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Introduction

Polyadenylation is a universal post-transcriptional modification, 
which profoundly affects the activity and fate of RNA. First dis-
covered in eukaryotes, where it contributes to export of RNA 
to the cytoplasm and promotes mRNA stability and transla-
tion, polyadenylation was then demonstrated to have an RNA 
destabilizing function that is conserved in bacteria, organelles 
and nuclei.1-12 In prokaryotes, it is widely accepted that oligo(A) 
tails primarily expedite degradation of short-structured mRNA 
decay intermediates and control the turnover of several non-cod-
ing RNAs that regulate plasmid replication and maintenance, 
viral lysogeny and translation efficiency.13-20 In addition, poly(A) 
assisted decay also has been shown to be involved in the quality 
control of precursors of a defective and a wild-type tRNAs, to  
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Discovered in eukaryotes as a modification essential for mrNA 
function, polyadenylation was then identified as a means 
used by all cells to destabilize rNA. in Escherichia coli, most 
accessible 3' rNA extremities are believed to be potential 
targets of poly(A) polymerase i. However, some rNAs might be 
preferentially adenylated. After a short statement of the current 
knowledge of poly(A) metabolism, we discuss how Hfq could 
affect recognition and polyadenylation of rNA terminated by 
rho-independent terminators. Comparison of rNA terminus 
leads to the proposal that rNAs harboring 3' terminal features 
required for Hfq binding are not polyadenylated, whereas 
those lacking these structural elements can gain the oligo(A) 
tails that initiate exonucleolytic degradation. we also speculate 
that Hfq stimulates the synthesis of longer tails that could 
be used as Hfq-binding sites involved in non-characterized 
functions of Hfq-dependent srNAs.
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affect gene expression and to compensate for a deficiency in the 
main pathway of RNA decay orchestrated by RNase E.21-25

In Escherichia coli, all types of RNA are polyadenylated by 
poly(A) polymerase I (PAP I) encoded by the pcnB gene;26-35 
these RNAs include mRNAs, mature and precursor tRNAs and 
rRNAs, decay intermediates and by-products of processing as well 
as small regulatory non-coding RNAs (sRNAs) and viral RNAs. 
Nearly all mRNAs were shown to be adenylated at the 3'-extrem-
ities, which can result from transcription termination, processing 
and/or exonucleolytic nibbling.28,29,34,36 Besides this set of data 
leading to the widely accepted idea that any accessible 3' end of 
an RNA can be polyadenylated, there are clues that PAP I is able 
to discriminate between RNA substrates. Indeed, global analysis 
of polyadenylated mRNAs showed that stimulation of polyad-
enylation of individual mRNAs ranges from 2–50 times when 
PAP I is overexpressed.29 Moreover, the structures of the 5' and 
3' extremities of the RNA were reported to affect its efficiency. 
In particular, 3' ends resulting from rho-dependent transcription 
termination were reported to be preferentially polyadenylated by 
PAP I.29,35,37-39 By analogy with the situation in eukaryotic cells, 
where the activity of PAP I depends on a complex machinery that 
includes a poly(A) binding protein,40 we have demonstrated that 
the Hfq protein, which exhibits a very high affinity for A-rich 
sequences, stimulates the polyadenylation activity in E. coli.36,41-44 
In contrast, another poly(A) binding protein, ribosomal protein 
S1, has no effect on this reaction.45 At that time, Hfq was known 
as a cellular factor involved in the replication of a viral RNA.46 Its 
function in the control of gene expression was just beginning to 
be investigated47,48 and neither its structure nor its mode of action 
were elucidated. We scrutinize here how the properties of Hfq, 
which are now well-characterized, may account for the current 
understanding of poly(A) metabolism and functions.

