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REVIEW review

Polycystic Kidney Disease

ADPKD is a very common life-threatening, monogenic dis-
ease that affects over 600,000 people in the US alone. Excessive 
proliferation of renal tubule epithelial cells leads to growth of 
epithelial-lined cysts, accompanied by fibrosis and accumula-
tion of extracellular matrix. As the disease progresses, this leads 
to destruction of the normal renal parenchyma, massive renal 
enlargement, deterioration of renal function and eventually renal 
failure.1,2 Most patients will require dialysis or kidney transplan-
tation. Unfortunately, despite intensive efforts and several clini-
cal trials3 there is currently no available treatment to halt or slow 
disease progression.

The root causes of ADPKD are mutations in the PKD1 or 
PKD2 genes which encode the proteins polycystin-1 (PC1) and 
polycystin-2 (PC2), respectively. PC2 is a calcium-permeable 
channel of the TRP family, and forms a complex with PC1. 
PC1 is mutated in the majority (85%) of cases of ADPKD and 
is thought to regulate the channel activity of PC2.1,2,4,5 However, 
the actual purpose of the PC1/PC2 channel has remained 
unclear. The picture is further complicated because PC1 can 
interact with a wide variety of signaling proteins, and regulates 
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Autosomal-dominant polycystic kidney disease (ADPKD) 
is a common genetic disease caused by mutations in the 
gene coding for polycystin-1 (PC1). PC1 can regulate STAT 
transcription factors by a novel, dual mechanism. STAT3 and 
STAT6 are aberrantly activated in renal cysts. Genetic and 
pharmacological approaches to inhibit STAT3 or STAT6 have 
led to promising results in ADPKD mouse models. Here, we 
review current findings that lead to a model of PC1 as a key 
regulator of STAT signaling in renal tubule cells. We discuss 
how PC1 may orchestrate appropriate epithelial responses to 
renal injury, and how this system may lead to aberrant STAT 
activation in ADPKD thereby causing inappropriate activation 
of tissue repair programs that culminate in renal cyst growth 
and fibrosis.
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numerous signaling pathways including heterotrimeric G pro-
teins, wnt-, integrin-, mTOR- and JAK-STAT-signaling. It has 
remained unclear which of these numerous proposed functions is 
most relevant for understanding the molecular mechanisms that 
leads to renal cyst growth in ADPKD.

The polycystins have been reported to localize to several 
subcellular compartments in renal epithelial cells, most nota-
bly primary cilia, lateral cell-cell junctions and the endoplasmic 
reticulum. Experimental evidence suggests that the fraction of 
polycystins that localizes to primary cilia is required for the 
function of cilia as mechanosensors. Renal epithelial cells pos-
sess a single apical cilium that protrudes into the lumen of the 
renal tubule. Fluid flow of the filtrate is thought to bend primary 
cilia and trigger an intracellular calcium signal. Disruption of 
primary cilia or mutations in a large number of cilia-associated 
proteins leads to the induction of renal epithelial proliferation 
and the growth of renal cysts in animal models and numerous 
human genetic diseases.5,6 These diseases are therefore classified 
as ciliopathies.7 However, it is currently unknown why and how 
the function of primary cilia, or changes in luminal fluid flow, 
would be connected to the regulation of proliferation of renal 
tubule cells.

There are numerous similarities in signaling pathways that are 
activated both in PKD and in response to kidney injury. This 
has led to the hypothesis that PKD is a manifestation of aber-
rant and chronic activation of injury repair pathways that are 
normally dormant in the healthy kidney but can be activated in 
response to insults.8 Indeed, different forms of renal injury have 
been shown to trigger rapid renal cyst growth in experimental 
animal models.9

Numerous signaling molecules and pathways have been shown 
to be aberrantly activated in cyst-lining cells in PKD such as Src, 
Erk and mTOR. Inhibition of many of these pathways leads to 
significant reductions in renal cyst growth in rodent models of 
PKD but this has not yet translated into clinical treatments. A 
case in point are mTOR inhibitors that proved highly effective 
at high doses in rodent models but were disappointing in subse-
quent clinical trials.3,10 Recent results from several investigators 
have indicated that STAT3 and STAT6 are aberrantly activated 
in PKD, that PC1 can regulate these STATs and that they are 
promising drug targets for therapy.

