functions in three to six dimensions. Using the ex-
haustive search routines just described, the WSSE objective
functions were characterized for a number of noisy 3K-5K
time-activity curves by storing and plotting the WSSE at
each value of v; (3K) or vy, v, (4K-5K). The resulting
objective functions were analyzed for the presence/absence
of local minima or other confounding structures that could
affect the performance of curve fits using the separable
parameter space formulations with various minimization
algorithms.

lll.C. Characterization of global minimums for both
conventional and separable parameter space
formulations

In order for the separable parameter space formulations to
be a viable alternative for kinetic modeling, the reformulated
modeling equations must provide the same global minimum
and best-fit rate parameters as the conventional model equa-
tions. In order to perform this study, fits to both model for-
mulations need to correctly reach the true global minimums.
Identification of the true global minimum is not straightfor-
ward, however, as commonly used fitting algorithms may be
sensitive to initial conditions and converge to local minima
(see Sec. IV.D, for example, data regarding convergence for
the Levenberg-Marquardt algorithm for conventional model
fits). To overcome these shortcomings, the simulated anneal-
ing algorithm'3~'>33 was selected for the conventional model
fits. As implemented, the simulated annealing algorithm was
independent of starting conditions (aside from the set param-
eter ranges used for all fits in this paper) and included means
for escaping local minima and progressing toward the true
global minimum provided that enough iterations and a slow
enough relaxation schedule were used. We progressively ap-
plied simulated annealing with 10*~108 iterations, increasing
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the number of iterations by 10x each step and observing the
number of cases in each population where the best-fit solu-
tion did not change versus those that continued moving to-
ward a better fit. While this approach does not guarantee that
the true global minimum was reached for all fits (only ex-
haustive search could so guarantee), it did allow visualization
of the progression of the population of fits toward the true
global minima as will be shown in Figs. 6 and 7 below. As
such, the simulated annealing algorithm was used with the
conventional model formulations in order to identify the true
global minimum fits for the simulated population studies. The
exhaustive search algorithm was used to identify the global
minimum fits for the separable parameter space formulations,
where the reduced dimensionality of the separable parame-
ter space nonlinear subproblem makes such exhaustive search
computationally feasible (guaranteeing identification of the
true global minimum to within the search range and precision
for all cases).

li.D. Performance of Levenberg-Marquardt algorithm

The performance of the Levenberg-Marquardt algorithm
for solving the nonlinear subproblem of the separable param-
eter space formulations was studied and compared to fitting
performance of the same algorithm for conventional compart-
ment model formulations. Iterative fitting performance was
evaluated in terms of convergence to the true global minimum
(as opposed to local minima), sensitivity to initial values, and
number of iterations and fitting time required to reach con-
vergence. Here the populations of noisy time-activity curves
for 2K-4K models described above were fit again using the
Levenberg-Marquardt algorithm with both model formula-
tions. Three sets of fits were performed with differing initial
conditions. First, each curve was fit repeatedly using 100 ran-
domly generated sets of rate parameters as initial estimates.
These fits provide a measure of sensitivity of the iterative
fits to the initial parameters. In practice, the initial param-
eter estimates for conventional model Levenberg-Marquardt
fits would be selected manually by the user to be a reason-
ably close match to the measured curve. In addition to intro-
ducing a level of subjectivity into the final result, the manual
intervention adds significantly to the real-world fitting time.
Rather than replicating this subjective process, randomly se-
lected initial parameters were studied in order to characterize
the sensitivity of the fits to these initial conditions. In the sec-
ond set of fits, the initial parameter values were each set to the
minimum value (e.g., 0.001), which results in the Levenberg-
Marquardt algorithm finding the (possibly local) minimum
closest to the minimum parameter values. Finally, in the third
set of fits, the initial parameter values were set to midrange
values, defined as being 1/4th the way between the minimum
and maximum value for each parameter (e.g., for a parameter
ranging from 0.0 to 2.0, the initial value was set at 0.5). The
number of iterations and CPU times were recorded for each
fit, and the best-fit results were analyzed relative to the true
global minimum fits for each case (determined as described
in Sec. III.C above).
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FIG. 2. Example time-activity curves for 2K-4K serial compartment models
simulated using the conventional and separable parameter space model for-
mulations. Three example curves are shown for each model. The curves for
the conventional and reformulated models were identical up to the numerical
precision of the computer, and overlap exactly in the plots.
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IV. RESULTS

IV.A. Verification that the conventional and
reformulated equations provide the same time-activity
curves

Figure 2 shows example time-activity curves for 2K (based
on PO-water), 3K (based on '8F-FDG), and 4K (based on
C-acetate) compartment models. For each model, three rep-
resentative sets of rate parameters were selected and curves
were simulated using both conventional compartment model
formulations and the separable parameter space formulation
of Eq. (6). For the latter case, the values of «p, «kp, k1, k2,
v, and v, were computed from the conventional rate param-
eters according to the conversions described in Sec. II.A. The
curves for each case were identical up to the numerical pre-
cision of the computer, confirming that the separable parame-
ter space formulations correctly represent valid compartment
models for these data.