Our knowledge of poly(A) metabolism and poly(A) depen-
dent degradation of RNA in E. coli was gained from the study 
of actors of poly(A) metabolism as well as by a limited set of 
transcripts such as rpsO, rpsT, ompA, lpp, RNA I of ColE1 and 
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that primary transcripts harboring Rho-independent termina-
tors may be nibbled by RNase II, which reduces the number of 
unpaired uridine residues downstream of the 3' hairpin of the 
rpsO mRNA.36,54,75 These extremities may then be readenylated 
by PAP I. Exoribonucleases and PAP I can act distributively or 
processively depending on the length of the oligo(A) extension. 
The distributive synthesis of short tails, namely the dissociation 
of the enzyme from oligo(A) after the addition of each nucleotide, 
implies that the adenyl residues that have just been polymerized 
can be immediately removed by exoribonucleases that are able to 
bind to the accessible 3' RNA extremities. In addition, in vitro 
experiments reveal that longer oligo(A) tails (more than 10 As 
downstream of the terminal Us) are very rapidly degraded pro-
cessively by exoribonucleases while short oligo(A) tails (1–5 As) 
are degraded slowly and through a distributive reaction.54,75 As 
a consequence, short oligo tails (1–5 As downstream of the Us) 
result from the dynamic equilibrium mediated by distributive 
enzymes while longer oligo(A) extensions are hydrolysed proces-
sively and more rapidly. We also have demonstrated that oligo(A) 
tail synthesis also becomes progressively processive in the pres-
ence of Hfq.

Hfq stimulates poly(A) synthesis. Oligo(A) tails are shorter 
and less abundant in cells deficient for Hfq.36,39,43 Consistently, 
Hfq stimulates poly(A) synthesis by PAP I in vitro.39,43,76 Hfq 
affects the synthesis rate when tails reach about 20 nucleotides 
in length. The elongation is slightly quicker at first becoming 
strongly stimulated when tails reach about 30–35 nucleotides. 
The reaction becomes processive in the presence of Hfq; proces-
sivity can be detected as soon as tails reach about 5–10 As. Tails 
of several hundred As are rapidly synthesized processively in vitro 
in the presence of Hfq. Preferential binding of Hfq to 3' oligo(A) 
extensions presumably accounts for the speed and the processiv-
ity of the reaction.43,44 The correlation between the low affinity 
for poly(C) and the failure to stimulate PAP I-mediated poly(C) 
synthesis reinforces the idea that Hfq must bind at the 3' end of 
RNA in order to stimulate elongation by PAP I.44 Moreover, the 
fact that Hfq does not affect ADP polymerization by PNPase 
implies that it does not impair access to the 3'OH extremity of 
oligo(A) tails. The many poly(A) Hfq complexes detected when 
protein concentration increases suggest that Hfq sequentially 
binds every 14 residues to form complexes looking like perls on a 
string.42,75 Although, Hfq was reported to bind preferentially to 
pre-existing oligo(A)-Hfq complexes,77 the cooperativity of Hfq 
binding remains controversial.42,75 Besides the evidence presented 
above that Hfq stimulates poly(A) synthesis, there are some clues 
that its binding at the 3' end of non-adenylated RNAs terminated 
by Rho-independent terminators impairs polyadenylation.

Hfq recognizes the 3' ends of Rho-independent terminators. 
Hfq was indeed reported to bind Rho-independent terminators 
harboring a 3' stretch of Us; Hfq affinity decreases when the 
stretch of Us downstream of the terminal hairpin is shortened.39 
Moreover, locations of polyadenylation sites in vivo suggest that 3' 
ends of the rpsO mRNA are more efficently adenylated when Hfq 
is inactive thereby indicating that Hfq inhibits poly(A) synthe-
sis downstream of the hairpin of the Rho-independent termina-
tors.36 In the case of the rpsO transcript, oligo(A) tails appended 

few other regulatory RNAs where the abundance or stability was 
dependent on polyadenylation.2,3,9,13-16,18,49-53 We present below a 
rough outline of the poly(A) dependent mechanism of RNA deg-
radation as it is known to date.