In this review we will summarize our current understanding 
of STAT signaling in normal kidneys vs. PKD, and attempt to 
develop a model to explain the purpose of the regulation of STAT 
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embryonic kidney explants suggested that STAT1 activation 
plays a pro-proliferative role in metanephric mesenchymal cells, 
and antagonizes epithelial differentiation and tubulogenesis.41 
Experiments with MDCK cells as a model of in vitro tubulo-
genesis yielded conflicting results and suggested that STAT1 is 
required for tubulogenesis.43 Given that STAT1 null mice do not 
exhibit a defect in renal development41,44,45 it is currently difficult 
to reconcile these studies or assign any definite role for STAT1 
specifically in the kidney (besides its ubiquitous roles during 
immune responses and inflammation). Mice that are null for the 
STAT1 inhibitor SOCS1 display a delay in the gross organization 
of renal medullary tubules into a regular pattern but die peri-
natally of causes unrelated to the kidney.46 If perinatal death is 
prevented by simultaneously deleting the IFNγ gene, these dou-
ble-knockout animals strikingly develop polycystic kidneys later 
in life.46 However, it is extremely puzzling that usually only one 
of the kidneys is affected while the other remains normal. Since 
heavy infiltration of immune cells was also reported in these uni-
lateral polycystic kidneys it is possible that the effect is unrelated 
to the lack of expression of SOCS1 in the kidney but is rather due 
to overreaction of the immune system to infection.

STAT3. Due to its early embryonic lethality, STAT3-null 
mice have been uninformative for a possible role of STAT3 in 
renal development. STAT3 activity (Y705 phosphorylation) is 
high in embryonic rat kidneys but undetectable in adult rat kid-
neys.41 We reported that STAT3 is highly active in renal tubule 
epithelial cells of mice at postnatal day 7 (d7) when kidneys are 
actively growing. By d14 STAT3 activity is downregulated, and 
almost completely undetectable in adult mouse kidneys.42 This 
time-course of STAT3 inactivation coincides with a developmen-
tal switch that occurs in the mouse kidney around d14 and leads 
to cessation of proliferation and kidney growth.47 In an in vitro 
culture model with MDCK renal epithelial cells, STAT3 has 
been shown to be required for hepatocyte growth factor (HGF) 
induced tubulogenesis.48,49 These studies suggest that STAT3 
activity may normally be involved in the regulation of tubule cell 
proliferation and morphogenesis during renal development.

The fact that STAT3 activity is extremely low in the adult kid-
ney despite high STAT3 expression levels42 suggests that signal-
ing pathways upstream of STAT3 are not active in the healthy 
adult kidney and/or that STAT3 activity is strongly suppressed. 
However, the abundance of STAT3 also suggests that it is ready 
to be activated at a moment’s notice. Indeed, STAT3 was found 
to be rapidly activated in renal tubule cells in response to numer-
ous forms of insults. HgCl

2
-induced acute kidney injury in mice 

causes STAT3 activation that is due—at least in part—to IL6 
trans-signaling, a mechanism that involves IL6 and the shed, sol-
uble form of the IL6-receptor.50 These authors also demonstrated 
that experimental activation of STAT3 prior to HgCl

2
 adminis-

tration dramatically protected animals from AKI and resulted in 
complete survival. This effect was suggested to involve the induc-
tion of reno-protective proteins such as heme oxygenase HO-1.50 
Similarly, in cultured proximal tubule cells, STAT3 is activated in 
response to ATP-depletion as a model of renal ischemic injury.51 
Overexpression of constitutively active STAT3 led to increased 
protection from apoptosis in this system.51 Renal ischemia 

activity by PC1 and how dysregulation can lead to the pathogen-
esis of PKD.