IV.B. Characterization of objective functions

The separable parameter space reformulations reduce the
dimensionality of the nonlinear fitting problem to only one
free parameter for 2K-3K compartment models, and to only
two free parameters for 4K-5K compartment models. The re-
sultant 1D and 2D objective functions can be plotted and
analyzed more easily than conventional objective functions
in three to six dimensions. Figure 3 shows a representa-
tive WSSE objective function for a 3K compartment model
fit to a noisy time-activity curve modeled on dynamic FDG
PET tumor imaging. This typical objective function is well
behaved, having a single well-defined minimum and no other
confounding structures such as local minima or shelves. The
plot also shows how the values of « 5, k}, and k| vary as func-
tions of v; to keep WSSE minimized according to the lin-
ear subproblem [Eq. (11)]; the corresponding values of fg and
the conventional rate parameters are also shown in the lower
panel for comparison.
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FIG. 3. Plots of the separable parameter space WSSE objective function for an example noisy time-activity curve with 3K compartment model. The left plot
shows how the values of x g, K, and k| that minimize WSSE change as a function of v (recall v| = ky + k3 for the 3K model). Similarly, the plot at right shows
the same objective function with the corresponding values of fp, K, k2, and k3 at each point. The objective function is well behaved, having a single clearly
defined minimum with no other local minima, shelves, or confounding structures.
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minimum is deeper and better-defined for lower noise data, and becomes shal-
lower as noise increases. However, for all noise levels the reformulated ob-
jective function remained well-behaved, and no complex topological features
appeared with increasing noise levels.

Figure 4 shows example separable parameter space WSSE
objective functions for another representative 3K model curve
at five different noise levels. The minimum is deepest for the
lowest noise curve, and becomes shallower with increasing
noise—consistent with the observation that the best-fit pa-
rameters will have greater statistical variability for noisier
data. However, the objective function remained well behaved
for all noise levels studied. Upon reviewing hundreds of 3K
model objective functions for the separable parameter space
formulation, the majority of functions are well behaved with
only a single minimum and little or no complicated topology;
however, shallow local minima were present in a minority
of cases that could affect descent-type iterative fitting algo-

4K Model
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rithms. In each of these cases, the local minimum occurred at
relatively large values of v|—often larger than the physiolog-
ically meaningful range—and furthermore the local minima
were shallow relative to the global minimum. The potential
presence of such local minima has implications for descent-
type fitting algorithms, but do not affect best-fit results when
the exhaustive search algorithm is used. One potential solu-
tion for handling such local minima would be to provide an
upper bound constraint on the value of v during the fitting
procedure.

Representative objective functions in two dimensions for
4K and 5K compartment models using the separable parame-
ter space formulation are provided in Fig. 5. Here the reformu-
lation has two nonlinear unknowns, v and v,, both of which
are constrained to be non-negative, and further the solution
space was constrained to values v, < v in order to limit the
solution space to regions that represent valid compartment
models. The majority of these 2D objective functions were
again generally well-behaved, with only a single minimum,
although some complexity was present for lower values of v
that may be considered a “side valley.” These curvatures in
the objective function arise from imaginary “poles” in the ex-
cluded regions v, > v; and v, < 0 (corresponding to values
where the reformulated equations do not represent value com-
partment models—giving rise to rate parameters with either
negative or imaginary values). The potential for local minima
again cannot be ruled out, although empirical evidence sug-
gests that the prevalence of local minima is low, and also that
such minima are shallow and occur at relatively large values
of v} or v,. Overall, least-squares objective functions for the
separable parameter space formulations were generally well-
behaved with topology considerably less complex than that
for the conventional model formulations, providing a simpler
and potentially more robust environment for fast iterative non-
linear fitting.