Poly(A) synthesis. The current model postulates that the 
poly(A) tails detected in bacteria result from the equilibrium 
between the activity of PAP I and the activity of 3'–5' exori-
bonucleases, which attack RNA 3' extremities (see ref. 3 for a 
review). The fraction of oligoadenylated molecules range from 
0.011–40% depending on the RNA, and poly(A) tails ranging 
from 1–50 nucleotides have been described.39 Ten percent of 
rpsO transcripts harbor short oligo(A) tails of 1–5 nucleotides in 
a wild-type strain.36 The slow lenghtening of poly(A) tails in vivo, 
which most probably results from the low intracellular concentra-
tion of PAP I, explains at least in part the limited size of oligo(A) 
tails.29,54

In spite of the fact that all the 3' extremities may be recog-
nized and elongated by PAP I, different studies reported that 
poly(A) tails were often detected downstream of secondary struc-
tures of Rho-independent transcription terminators, which sta-
bilize RNAs. This is the case of RNA I, which controls ColE1 
plasmid replication and of rpsO, ompA and lpp mRNAs.8,13,29,34,39 
The presence of a few unpaired nucleotides downstream of the 
hairpin (at least two) is required for the RNA to be polyadenyl-
ated.38,55 PAP I is a distributive enzyme.56 It only polymerizes the 
addition of A residues in vivo but it can also incorporate C resi-
dues in vitro but with a lower efficiency. GTP and UTP are not 
PAP I substrates.44

Exoribonucleases that degrade RNA from the 3' end rec-
ognize single-stranded extremities. It was demonstrated both 
in vivo and in vitro that oligo(A) tails are efficiently recognized 
and degraded by the major exoribonucleases, which are impli-
cated in RNA catabolism; these include RNase II, PNPase and 
RNase R.49,57-61 Oligo(A) tails are longer in cells when PNPase 
and RNase II are inactive.8,57,62-65 Moreover, efficient degrada-
tion of RNA by these three exoribonucleases can only occur if 
3' terminal stable secondary structures are followed by single-
stranded sequences, which are used as recognition sites. PNPase 
degrades transcripts harboring a Rho-independent transcription 
terminator provided it exhibits 10-12 3' terminal unpaired nucle-
otides.66 Secondary structures impeding PNPase progression are 
more efficiently degraded when the ribonuclease is associated 
with the RhlB helicase within the degradosome complex.59,67 In 
contrast, RNase II, which is the most active ribonuclease in the 
cell as evaluated by its ability to degrade oligo(A)68 is unable to 
go through secondary structures.66,69,70 It nibbles single-stranded 
stretches longer than 9–10 nucleotides.54,66 Finally, RNase R, 
the less abundant of these three exoribonucleases, can degrade 
structured RNA harboring a 3' single-stranded extension with 
a minimum of seven nucleotides without being slowed down by 
annealed nucleotides.71,72 These properties allow us to understand 
on the one hand why oligo(A) tail addition by PAP I down-
stream of terminator hairpins allow PNPase and RNase R to 
degrade folded transcripts and on the other hand why RNase II, 
which shortens poly(A) tails, protects RNAs against the attack 
of both PNPase and RNase R.16,64,73,74 We also have observed 
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reduce the access of ribonucleases to the RNA.90 In contrast, Hfq 
also facilitates the coordinated degradation of sRNAs and of their 
associated mRNA targets.90-92 In an effort to rationalize these 
observations, we postulate below that the accessibility of RNA 
to the exonucleolytic degradation machinery depends, at least in 
part, on the interactions of Hfq with the structural features of 
Rho-independent terminators, which have been recently demon-
strated to play a major part in Hfq-dependent sRNA-mediated 
regulation of gene expression.

Molecular and functional interactions of Hfq with the 3' 
end of RNAs. Recent data showed that the binding of Hfq to the 
3' terminal structural features resulting from Rho-independent 
termination is required for the regulatory function of sRNA78,87 
(Fig. 1A). In addition to the 3' terminal U-stretch and the stable 
hairpin of the terminator (t on Fig. 1A), formation of a stable 
Hfq-RNA complex requires a second single-stranded U-rich 
sequence located upstream of the terminator and, in several cases, 
a second hairpin between this U-rich sequence and the termina-
tor. Moreover, current models based on the solved crystal struc-
ture of Hfq-RNA complexes and RNA-binding properties of Hfq 
mutants postulate that Hfq exhibits three different RNA-binding 
surfaces that can interact with the 3' ends of polyadenylated and 
non-adenylated Rho-independent terminators.77,93-95 The proxi-
mal domain, located on the internal rim of the ring formed by the 
six identical protomers, establishes strong interactions with the 3' 
terminal U-stretch of Rho-independent terminators. Importantly, 
the 3'-OH terminus is masked in this complex.95 The distal site, 
located at the other face of the ring, recognizes repetitions of 
A-R-N triplets (for Adenine, Purine and A, U, G or C), and it 
strongly binds a A15 oligoribonucleotide.93,94 Finally, the lateral 
site located on the outer rim of the ring is involved in the binding 
of U-rich sequences and base-paired elements of sRNAs.77