STATs

Only the roles of STAT1, 3 and 6 in PKD have been investigated 
to date, and most available information suggest that STAT3 
and STAT6 are involved in renal cyst growth. We briefly cover 
STAT1 but focus primarily on STAT3 and STAT6. We have 
recently reviewed the role of STAT3 in PKD.11 Canonical activa-
tion of STAT family members occurs via phosphorylation of a 
single tyrosine residue within the trans-activation domain, which 
leads to homo- or hetero-dimerization and translocation to the 
nucleus where STATs bind specific DNA sequences in complex 
with transcriptional cofactors to regulate gene expression.12 In 
addition to sequence-specific DNA binding of the STAT protein, 
the cofactors can provide additional gene specificity. STAT acti-
vation often involves their binding to phospho-tyrosine residues 
on the cytoplasmic tails of activated cytokine or growth fac-
tor receptors (such as IL6 family). This is followed by STAT-
phosphorylation via receptor-associated tyrosine kinases of the 
JAK family, receptor tyrosine kinases (such as EGFR and c-Met), 
or by non-receptor tyrosine kinases such as Src.12

The activities of interferons are largely mediated by STAT1 sig-
naling.13 STAT1 and STAT3 can be co-regulated because they can 
be activated by some of the same receptors, and they can form het-
ero-dimers. On the other hand, STAT1 and STAT3 can compete 
with each other for the same receptor14 and typically have oppos-
ing biological effects. While STAT1 activation arrests growth 
and promotes apoptosis, activated STAT3 can protect cells from 
apoptosis. STAT3 is considered an oncogene because it confers 
resistance to apoptosis in many cell types,15,16 it is constitutively 
activated in many human cancers and its inhibition leads to inhibi-
tion of tumor growth.17-22 Intensive efforts are underway to iden-
tify STAT3-inhibitory compounds for the development of cancer 
therapies, but none are yet in clinical use.17,23-25 STAT6 is essential 
for lymphocyte development, specifically for naïve CD4+ T-cell 
polarization into T

h
2 cells.26,27 The primary activators of STAT6 

are IL4 and IL13. T
h
2 cell differentiation is stimulated by IL4, and 

differentiated T
h
2 cells secrete IL4 and IL13.27,28 IL4 and IL13 also 

are responsible for alternative activation of macrophages.29 Diverse 
target genes of STAT6 have been found, although most have 
been studied in immune cells.30,31 IL13 plays a critical role in host 
defense from parasitic nematode infections32 and aberrant IL13 
signaling is essential for asthma pathology.33 A few other cyto-
kines have been shown to activate STAT6, including IL3/15,34,35 
IFNα36,37 and PDGFBB,38 although most of these effects seem to 
be cell-type specific. STAT6 can also be activated by intracellular 
pathogens including viruses39 and the parasite Toxoplasma gondii.40

What is the Normal Role of STATs in the Kidney?

STAT1. STAT1 is activated (by phosphorylation on both Y701 
and S727) in embryonic rat kidneys but the cell type(s) contain-
ing active STAT1 have not been identified.41 In contrast, normal 
adult kidneys lack active STAT1.41,42 In vitro experiments with 
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embryos at E15.5 almost completely lacked tyrosine-phosphor-
ylated STAT1 and expression of p21waf1 suggesting that PC1 is 
the master regulator of STAT1/p21waf1 signaling at this develop-
mental stage in the entire embryo. STAT3 was also found to be 
activated by PC1 overexpression although to a lesser degree, and 
was not further investigated.