M,

FI1G. 5. Contour plots of two examples separable parameter space WSSE objective functions for 4K (left) and 5K (right) compartment models. The grayscale
represents WSSE values, and contour lines are drawn at regular intervals. Recall that the separable parameter space formulation for 4K-5K models has two
nonlinear unknowns (v, vz), and also that v, is constrained to be less than v (hence the plots are only defined for regions v, < v1). The objective functions
are generally well behaved and do not show complex topological features. However, some complex structure exists in the lower-left corner near v; = v, line
and near v, = 0 which could slow convergence of gradient-descent type algorithms in these regions. These structures arise from “attraction” due to imaginary

poles in the excluded vy > v and vy < 0 regions of the solution space.

Medical Physics, Vol. 40, No. 7, July 2013



072502-12

D. J. Kadrmas and M. B. Oktay: Separable parameter space compartment modeling

072502-12

1400 030 2.00 ~
- [ </
- WSSE . [V, =K, /k,
12001~ o® oo B
r K s 1504
1000+— 4 oo L
= — 020 C4 ~ER
< E < ® <
= il =] =] L
.2 800 N LS}
5 - 5015 5 1.00—
2 ool 2 2
S S s I
O Q.10 O
40 10k Iterations * 10k Iter. 50 * 10k Iter.
200_: e 100k Iterations 0.05 e 100k Iter. [ 5 e 100k Iter.
r + 1M Iterations + 1M Iter. L + 1M Iter.
e T 466 A | e e T
200 400 600 800 1000 1200 1400 0. 005 010 0I5 020 035 030 050 1.00 1.50 2.00
Separable Parameter Space Separable Parameter Space Separable Parameter Space
0.6 = LOT % 2.0 N O 1.0
K, ‘ k, . K
L Z 0.8+ B d 0.8 i
_ o B o* _ st . _
S 0.4 n ° < < [ < [ .
E ; E £ F .
g 03 % % Lot /l' g -
o > = >0 s
= £ 0. = S 04
S o2 S ) / S
Q Q & Q
- * 10k Iter. 10k Iter. 0.54 * 10k Iter. * 10k Iter.
0.1 ¢ 100k Iter. 100k Iter. [ e 100k Iter. 02 * 100k Iter.
+ IM Iter. IM Iter. 3 + 1M Iter. + 1M Iter.
0. 0. ! | | } 0.0.4 . 0.0 ]

.0 0.1 f.Z 03 0.4 0.5 0.6
Separable Parameter Space

R R T R
Separable Parameter Space

e '0.! R
Separai)le Param

X ,l.lél S .2.0
eter Space

— FRr eIl B T La
X 02 0.4 0:6 0.8 1.0
Separable Parameter Space

FIG. 6. Scatter plots of the 3K model WSSE objective function, macroparameters, and individual rate parameters comparing conventional versus separable pa-
rameter space fit results for noisy populations of time-activity curves. In each case, results for three different numbers of iterations are shown for the conventional
fits with simulated annealing, demonstrating convergence effects as progressively higher numbers of iterations produced successively better fits (lower WSSE)
for some curves. Note that in all cases the separable parameter space fits with exhaustive search produced equal or lower WSSE than the conventional model fits
to within the numerical precision of the search (approximately 1 part in 10~3). As a population, the conventional model fits approached the separable parameter
space fits as the number of iterations increased.
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separable parameter space fit results for noisy populations of time-activity curves. The conventional model results are shown for 10°, 10, and 107 iterations of
simulated annealing, showing convergence effects similar to those shown in Fig. 6 for the 3K model (but at 10x more iterations due to the increased complexity
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IV.C. Verification that the conventional
and reformulated model equations have the same
global minimum

Populations of 200-1000 noisy time-activity curves repre-
sentative of dynamic PET tumor imaging with '3O-water (2K
model), BF-FDG (3K model), and !'C-acetate (4K model)
were simulated using methods described in Sec. III.A. Each
noisy curve was fit to the separable parameter space formula-
tion using the exhaustive search algorithm with the constraints
listed in Tables I and II. The curves were also fit to the conven-
tional model formulations using simulated annealing, where
the fits were repeated using 10*~108 iterations progressively
in 10x increments in order to progressively approach the true
global minimum fits across the population of curves as the
number of iterations increased.

Figure 6 shows scatter plots of the best-fit WSSE and rate
parameters for the 3K model comparing conventional versus
separable parameter space fit results. Analogous results for
the 4K model are provided in Fig. 7. These figures also in-
clude results for macroparameters K; and Vp for each model.
In all cases, the separable parameter space fits with exhaus-
tive search produced equal or lower WSSE than the conven-
tional fits with simulated annealing to within the numerical
precision of the exhaustive search algorithm (approximately
1 part in 1073). This result is consistent with the prediction
that exhaustive search identifies the true global minimum to
within the selected precision for all fits. In addition, the con-
ventional model fits with simulated annealing progressively
approached the separable parameter space exhaustive search
results, further confirming that both model formulations pro-
vide the same best-fit global minimums.