PAP I selectively adenylates RNA extremities that are not 
recognized by Hfq. It was noticed that sRNAs that do not co-
immunoprecipitate with Hfq lack the 3' terminal Hfq-binding site 
depicted above.95 The same holds true for the 3' regions of sRNAs 
and mRNAs, which were shown to be polyadenylated in vivo. In 
effect, the polyadenylated SraG and SraL sRNAs, which were not 
isolated as stable Hfq-RNA complexes, miss the U-rich sequence 
upstream of the Rho-independent terminator hairpin (Table 
1).19,85,95 In addition, their 3' terminal U-stretch is presumably 
masked because it anneals with the stretch of As laying immediately 
upstream of the terminator hairpin (Fig. 1B).95 Similarly, other 
sRNAs (RNA I, Oop, CsrC, RNA OUT, Sok, CopA)15,16,19,73,96,97 
and mRNAs, such as rpsO, lpp, rpsT and ompA39,62,98,99 that are ter-
minated by Rho-independent terminators, can be polyadenylated 
in vivo probably because they lack accessible structural features 
required for binding of Hfq at the 3' end (Table 1). The strong 
affinity of Hfq for polyadenylated rpsO mRNA compared with 
the non-adenytated transcript75 indeed confirms that the 3' termi-
nal U-stretch is weakly bound by Hfq. The cspA mRNA whose 3' 
extremity can both be polyadenylated and form a stable Hfq-RNA 
complex confirms that Hfq binding and polyadenylation are not 
exclusive.76 Interestingly, internal base-pairing masks the U-rich 
singled-standed stretches of nucleotides located in the 3' UTR of 
the cspA transcripts (Table 1).88 The 3' terminal Us could either 

3' to the terminator hairpin increase Hfq binding, which is 15 
times more efficient when 18 As are added downsteam of the 
U6C-OH of the terminator.44 These observations suggest that 
Hfq can bind both the 3' terminal oligo(A) of polyadenylated 
RNAs and the stretch of Us following the terminal hairpin of 
Rho-independent terminators. Intriguingly, they also indicate 
that the consequences of Hfq binding are different: polyadenyl-
ation is stimulated in the first case while elongation of the RNA 
is inhibited in the latter one. It must be pointed out here that 
enhanced polyadenylation due to a 5' terminal mono-P extrem-
ity37,44 does not result from Hfq binding, which is not affected by 
the phosphorylation status of the 5' RNA extremity.44