Subsequently, our laboratory discovered that PC1 can also 
regulate STAT6 activity although the mechanism of regulation 
differed markedly from the regulation of STAT1 and 3. We 
found that the C-terminal cytoplasmic tail of the integral mem-
brane protein PC1 is released from the membrane by proteolytic 
cleavage resulting in C-terminal fragments that undergo nuclear 
translocation, interact with STAT6 and the transcriptional co-
activator P100 and co-activate STAT6-dependent gene expres-
sion.67 In contrast, membrane-anchored PC1 inhibited STAT6 
activity.67 STAT6 itself was found to translocate between primary 
cilia and the nucleus depending on apical fluid flow.67 Together 
with the discovery that cleavage of the PC1 tail is regulated by 
fluid flow68 these results suggested that PC1-mediated regulation 
of STAT6 activity plays a role in sensing changes of luminal fluid 
flow and affecting corresponding changes in gene expression.67 
Subsequently, we demonstrated that STAT6 is aberrantly acti-
vated in cyst-lining epithelial cells, is part of a positive feedback 
loop with interleukin 13 and the IL13 receptor, and that inhi-
bition of STAT6 leads to inhibition of renal cyst growth in a 
PKD mouse model.59 An important mechanistic distinction to 
STAT1/3 is that membrane-anchored PC1 was not able to “acti-
vate” STAT6 by tyrosine-phosphorylation but that instead the 
soluble, cleaved PC1 tail was able to “co-activate” STAT6 that 
had previously been “activated” by IL13 cytokine signaling.

To clarify the mechanism of STAT regulation by PC1 we re-
investigated the effect on STAT1/3. Although we were unable 
to detect activation of STAT1 by PC1, we discovered a remark-
able dual mechanism of the regulation of STAT342 (Fig. 1). 
Membrane-anchored PC1 indeed caused JAK2-dependent activa-
tion of STAT3 by tyrosine-phosphorylation, and the membrane-
proximal part of the cytoplasmic tail of PC1 was identified as the 
JAK2 binding site. Kidneys of ADPKD patients accumulate two 
PC1 cytoplasmic tail fragments (~15 kDa and ~30 kDa).42 The 
removal of the 15 or 30 kDa fragments from membrane-bound 
PC1 eliminates its ability to activate STAT3 suggesting that 
these cleavage events are involved in the downregulation of PC1-
induced STAT3 signaling. However, remarkably, the 30 kDa 
PC1 tail cleavage product was able to co-activate both STAT3 
or STAT1 that had been tyrosine-phosphorylated by cytokine 
signaling.42 This indicated that PC1 can regulate STATs at two 
levels: First, membrane-anchored, full-length PC1 can act similar 
to an activated growth factor receptor and activate STAT1 and 
STAT3 by JAK2-mediated tyrosine-phosphorylation. Second, 
after PC1 is cleaved—e.g., during renal injury—its cytoplasmic 
tail can co-activate either STAT1, STAT3 or STAT6 depending 
on which of these STATs has previously been activated by specific 
growth factors. Therefore, cleaved PC1 cannot by itself activate 
STAT signaling but it can amplify STAT signaling in response to 
the growth factor environment of the cell which can lead to dif-
ferent biological responses including proliferation and apoptosis.42

reperfusion injury causes increased expression of unphosphory-
lated STAT3, and strong STAT3 activation by tyrosine-phos-
phorylation but the affected cell types have not been defined.52-55

Unilateral ureteral obstruction (UUO), as a model of obstruc-
tive nephropathy, was shown to lead to STAT3 activation. One 
study found that STAT3 is activated both in tubule epithelial 
cells and interstitial cells56 whereas another study reported pre-
dominant activation in interstitial fibroblasts.57 Treatment with 
the STAT3 inhibitor S3I-201 led to inhibition of fibrosis and 
inflammatory cell infiltration.57 Renal STAT3 activation has also 
been found in response to adriamycin-induced nephropathy as a 
model of chronic renal disease but the activated cell types have 
not been defined.58 Treatment with the JAK2 inhibitor AG490 
was shown to inhibit STAT3 and suppress the long-term renal 
deterioration in this model.58

As an overall conclusion, a model emerges in which STAT3 
is rapidly activated in response to several forms of renal insults. 
STAT3 activity appears to be critical for orchestrating the appro-
priate responses to such insults such as protection from oxida-
tive stress, recruitment of immune cells and tissue regeneration. 
However, prolonged renal STAT3 activation appears to play a 
role in destructive processes such as persistent inflammation and 
fibrosis.