Linear regression analysis between the conventional (max-
imum no. iterations) and separable parameter space fits
revealed slopes of 1.000 = 0.001 and Pearson correlation co-
efficients greater than 0.999 for all individual rate parame-
ters and macroparameters. These results confirm that both the
conventional and reformulated model equations provided
identical best-fit results across these populations of curves to
within the precision of the search. Small differences on the
order of 10~ were observed in the final rate parameters, con-

TABLE IV. Levenberg-Marquardt fit results.
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sistent with a precision on the order of 10~ for the exhaus-
tive search algorithm [note that this precision is applicable to
the nonlinear parameters v, and v,; calculation of the lin-
ear (k) parameters and then conversion to kinetic rate param-
eters K; — k4 were computed at full floating point double-
precision].

IV.D. Performance of Levenberg-Marquardt algorithm

Table IV summarizes the performance of the Levenberg-
Marquardt algorithm for fitting both the conventional and sep-
arable parameter space model formulations. The number of
iterations required to attain the stopping criterion provide a
measure of iterative convergence properties. Here, the separa-
ble parameter space fits required significantly fewer iterations
to converge than did the conventional model fits, suggesting
that the reduced dimensionality of the nonlinear fitting space
simplified the iterative fit. In order to determine whether or
not each fit converged to the global minimum, as opposed to a
local minimum, the true global minimum fit for each case was
identified from the simulated annealing and exhaustive search
results from Sec. IV.C. For each Levenberg-Marquardt fit, the
difference in best-fit WSSE between the Levenberg-Marquardt
fit and the global minimum was computed. The median value
and range are shown in the table. Similarly, the best-fit ki-
netic parameters (fg, K| — k4) for the Levenberg-Marquardt
fits were evaluated versus those for the global minimum fits
by computing the magnitude of the error vector (root sum-
square error in parameter estimates). Again, the median value
and range of the error vector magnitude are listed in the
table.

The fit results were sensitive to the initial conditions for
both the conventional and separable parameter space model
formulations, indicating that local minima may be present (at
least some of the time) for both cases. However, the separable
parameter space fits were less sensitive to initial conditions
than were the conventional model fits. In particular, initial-
izing the fit with midrange parameter values provided excel-
lent results. When using these initial values, the separable pa-
rameter space fits attained the true global minimum fit for all

Conventional model fits

Separable parameter space fits

Number of Magnitude error Magnitude error
Initial iterations WSSE difference vector (median Number of iterations WSSE difference vector (median
Model condition (mean £ SD) (median [range]) [range]) (mean £ SD) (median [range]) [range])
2K Random 314 + 390 314 [0-76705]  5.300 [0-6.97] 19+ 16 0.00 [0-76706] 0.001 [0.00-4.97]
Minimum 205 + 349 205 [0-814] 1.900 [0-2.88] 20 £ 24 0.00 [0-18.9] 0.001 [0.00-1.99]
Midrange 123 + 250 167 [0-1045] 1.100 [0-1.32] 20+ 6 0.00 [0-0] 0.000 [0.00-0.11]
3K Random 117 £+ 260 3214 [0-136933] 2.990 [0.0-6.05] 15+ 14 26 [0-695] 0.084 [0.00-7.14]
Minimum 906 + 234 107 [0-1393] 1.909 [0.062—4.82] 15+ 18 32 [0-285] 2.881 [0.00-4.38]
Midrange 117 £ 178 155 [10-2566]  1.008 [0.065-3.56] 28 + 18 0.00 [0.0-0.0] 0.000 [0.00-0.002]
4K Random 287 £ 389 1593 [0-56568] 2.357 [0.01-5.39] 130 £ 177 282 [0-16545] 1.550 [0.00-3.23]
Minimum 723 + 422 460 [0-54330]  1.894 [0.02-2.94] 62+ 171 0.00 [0-796] 0.004 [0.00-2.79]
Midrange 483 + 460 16 [0-245] 1.478 [0.00-2.01] 80 + 124 0.00 [0.0-0.0] 0.000 [0.00-0.01]
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TABLE V. CPU times for fits.
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2K 3K 4K

Model Number of iterations ~ CPU time (ms)  Number of iterations =~ CPU time (ms)  Number of iterations ~ CPU time (ms)
Conventional model formulations