Hfq has various effects on RNA stability. These investiga-
tions suggest that Hfq could either destabilize RNA when it 
stimulates synthesis of poly(A) tails or protect RNA from exori-
bonucleases when it binds at their 3' end.78 It was in fact observed 
that RNAs whose stability depends upon polyadenylation are 
stabilized when Hfq is inactive; this is the case of the rpsO, rpsT, 
ompA and lpp transcripts.39,43 However, this stabilizing effect is 
pretty weak, and it has been attributed to translation activation as 
respect to the rpsO and rpsT mRNAs.79 In addition, the stabilizing 
effect was not observed in the case of RNA I of ColE1 plasmids, 
whose decay is dramatically dependent on polyadenylation.13 
While poly(A) tail lengths decrease slighly, RNA I stability is not 
modified in the Hfq mutant and the copy number of pBR322 
is not affected (Hajnsdorf unpublished data). In contrast, many 
sRNAs, also terminated by a Rho-independent transcription 
terminators, are stabilized by Hfq, which prevents ribonuclease 
attacks. Several sRNAs that were efficiently degraded exonu-
cleolytically by PNPase in the absence of Hfq become resistant 
to this nuclease when Hfq is present.80 For example, the MicA 
sRNA, whose degradation by PNPase is facilitated by poly(A), 
is stabilized by Hfq, which, in this case, protects the RNAs 
against ribonucleases instead of stimulating synthesis of desta-
bilizing tails.18,80,81 Similarly, the SraL sRNA (also named RyjA), 
whose degradation is poly(A) dependent, is stabilized by Hfq.18 
Paradoxically, SraL does not co-immunoprecipitate with Hfq,82 
which contrasts with the majority of sRNAs.82-86 One of them, 
SgrS, forms a stable complex with Hfq, which presumably pre-
vents exonucleolytic degradation.87 Hfq also protects the oligo(A) 
tails of rpsO transcript from degradation by PNPase and RNase 
II.75 Moreover, Hfq also impairs endonucleolytic cleavages. Its 
binding just upstream of the 3' terminal hairpins protects the 
rpsO and cspA transcripts from cleavage by RNase E.75,88 In the 
case of rpsO, this cleavage is rate-limiting for decay.89 Hfq also 
protects several sRNAs from RNase E.18,90 In contrast, polyad-
enylation does not affect the stability of the CsrC sRNA, which is 
mostly degraded by endonucleases.18 CsrC does not form a stable 
complex with Hfq,85 which does not affect its stability.18 This 
series of observations highlight the different roles played by Hfq 
in RNA metabolism. It forms very strong complexes with most 
sRNAs and some mRNAs while some fail to be co-immunopre-
cipitated with Hfq.83-85 In respect to RNA stability, it can either 
destabilize RNA fragments and some mRNAs probably through 
stimulation of poly(A) synthesis,3 or have a stabilizing effect that 
presumably results from the formation of complexes, which may 
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functional complex with Hfq or be attacked by the oligo(A)-depen-
dent exonucleolytic degradation machinery. A speculative model 
taking in account the molecular events occurring at the 3' ends of 
these transcripts is presented below.

The role of Hfq in RNA polyadenylation: A mechanistic 
speculation. RNAs terminated by Rho-independent terminators 
harboring the structural motifs required for Hfq binding probably 
rapidly establish strong interactions with the proximal and lateral 
sites of Hfq.77 In the case of sRNA, these complexes probably facil-
itate annealing of the seeding sequence with the complementar-
ity sequence of the target mRNA, which may be made accessible 
through an association with the distal sites on the other face of 
Hfq.100,101 Similarly, mRNAs resulting from Rho-independent ter-
mination, whose 3' ends associate with the proximal site of Hfq, 
are presumably not accessible to exoribonucleases and PAP I.77 
Some of these stabilized 3' terminal mRNA fragments are prob-
ably regulatory RNAs as proposed for RybD.84 In contrast, 3' 
fragments of mRNAs generated by endonucleases that cannot be 
bound by Hfq are presumably marked for degradation. This is the 
case of rpsO, rpsT, lpp, ompA mRNAs and of the SraL,18 SraG,19 
RNA I,13 Oop,15 Sok,16 RNA OUT73 and CopA14 sRNAs that are 
all polyadenylated and mostly degraded by a oligo(A)-dependent 
exonucleolytic process (see above). It is interesting to point out that 
most polyadenylated sRNA mentioned above (RNA I, RNA OUT, 