STAT6. Similar to STAT3, there is very little active STAT6 
in the adult kidney, even though there is a high level of STAT6 
expressed.59 Upon acute stimulation with systemic IL-4 or IL-13, 
STAT6 is rapidly activated in renal epithelial cells and interstitial 
cells.59 A few studies have pointed to STAT6 potentially play-
ing a protective or reparative role in the kidney following kidney 
injury. Following renal ischemia-reperfusion injury, STAT6−/− 
mice exhibit more severe tubular injury and worse renal function 
than in wild-type mice.60 STAT6−/− mice also show enhanced 
apoptosis and inflammation after unilateral ureteral obstruction 
vs. wild-type mice.61 In a glomerular disease model, antibody-
induced experimental crescentic glomerulonephritis, STAT6−/− 
mice demonstrate amplified morphological and functional 
injury.62 IL-13 was shown to be upregulated in patients with 
lupus nephritis,63 as well as in a rat model of glomerulonephri-
tis.64 Altogether, these studies suggest that activation of renal 
STAT6, presumably by IL13, in response to renal insults has pro-
tective functions and facilitates tissue repair. This is supported 
by the finding that pre-treatment with systemic IL-13 via gene 
therapy reduces renal tubulointerstitial damage in a rat model of 
renal ischemia-reperfusion injury.65

PC1 Can Regulate STAT Activity by a Dual 
Mechanism: Activation vs. Co-Activation

The initial observation that PC1 can regulate STAT activity was 
made by Greg Germino’s laboratory.66 These authors showed 
that overexpression of PC1 causes activation of STAT1 (by phos-
phorylation at both Ser727 and Tyr701) leading to upregulation 
of the cyclin-dependent kinase inhibitor, p21waf1, which induces 
apoptosis as well as cell cycle arrest. PC1 was also found to bind 
JAK2 suggesting that PC1-mediated regulation of JAK2 activ-
ity is responsible for STAT1 activation. Finally, PC1-null mouse 
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PKD mouse models.42 Independently, two other laboratories 
also reported strong STAT3 activation in two independent Pkd1 
mouse models.71,72 Importantly, attempts to inhibit STAT3 in 
PKD mouse models have led to promising results. Treatment 
of Pkd1 mice with high doses of the natural compound cur-
cumin led to inhibition of renal cyst growth.71 Curcumin has 
an extremely broad spectrum of molecular targets including Ser/
Thr-kinases (including mTOR), Tyr-kinases, growth factor and 
cytokine receptors, inflammatory enzymes and several transcrip-
tion factors including STAT3.73 It is possible that the beneficial 
effect of curcumin observed in Pkd1 mice may be partially due 
to inhibition of STAT3. Curcumin was also recently found to 
inhibit cyst growth in an in vitro cell culture system and in 
embryonic kidney culture but any possible role of STAT3 was not 
investigated.74 Another group identified the anti-parasitic com-
pound pyrimethamine as a novel STAT3 inhibitor and showed 

The role in STAT signaling of PC1’s binding partner, PC2, 
has not been conclusively elucidated. PC2 was shown to be neces-
sary for PC1-induced activation of JAK2/STAT1 and subsequent 
p21 expression66 and cell cycle inhibition.66 PC2 has also been 
shown to directly inhibit proliferation by interaction with the p21 
inhibitor Id2 however any involvement of STAT1 was not inves-
tigated.69 Subsequent studies found that PC2 affected prolifera-
tion in a STAT1/p21-independent manner.70 Collectively, while it 
is clear that PC1 activates STAT1 and STAT3, the contribution 
and/or independent functioning of PC2 in this process is not yet 
clear.

The Role of STAT3 in Renal Cyst Growth

STAT3 is strongly activated by tyrosine-phosphorylation in 
cyst-lining cells in human ADPKD kidneys and four different 