Simulated annealing 10* 326 +22 10° 2227 + 163 106 24056 + 4508

Levenberg-Marquardt 123 £ 250 6.87 + 13.97 117 £ 178 8.79 £ 13.39 483 £ 460 48.80 £+ 46.19
Separable parameter space reformulations

Exhaustive search 103 102+ 1.5 103 10.1 £0.9 100 1109 £+ 172

Levenberg-Marquardt 206 0.90 £ 0.27 28 + 18 1.32 £ 0.85 80 + 124 7.34 £ 11.38

parameters (defined as magnitude of the best-fit error vector
< 0.01) in 96% of cases for the 2K model, 98% of cases for
the 3K model, and 94 % of cases for the 4K model. In contrast,
the conventional model fits attained the true global minimum
fit for all parameters in 53% of cases for the 2K model, in
4.8% of cases for the 3K model, and in 1.5% of cases for
the 4K model. These results demonstrate the importance of
manually selecting good initial conditions for the Levenberg-
Marquardt algorithm with the conventional model formula-
tion. Conversely, the Levenberg-Marquardt fits for the sepa-
rable parameter space formulation were much less sensitive
to initial conditions, which can be seeded within midrange
initial values and converge to the true global minimum in the
majority of cases.

IV.E. Fitting times

Table V shows the CPU times for fitting noisy time-
activity curves with 2K, 3K, and 4K models using both the
conventional and separable parameter space model formula-
tions. Times were computed for single-threaded code run on
a 2.80 GHz Intel Xeon workstation, and no acceleration via
multithreading was implemented. Each algorithm was imple-
mented in C, sharing routines when possible, and with iden-
tical attention to optimizing the code for computational effi-
ciency. The CPU time per iteration was similar for both model
formulations, on the order of 0.04—0.07 ms for 2K-3K mod-
els and 0.09-0.10 ms for 4K models. Overall, the separable
parameter space fits required approximately 10 ms for 2K-
3K models and 1.1 s for 4K models; these times were re-
duced to about 1 and 7 ms, respectively, using the Levenberg-
Marquardt algorithm.

V. DISCUSSION AND CONCLUSIONS

The separable parameter space techniques discussed in this
paper generalize previously proposed methods for applying
separable nonlinear least-squares to the compartment model
fitting problem. The formulation described herein encom-
passes 1K-5K serial compartment models, including a mod-
ified formulation for higher order models that avoids a po-
tential degeneracy present in previously proposed reformula-
tions for these models. As a theoretical exercise, the linear
subproblem of the reformulated equations was solved ana-
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lytically and substituted back into the remaining nonlinear
fitting equations. The resultant system can be interpreted as
effectively reducing the dimensionality of the fitting space
to only one dimension for 2K-3K compartment models, and
to two dimensions for 4K-5K models—providing a nonlin-
ear fitting problem that is both simpler and easier to solve
than that of the original model formulation. This illustrates
the value of the separable parameter space technique, but is
not amenable to imposing constraints on the linear param-
eters. When keeping the linear subproblem separate, a fast
and robust algorithm was presented for solving the linear sub-
problem with complete user-defined constraints on the fitted
parameters. The generalized technique also treats the non-
linear unknowns as fittable parameters, rather than treating
their corresponding temporal terms as basis functions. The
receptiveness of the technique to fast gradient-descent type
nonlinear fitting algorithms was explored by characterizing
the objective functions, and by studying the performance of
the Levenberg-Marquardt algorithm for solving the nonlinear
subproblem.

The work focused specifically on the topic of perform-
ing the mathematical fit according to a preestablished fitting
criterion—the WLS criterion. In order to retain focus upon
the mathematical fitting approach, we did not explore other
issues such as consideration of other fitting criteria, selec-
tion of the fitting weights, or identification of the input func-
tion. While these issues affect the bias and noise properties
of the fitted parameters, they are distinct from issues regard-
ing the mathematical fit—the fitting algorithm is a mathemat-
ical procedure for attaining the fitting solution that minimizes
the fitting criterion, whereas the criterion, weights, and in-
put function determine the properties of the fit at the global
minimum.

When using the Levenberg-Marquardt algorithm, it is a
common practice to estimate the covariance matrix of the
standard errors in the fitted parameters by inverting the Hes-
sian matrix used by the fitting algorithm?®? (typically with
second derivatives ignored). When using separable parame-
ter space techniques, the Hessian matrix used in the nonlinear
subproblem corresponds to only the nonlinear free parame-
ters [as well as being subject to the constraint of minimiz-
ing the linear subproblem, as per Eq. (12)]. In order to esti-
mate the covariance matrix of the fitted kinetic rate parame-
ters, one should compute and invert the Hessian matrix of the
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conventional full-parameter space model formulation using
the best-fit rate parameters obtained from the separable pa-
rameter space fit. This approach is viable since both the con-
ventional and separable parameter space formulations have
the same global minimum, and requires a small degree of ad-
ditional computation after completing the fit.