form a stable complex with Hfq, implying also an upstream U-rich 
region when they are both single-stranded, or be accessible and 
polyadenylated when the 3' UTR is folded. Similarly, melting of the 
A-U base pairs that mask the terminal U-stretch of the rpsO Rho-
independent terminator may facilitate the binding of Hfq at the 
3'end of the mRNA (Table 1). This could explain why polyadenyl-
ation of the rpsO mRNA is affected by Hfq in vivo.36 The 3' region 
of some mRNAs, e.g., flgL of Salmonella typhimurium that exhibits a 
typical potential Hfq binding site, co-immunoprecipitate with Hfq 
(Table1).85 In the case of the dapB gene of Salmonella typhimurium 
co-immunoprecipitation of the 3' region of the mRNA with Hfq 
reflects the synthesis of the DapK sRNA from a promoter located 
at the end of the dapB coding sequence.84 A similar origin was pro-
posed for the RyeF sRNA in E. coli and S. typhimurium.83,84 These 
data indicate that Hfq interacts in the same way with the 3' ends of 
mRNAs and sRNAs. Indeed, the 3' end of the cspA mRNA forms 
a complex with the proximal RNA-binding surface of Hfq, which 
also interacts with the 3' terminal U-stretch of the RybB sARN.76,95 
Consistently, a large part (35%) of the predicted Rho-independent 
terminators of Salmonella co-immunoprecipitate with Hfq.84 The 
RybD sRNA characterized in E. coli and S. typhimurium presum-
ably belongs to this category.83,84 The observations above suggest 
that the 3'ends of RNAs resulting from Rho-independent transcrip-
tion termination affect the fate of RNA that can either form a stable 

Figure 1. Structural features and potential interactions at the 3’ end of adenylated rNAs terminated by rho-independent terminators. (A) The four 
structural elements involved in Hfq binding87 are described in the text. (B) rNAs that are polyadenylated by PAP i contain an oligo(A) or an A-rich se-
quence located upstream of the hairpin of the terminator which can hybridize with the 3’ terminal single standed U-stretch recognized by Hfq. (C) Pro-
cessive elongation of oligo(A) tails in the presence of Hfq presumably generates stable oligo(A)-Hfq complexes. Several Hfq probably bind side by side 
on the oligo(A) tail. The number of As interacting with the distal rNA-binding surface of Hfq on the scheme is arbitrary. See the text for the description 
of this hypothetical complex. (D) The 3’ end of polyadenylated rNA can in principle also bind an Hfq-srNA complex. The terminal U-stretch of the 
srNA and the oligo(A) tail can bind simultaneously to the proximal and the distal-binding surfaces located on the opposite faces of the hexamer. The 
U-stretch hidden by the protein is in light gray. The srNA shown in dark gray also interacts with the lateral surface of Hfq. There are indications that a 
srNA and a mrNA can compete for binding at the same site.114 we propose in the text that such complexes may favor the interaction of the srNA with 
potential target sites located in 3’ UTr close to the terminator.
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The impact of these long tails on RNA metabolism remains 
mysterious. One can imagine that Hfq, which stimulates poly(A) 
synthesis and strongly binds tails that it protects against ribo-
nucleases, plays a major part in poly(A) metabolism. Oligo(A) 
tails longer than 14 As most likely form stable complexes with 
Hfq.42,44,75,77,93,94 The interaction would involve the distal face of 
Hfq that is capable of interacting with consecutive “A-R-N” trip-
lets. Several Hfq molecules presumably bind side by side on long 
poly(A) (Fig. 1C) so that four protomers of each Hfq interacts 
with 12 A residues. The observation that oligo(A) tails as long as 
5–10 As are sufficient to transform PAP I into a processive enzyme 
suggests that the interaction of two triplets of the oligo(A) tail with 
two Hfq protomers is sufficient to impact polyadenylation activ-
ity.43 That polymerization progressively becomes processive upon 
oligo(A) elongation supports the idea that the fixation of several 
Hfq molecules facilitate PAP I access to the 3' RNA extremity. 
How Hfq stimulates PAP I activity is unknown. An interaction 
between PAP I and Hfq has been reported,39 suggesting that Hfq 
may act by increasing the local concentration of PAP I. Such a 
complex could also account for the processivity of the reaction. 
Polynucleotide phosphorylase could associate with this complex 
and as a consequence coordinate degradation and RNA elonga-
tion.39 It is worth remembering here that PNPase was proposed to 
synthesize long heterogeneous tails at the 3' ends of transcripts.103 
In contrast to short tails used as “toe-holds” by exoribonucleases, 
long oligo(A) tails are strong Hfq-binding sites that likely protect 
RNAs against exonucleolytic degradation.75 In the case of rpsO 

Oop, CopA and Sok) are cis-acting regulators that do not require 
Hfq for annealing the complementary target transcribed from the 
opposite DNA strand. Polyadenylation is one of the parameters 
that control their activity. Biological activity of the GlmY sRNA 
also depends on polyadenylation, which controls its stability.17 
Consistent with the hypothesis above, GlmY miss a strong putative 
3' terminal Hfq-binding site (Table 1).95 However, in this case, 
polyadenylation takes place at an endonucleolytic processing site 
just upstream of the terminator.