Figure 1. Model of the regulation of STAT signaling by PC1. During renal development, membrane-anchored, full-length PC1 may cause direct activa-
tion of STAT1 and STAT3 via JAK2 that is associated with its C-terminal cytoplasmic tail. Direct STAT1/3 activation by PC1 would be an intrinsic pathway 
that is independent of growth factors. It is currently unknown how the direct activation of STAT1/3 by full-length PC1 is regulated. It is possible that 
an—as yet unidentified—extracellular ligand may trigger STAT1/3 activation, or that the extracellular domain of PC1 engages in homotypic interac-
tions. It is also possible that fluid flow may regulate this activity. During renal injury and in PKD, PC1 appears to undergo proteolytic cleavage that 
releases its cytoplasmic tail into the cytoplasm. This turns “off” the ability of the remaining membrane-anchored portion of PC1 to activate STAT1/3. 
However, the soluble PC1 tail can now translocate to the nucleus and co-activate STAT3 that has been activated by prior growth factor signaling. In 
addition to STAT3, the cleaved PC1 tail can also co-activate STAT6 (bottom) and STAT1 (not shown here). Therefore, the cleaved PC1 tail would have the 
ability to amplify different signaling pathways that lead to different cellular responses depending on the growth factor and cytokine environment.
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by tubule epithelial cells leads to macrophage recruitment which, 
in turn, further activate STAT3 in these cells by cytokine signal-
ing. Such an interplay between renal epithelial cells and immune 
cells could lead to a vicious cycle of mutual positive feedback 
stimulation that causes persistent STAT3 activation and eventu-
ally cyst growth and fibrosis.

In addition to activation by tyrosine-phosphorylation, 
STAT3 is regulated by Ser727-phosphorylation by mTOR- and 
ERK-dependent pathways88 which are known to be activated 
in PKD.89,90 However, the situation is complicated by the fact 
that Ser727 phosphorylation can lead both to increased and 
decreased nuclear STAT3 activity.91,92 Unphosphorylated STAT3 
(U-STAT3) can also regulate gene expression which leads 
to a more sustained effect than the canonical effects of Tyr-
phosphorylated STAT3.93 Increased expression of U-STAT3 has 
been observed in PKD mouse models.42,71,72 U-STAT3 has been 
suggested to play a role in increased expression of pro-fibrotic/
inflammatory genes in acute kidney injury.53 U-STAT3 can 
also increase the expression of c-Met94 which could potentially 
be involved in the observed upregulation of c-Met-signaling in 
PKD.

Given the abundance of over-activated pathways that are 
known to signal via STAT3 it is surprising that the role of STAT3 
in PKD has only very recently been investigated. It is currently 
unknown which of the biological effects of STAT3-dependent 
gene activation may be most relevant to the pathogenesis of PKD. 
Based on the known roles of STAT3 in promoting proliferation, 
survival and resistance to apoptosis in cancer cells, these are obvi-
ous candidates. But other effects should not be discounted. For 
example, STAT3 drives the expression of heme oxygenase (HO) 
in response to kidney injury which is thought to lead to protec-
tion from oxidative stress and increased cell survival.50 A role of 
HO activity in the regulation of renal cyst growth has recently 
been identified.95 Furthermore, STAT3 is required for HIF-1α 
RNA expression under both hypoxia and growth signaling con-
ditions.96 HIF-1α is an important regulator of tumor growth 
and angiogenesis and has been found to be upregulated in the 
renal cyst-lining epithelium and implicated in the progression of 
PKD.97

The Role of STAT6 in Renal Cyst Growth

Our group reported high levels of activated STAT6 in cyst-lining 
cells in two different PKD mouse models.59 This aberrant STAT6 
activation appears to be in part due to persistent signaling in a 
positive feedback loop involving overexpression of IL13 and the 
IL13 receptor in cyst-lining cells, both of which are under posi-
tive transcriptional control by STAT6 itself.59 Genetic removal 
of STAT6, by crossing the Bpk polycystic kidney mouse model 
with a STAT6 knockout mouse, led to a significant improve-
ment in kidney function and decrease in cyst size.59 Treatment 
of cystic mice with teriflunomide, the active metabolite of the 
clinically approved rheumatoid arthritis drug leflunomide, also 
decreased cystic disease.59 The main mechanism of action of 
teriflunomide—responsible for its efficacy in rheumatoid arthri-
tis—is as a pyrimidine synthesis inhibitor.98,99 However, it is not 

that it inhibits renal STAT3 activity and renal cyst growth in a 
Pkd1 mouse model.72 Similar results were obtained using another 
STAT3 inhibitor, S3I-201.72 Even though the specificity toward 
STAT3 of these compounds is either poor or not well established, 
altogether these studies suggest that STAT3 may be a highly 
promising therapeutic target for treatment of PKD. More specific 
inhibitors or genetic approaches are needed to define the contri-
bution of STAT3 as a driver of renal cyst growth.