The generalized separable parameter space technique was
found to provide identical time-activity curves as conven-
tional compartment model formulations, and both the con-
ventional and reformulated equations give rise to the same
global minima. As such, fitting the reformulated equations
(with appropriate constraints) and calculating conventional
rate parameters from the best-fit reformulated parameters ef-
fectively finds the best-fit to the conventional model equa-
tions. However, the reduced dimensionality of the reformu-
lated nonlinear fitting subproblem greatly simplifies separable
parameter space fits. This reduced dimensionality makes ex-
haustive search algorithms feasible (and indeed computation-
ally rapid), providing fits that guarantee the true global min-
imum to within the search precision in as little as 10 ms for
2K-3K models and 1.1 s for 4K models. For applications in
which more rapid fitting is desired, e.g., voxelwise parametric
imaging, fast iterative fitting algorithms, such as Levenberg-
Marquardt, can be used to reduced the fitting times to approx-
imately 1 ms for 2K-3K models and 7 ms for 4K models.
Such fits were found to be less sensitive to initial conditions
than comparable iterative fits with the conventional model
formulations, and to converge in fewer iterations. In conclu-
sion, the separable parameter space techniques described in
this work generalize previously described techniques to en-
compass 1K-5K compartment models, enable robust solution
of the linear subproblem with full user-defined constraints,
and are amenable to rapid and robust fitting using iterative
gradient-descent type algorithms.
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APPENDIX: PSEUDOCODE ALGORITHM
FOR COMPUTING CONSTRAINED
LINEAR SUBPROBLEM

Let ™" and ™™ be arbitrary user-defined minimum and
maximum values for each linear parameter ;.

The linear subproblem described in Sec. II.C can be
rapidly solved subject to these constraints using the follow-
ing pseudocode algorithm:
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(1) Analytically invert the linear subproblem directly to obtain unconstrained
best-fit values of all «s.
(2) If any «; is out of range, where i € {B, 2, 1, b}, then:
Loop over K;mn < ki < k"™ with step size A;: (i.e., exhaustively search
over k;; typical A; = 0.001 min~!)
Fixing «;, analytically invert the remaining linear subproblem for the
remaining free «s.
If any «; is out of range, where j € {B, 2, 1, b} and j # i, then:
Loop over K;.“i“ <«k; < K;"a" with step size A;: (i.e., exhaustively
search over ;)
Fixing «;, analytically invert the remaining linear subproblem for the
remaining free «s.
If any « is out of range, where k € {B, 2, 1, b} and k # i and k # j,
then:
Loop over /c,'(“i“ < Kk < k"™ with step size A: (i.e., exhaustively
search over k)
Analytically compute «;, where [ € {B, 2, 1, b} and [ # i, [ #J,
and [ # k.
If «; is out of range, then:
Loop over Kl"‘i" < Kk < k™ with step size A;: (i.e.,
exhaustively search over «)
Find «; that maximizes WSSE for the current values of
ki, kj, and K.
End loop.
End if.
Find « that maximizes WSSE for the current values of «;, ,
and k.
End loop.
End if.
Find «; that maximizes WSSE for the current values of «;, k', and ;.
End loop.
End if.
Find «; that maximizes WSSE for the current values of «;, ki, and k.
End loop.
End if.

¥ Author to whom correspondence should be addressed. Electronic mail:
kadrmas @ucair.med.utah.edu
IR. E. Carson, “Tracer kinetic modeling in PET,” in Positron Emission
Tomography, edited by D. L. Bailey, D. W. Townsend, P. E. Valk, and
M. N. Maisey (Springer-Verlag, London, 2005).

28, R. Cherry, J. A. Sorenson, and M. E. Phelps, Physics in Nuclear
Medicine (Saunders, Philadelphia, 2003).

3K. C. Schmidt and F. E. Turkheimer, “Kinetic modeling in positron emis-
sion tomography,” Q. J. Nucl. Med. 46, 70-85 (2002).

4H. Watabe, Y. Ikoma, Y. Kimura, M. Naganawa, and M. Shidahara, “PET
kinetic analysis—Compartmental model,” Ann. Nucl. Med. 20, 583-588
(2006).