It is reasonable to assume that oligo(A) tails less than 10 As in 
length, which are too short to form stable complexes with Hfq,42,77 
are nevertheless long enough to be used as “toe-holds” by exoribo-
nucleases able to carry out the degradation of structured RNAs (see 
above). Because PNPase dissociates when it encounters secondary 
structures the current model postulates that the oligo(A) “toe-
holds” are repetitively degraded and resynthesized until the base-
paired nucleotides are removed.7,52,66 RNase R is also acting in the 
oligo(A)-dependent degradation of the rpsO mRNA and several 
structured RNA fragments.57,58 In contrast, RNase II activity, which 
overpasses PNPase and RNase R activities in the cell,68 efficiently 
prevents oligo(A) tail extension.54,66 Thereby, it presumably moder-
ates the amount of RNA that has to be degraded by the poly(A) 
dependent machinery of degradation and prevents the formation 
of oligo(A) tails long enough for Hfq binding.52,61,64 However, the 
growth-rate could stimulate their appearance; it has been reported 
that PAP I expression, as well as Oop RNA and lpp mRNA polyad-
enylation, increase when the growth rate slows down.102

Table 1. The 3' ends of polyadenylated rNAs

Polyadenylated mRNAs

rpsO   ---UAAUUUCUUGCGAGUUUCAGAAAAGGGGCCUGAGUGGCCCCUUUUUUC

cspA   ---UAAUCUCUGCUUAAAAGCACAGAAUCUAAGAUCCCUGCCAUUUGGCGGGGAUUUUUUU

lpp   ---UAAUAGUACCUGUGAAGUGAAAAAUGGCGCACAUUGUGCGCCAUUUUUUUU

ompA   ---UAAGUUCUCGUCUGGUAGAAAAACCCCGCUGCUGCGGGGUUUUUUUU

rpsT   ---UCAACAAACUGGCUUAAUCGCCAAUUUGCUGAAGCUUUGUGAAAAAGCCCGCGCAAGCGGGUUUUUUU

Polyadenylated sRNAs

rNA i   pAUUUGGUAUCUGCGCUCUGCUGAAGCCAGUUACCUUCGGAAAAAGAGUUGGUAG 
CUCUUGAUCCGGCAAACAAACCACCGCUGGUAGCGGUGGUUUUUUUGUU

CopA   pUUUAAGUGGGCCCCGGUAAUCUUUUCGUACUCGCCAAAGUUGAAGAAGAUUAUCGGGGUUUUUGCUU

Oop   pppGUUGAUAGAUCCAGUAAUGACCUCAGAACUCCAUCUGGAUUUGUUCAGAACGCUCGGUUGCCGCCGGGCGUUUUUUA

Sok pppGACUAGACAUAGGGAUGCCUCGUGGUGGUUAAUGAAAAUUAACUUACUACGGGGCUAUUUCCUU

rNA OUT   pppUCGCACAUCUUGUUGUCUGAUUAUUGAUUUUUCGCGAAACCAUUUGAUCAUAUGACAAGAUGUGUAUCC

SraL   ---GAUAGAGAGAAAGACAAAGACCGGAAAACAAACUAAAGCGCCCUUGUGGCGCUUUAGUUU

SraG   ---AUUAGUUUCCAGUGAUUGCUGCCGUCAGCUUGAAAAAAGGGGCCACUCAGGCCCCCUUUUCU

CsrC   ---CCCGUUAAGGGUUAAGAGUCAGGAAAAAAGGCGACAGAGUAAUCUGUCGCCUUUUUUCUU

GlmY ---GCUUAUUCCAUAACAAAGCCGGGUAAUUCCCGGCUUUGUU

Hfq complexes

SgrS   ---GUAUUGGUGUAAAAUCACCCGCCAGCAGAUUAUACCUGCUGGUUUUUUUU

flgL ---UAACGCCUCUUUUUGAAACAUAUCACGAAACUGGAUAUGUUUUGUCUGCCCGCGCCAUCCACCCCGGCGCGGGCAUUUUUUUA

Sequence data are from references quoted in the text and from databases. SgrS and flgL are taken as examples of an srNA and mrNA forming stable 
complexes with Hfq.85 The 3' terminal oligo (U) sequences and the complementary stretches of As are underlined. Secondary structures are shaded un 
gray (light gray for the terminator and dark gray for the upstream hairpin). Termination codons of mrNAs are in bold, ppp and p at the 5' ends means 
that the full-length or a processed srNA are shown, respectively.
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decay pathways.24,108,109 One can also imagine that oligo(A) tails 