What are the possible upstream activators of STAT3 in PKD? 
Since PC1, the protein affected in most cases of ADPKD, regu-
lates STAT3 (see above) it is reasonable to assume that PC1 may 
play a role in the aberrant activation of STAT3 in renal cysts. 
However, the picture is complicated by paradoxical situations. 
Two pathogenic patient mutations were identified that altered 
the ability of membrane-anchored PC1 to activate STAT3, how-
ever, one mutation increased STAT3 activation while another 
mutation diminished it.42 More strikingly, the effect of PC1 on 
ADPKD is altogether paradoxical because renal cyst growth can 
be caused by both reducing/eliminating the expression of PC1 
(e.g., in conditional KO models or by hypomorphic alleles) and 
also by overexpression of PC1.75,76 While ADPKD has tradition-
ally been viewed as resulting from the loss of PC1, kidneys of 
ADPKD patients have actually consistently been found to over-
express PC1.42,67,77,78 Indeed, the cleaved, C-terminal tail of PC1 is 
strongly overexpressed in kidneys from ADPKD patients42 and a 
PKD mouse model.68 PC1 expression is also increased after renal 
injury.79 Since the cleaved PC1 tail has the ability to co-activate 
STAT signaling in response to cytokine/growth factor activity42 
it is possible that the observed STAT3 activation in PKD is due 
to a combination of STAT3-activating cytokines and the signal-
amplifying property of the cleaved PC1 tail.

Several growth factors and upstream activators of STAT3 
have been implicated in PKD including epidermal growth factor 
(EGF) and its receptor (EGFR), HGF and its receptor c-Met, 
and Src. EGF80 and HGF81 are both elevated in PKD kidneys 
and found in cyst fluid, the EGFR is overexpressed and mis-tar-
geted to the apical plasma membrane in cyst-lining cells,80 and 
overexpression of c-Met leads to polycystic kidneys.82 Treatment 
of PKD mouse models with EGFR inhibitors83 and treatment 
of Pkd1-null embryos with a c-Met inhibitor84 reduce renal cyst 
growth. A possible link between PC1 and c-Met/EGFR signaling 
has been uncovered when it was found that the loss of PC1 leads 
to a trafficking defect of the E3-ubiquitin ligase c-Cbl which is 
required for the downregulation of MET and EGFR after recep-
tor activation.84 Furthermore, Src—a tyrosine kinase that can 
activate STAT3 directly—is aberrantly activated in PKD, and the 
Src inhibitor SKI-606 reduces renal cyst growth in PKD mice.85

The immune system may also play a likely role as a source 
of STAT3-activating cytokines in PKD. For example, IL6 is 
secreted by T-cells and macrophages, and IL6-trans-signaling has 
been shown to activate STAT3 in renal tubule cells in response to 
AKI.50 Macrophages were recently shown to promote cyst growth 
in PKD.86 Interestingly, cystic epithelial cells secrete macrophage 
chemoattractants including MCP-186 whose expression is known 
to be driven by STAT3.87 An interesting speculation is that 
STAT3-dependent expression of macrophage chemoattractants 
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in cyst-lining cells in PKD, and that they appear to be driv-
ing forces of renal cyst growth. Numerous STAT3-activating 
growth factors and signaling pathways have already been 
known to be involved in renal cyst growth in PKD for some 
time. However, these factors/pathways do not exclusively signal 
through STAT3, and any involvement of STAT3 had not been 
considered until very recently. Mounting evidence is beginning 
to lead to a model in which PC1 plays a key role in orchestrating 
cellular responses to growth factors that may originate from the 
immune system and the cyst-lining epithelial cells themselves. 
The purpose of the STAT-regulation by PC1 may be to sensitize 
cells to the cytokine environment in response to renal injury. 
Under these conditions—perhaps triggered by the lack of lumi-
nal fluid flow—PC1 appears to be overexpressed, proteolytically 
cleaved and its cytoplasmic tail accumulates in the nucleus where 
it can co-activate STAT proteins (Figs. 1 and 2). In contrast, 
unaffected, normal tubules would be relatively insensitive to the 
same cytokines that would trigger repair responses in damaged 
tubules (Fig. 2). In ADPKD, this system would be permanently 
activated, leading to continuous “tissue repair” in the absence of 
actual damage.