5S. Urien, “MicroPharm-K: A microcomputer interactive program for the
analysis and simulation of pharmacokinetic processes,” Pharm. Res. 12,
1225-1230 (1995).

X. Zhang, J. N. Andrews, and S. E. Pedersen, “Kinetic modeling and fitting
software for interconnected reaction schemes: VisKin,” Anal. Biochem.
361, 153-161 (2007).

7F. O’Sullivan and A. Saha, “Use of ridge regression for improved estima-
tion of kinetic constants from PET data,” IEEE Trans. Med. Imaging 18,
115-125 (1999).

8Y. Zhou, H. Sung-Cheng, and M. Bergsneider, “Linear ridge regression
with spatial constraint for generation of parametric images in dynamic
positron emission tomography studies,” IEEE Trans. Nucl. Sci. 48, 125—
130 (2001).

9Y. Zhou, C. J. Endres, J. R. Brasic, S. C. Huang, and D. F. Wong, “Linear
regression with spatial constraint to generate parametric images of ligand-
receptor dynamic PET studies with a simplified reference tissue model,”
Neuroimage 18, 975-989 (2003).


http://dx.doi.org/10.1007/BF02984655
http://dx.doi.org/10.1023/A:1016280430580
http://dx.doi.org/10.1016/j.ab.2006.11.033
http://dx.doi.org/10.1109/42.759111
http://dx.doi.org/10.1109/23.910842
http://dx.doi.org/10.1016/S1053-8119(03)00017-X

072502-16

1op, Byrtek, F. O’Sullivan, M. Muzi, and A. M. Spence, “An adaptation of
ridge regression for improved estimation of kinetic model parameters from
PET studies,” IEEE Trans. Nucl. Sci. 52, 63-68 (2005).

11X Dai, Z. Chen, and J. Tian, “Performance evaluation of kinetic parameter
estimation methods in dynamic FDG-PET studies,” Nucl. Med. Commun.
32,4-16 (2011).

12 A Eftaxias, J. Font, A. Fortuny, A. Fabregat, and F. Stuber, “Nonlinear
kinetic parameter estimation using simulated annealing,” Comput. Chem.
Eng. 26, 1725-1733 (2002).

BK. P Wong, S. R. Meikle, D. Feng, and M. J. Fulham, “Estimation of input
function and kinetic parameters using simulated annealing: Application in
a flow model,” IEEE Trans. Nucl. Sci. 49, 707-713 (2002).

14Mp. Yaqub, R. Boellaard, M. A. Kropholler, and A. A. Lammertsma, “Op-
timization algorithms and weighting factors for analysis of dynamic PET
studies,” Phys. Med. Biol. 51, 4217-4232 (2006).

ISR, E. Marsh, T. A. Riauka, and S. A. McQuarrie, “Use of a simu-
lated annealing algorithm to fit compartmental models with an applica-
tion to fractal pharmacokinetics,” J. Pharm. Pharm. Sci. 10, 168-179
(2007).

16W. H. Lawton and E. A. Sylvestre, “Elimination of linear parameters in
nonlinear regression,” Technometrics 13, 461-467 (1971).

7L, Kaufman and V. Pereyra, “A method for separable nonlinear least
squares problems with separable nonlinear equality,” SIAM J. Numer.
Anal. 15, 12-20 (1978).

18G. H. Golub and V. Pereyra, “The differentiation of pseudo-inverses and
nonlinear least squares problems whose variables separate,” SIAM J. Nu-
mer. Anal. 10, 413432 (1973).

19G. Golub and V. Pereyra, “Separable nonlinear least squares: The vari-
able projection method and its applications,” Inverse Probl. 19, R1-R26
(2003).

20R. A. Koeppe, J. E. Holden, and W. R. Ip, “Performance comparison of
parameter estimation techniques for the quantitation of local cerebral blood
flow by dynamic positron computed tomography,” J. Cereb. Blood Flow
Metab. 5, 224-234 (1985).

2IR. H. Huesman, B. W. Reutter, G. L. Zeng, and G. T. Gullberg, “Kinetic
parameter estimation from SPECT cone-beam projection measurements,”
Phys. Med. Biol. 43, 973-982 (1998).

22B. W. Reutter, G. T. Gullberg, and R. H. Huesman, “Kinetic parameter
estimation from attenuated SPECT projection measurements,” IEEE Trans.
Nucl. Sci. 45, 3007-3013 (1998).