Much still needs to be learned about the exact molecular 
mechanisms that lead from the initial PC1 gene mutation to the 
growth of renal cysts and eventually kidney failure. However, 
since STAT3 and STAT6 have emerged as likely key players in 
the progression of PKD, they already represent promising drug 
targets for attempts at therapy. STAT3 is a hotly pursued target 
for the treatment of numerous types of cancer and it is likely 
that clinically useful drugs will emerge in the future. Likewise, 
intensive research efforts have been focused on inhibiting the 
IL-4/IL-13/STAT6 signaling pathway due to its involvement in 
asthma. Antagonistic antibodies against IL4/13 and their recep-
tor chains are being developed and some have already shown 
promising results in clinical trials.

Besides numerous other proposed functions, the ability of 
PC1 to regulate STAT proteins may turn out to be a key function 
that may ultimately lead to therapeutic approaches by targeting 
the aberrantly activated STAT3 and STAT6 pathways.
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a very specific drug and has also been reported to act as a tyro-
sine-kinase inhibitor and to inhibit STAT6 activation.100 Indeed, 
teriflunomide treatment of Bpk mice led to inhibition of STAT6 
activity in renal cyst lining cells59 suggesting that its beneficial 
effect was due to this mechanism. Altogether, these results sug-
gest that aberrant STAT6 activation is a partial driving force of 
renal cyst growth in PKD.

Several effects of STAT6 activation in tubular epithelial cells 
could play a role in PKD including fibrosis and the immune sys-
tem. Fibrosis is a major contributing factor to severity of disease 
in ADPKD.101 TGFβ plays a central role in regulating renal fibro-
sis102 and has been shown to be upregulated in PKD.103 In other 
tissues it has been shown that TGFβ and IL-13 regulate each 
other’s expression104,105 and that IL-13 alone can activate fibrosis 
pathways.106 However, the role of IL-13 and STAT6 in fibrosis 
has yet to be studied specifically in the kidney. IL-4 and IL-13 
can induce the secretion of periostin, a protein implicated in 
integrin activation, cell adhesion and proliferation.107 Periostin is 
overexpressed in ADPKD and was found to stimulate prolifera-
tion of cystic epithelial cells via its receptor α

v
-integrin.108 Hence, 

periostin may contribute to renal cyst growth in an auto/para-
crine fashion as a mitogen downstream of STAT6. Components 
of the immune system that may be involved in STAT6-mediated 
effects on renal cyst growth are macrophages. After renal isch-
emia-reperfusion injury, macrophages mediate tissue repair in 
a delicate balance between the M1 and M2 phenotypes, with 
more M1 macrophages active in the beginning injury phase 
shifting to more M2 macrophages later in the repair phase.109 
Notably, M2 macrophages (also called alternatively activated) 
are major IL4- and IL13-secreting (and responsive) cells and are 
thought to be part of general innate and rapid responses to tissue 
injury.29,110 Importantly, macrophages have recently been shown 
to be a significant factor in PKD. In two different mouse models 
of PKD, an abundance of M2 macrophages was found to sur-
round cysts.86 Strikingly, depletion of macrophages resulted in 
reduced disease severity in these mouse models.86 It is plausible 
that IL4/13 secreted by these renal M2 macrophages results in 
aberrant STAT6 activation of tubule epithelial cells—at least as 
an initiating or sustaining event—and promotes their prolifera-
tion and cyst growth.

Conclusions

Independent work from several laboratories has established 
that PC1 can regulate the activity of several STAT transcrip-
tion factors, that STAT3 and STAT6 are aberrantly activated 
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