Medical Physics, Vol. 40, No. 7, July 2013

D. J. Kadrmas and M. B. Oktay: Separable parameter space compartment modeling

072502-16

23R. Boellaard, P. Knaapen, A. Rijbroek, G. J. Luurtsema, and A. A. Lam-
mertsma, “Evaluation of basis function and linear least squares methods
for generating parametric blood flow images using 150-water and positron
emission tomography,” Mol. Imaging Biol. 7, 273-285 (2005).

24H. Watabe, H. Jino, N. Kawachi, N. Teramoto, T. Hayashi, Y. Ohta, and
H. Iida, “Parametric imaging of myocardial blood flow with 150-water
and PET using the basis function method,” J. Nucl. Med. 46, 1219-1224
(2005).

25R.N. Gunn, A. A. Lammertsma, S. P. Hume, and V. J. Cunningham, “Para-
metric imaging of ligand-receptor binding in PET using a simplified refer-
ence region model,” Neuroimage 6, 279-287 (1997).

26R. N. Gunn, S. R. Gunn, F. E. Turkheimer, J. A. Aston, and V. J. Cun-
ningham, “Positron emission tomography compartmental models: A basis
pursuit strategy for kinetic modeling,” J. Cereb. Blood Flow Metab. 22,
1425-1439 (2002).

27Y. T. Hong and T. D. Fryer, “Kinetic modelling using basis functions de-
rived from two-tissue compartmental models with a plasma input function:
General principle and application to [18F]fluorodeoxyglucose positron
emission tomography,” Neuroimage 51, 164—172 (2010).

28Y. T. Hong, J. S. Beech, R. Smith, J. C. Baron, and T. D. Fryer, “Parametric
mapping of [18F]fluoromisonidazole positron emission tomography using
basis functions,” J. Cereb. Blood Flow Metab. 31, 648-657 (2011).

2D. Feng, D. Ho, K. Chen, L. C. Wu, J. K. Wang, R. S. Liu, and S. H. Yeh,
“An evaluation of the algorithms for determining local cerebral metabolic
rates of glucose using positron emission tomography dynamic data,” IEEE
Trans. Med. Imaging 14, 697-710 (1995).

30M. E. Phelps, PET: Molecular Imaging and Its Biological Applications
(Springer Science, New York, NY, 2004).

3A. Bertoldo, P. Peltoniemi, V. Oikonen, J. Knuuti, P. Nuutila, and C. Co-
belli, “Kinetic modeling of [(18)F]FDG in skeletal muscle by PET: A
four-compartment five-rate-constant model,” Am. J. Physiol. Endocrinol.
Metab. 281, E524-E536 (2001).

32G. Tomasi, A. Bertoldo, S. Bishu, A. Unterman, C. B. Smith, and
K. C. Schmidt, “Voxel-based estimation of kinetic model parameters of
the L-[1-(11)C]leucine PET method for determination of regional rates
of cerebral protein synthesis: Validation and comparison with region-of-
interest-based methods,” J. Cereb. Blood Flow Metab. 29, 1317-1331
(2009).

33W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numer-
ical Recipes in C (Cambridge University Press, Cambridge, 1988).


http://dx.doi.org/10.1109/TNS.2004.843094
http://dx.doi.org/10.1097/MNM.0b013e32833f6c05
http://dx.doi.org/10.1016/S0098-1354(02)00156-4
http://dx.doi.org/10.1016/S0098-1354(02)00156-4
http://dx.doi.org/10.1109/TNS.2002.1039552
http://dx.doi.org/10.1088/0031-9155/51/17/007
http://dx.doi.org/10.1080/00401706.1971.10488810
http://dx.doi.org/10.1137/0715002
http://dx.doi.org/10.1137/0715002
http://dx.doi.org/10.1137/0710036
http://dx.doi.org/10.1137/0710036
http://dx.doi.org/10.1088/0266-5611/19/2/201
http://dx.doi.org/10.1038/jcbfm.1985.29
http://dx.doi.org/10.1038/jcbfm.1985.29
http://dx.doi.org/10.1088/0031-9155/43/4/024
http://dx.doi.org/10.1109/23.737657
http://dx.doi.org/10.1109/23.737657
http://dx.doi.org/10.1007/s11307-005-0007-2
http://dx.doi.org/10.1006/nimg.1997.0303
http://dx.doi.org/10.1097/00004647-200212000-00003
http://dx.doi.org/10.1016/j.neuroimage.2010.02.013
http://dx.doi.org/10.1038/jcbfm.2010.141
http://dx.doi.org/10.1109/42.476111
http://dx.doi.org/10.1109/42.476111
http://dx.doi.org/10.1038/jcbfm.2009.52