would also compete with the repetition of “A-R-N” motifs for 
binding to the distal RNA-binding surface of Hfq.87,100,106 Indeed, 
it is now recognized that the intracellular concentration of Hfq 
is limiting in respect to the concentration of its potential part-
ners. An exchange mechanism based on the progressive binding 
of competing RNAs to the multiple sites of the RNA-binding sur-
faces of Hfq has been proposed to explain the paradoxical rapid 
dissociation of strong Hfq-RNA complexes in the presence of a 
competing RNA.110-113 Hfq-sRNA complexes could interact with 
oligo(A) tails in the absence of target mRNAs. This might be a 
means used by the cell to store sRNAs that could then be rapidly 
delivered to their cognate mRNA. Finally, one could also specu-
late that long tails bound by Hfq are synthesized when free Hfq 
or unpartnered Hfq-sRNA complexes, harboring an unoccupied 
distal site that is able to bind oligo(A) sequences are present in the 
cell. Under these conditions, short tails contributing to the degra-
dation of tightly folded 3' RNA extremities might be processively 
elongated and generate Hfq docking sites that are degraded when 
Hfq becomes limiting.
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mRNAs, Hfq could bind simultaneously to the oligo(A) tail via 
its distal site and the U-rich sequence recognized by RNase E just 
upstream of the terminator hairpin through its lateral surface.75,77 
Such an interaction could explain why Hfq protects the transcripts 
from RNase E processing in vitro. Two Hfq hexamers bound 
independently on both sides of the hairpin would also protect the 
RNA from endo- and exoribonuclease attacks.75 It is worth noting 
here that simultaneous interaction of Hfq with the 3' extremity 
and an internal segment of the Qß RNA has been reported.104,105 
It is also appealing to speculate that Hfq bound to oligo(A) tails 
still has accessible proximal and lateral RNA-binding surfaces 
that can be occupied by sRNAs (Fig. 1D). Such oligo(A) tail-
Hfq-sRNA complexes may favor sRNA annealing with comple-
mentary sequences located on the oligoadenylated mRNA.101,106 
The locations of facilitating oligo(A) sequences in the vicinity of 
sRNA target sites on the mRNA suggests that oligo(A) tails may 
contribute to the recognition of hypothetical sRNA target sites 
located at the 3' end of the mRNA. Moreover, as demonstrated 
for sRNA-mRNA, interactions occurring upstream or in coding 
sequences formation of such Hfq-sRNA-mRNA complexes may 
end up in RNase E cleavage.91,92,107 However, there is no indica-
tions that the RNase E cleavage rate limiting for decay of the rpsO 
mRNA, occurring just upstream of the Rho-independent termi-
nator, is activated by Hfq in vivo. In contrast, the fact that poly(A) 
dependent decay is only operational when RNase E is inactive 
suggests that a direct, or sRNA-mediated, RNase E-Hfq com-
plex interacting with the 3' extremity of the mRNA could switch 
off poly(A) dependent decay of the rpsO mRNA and account for 
the coordinated activities of the RNase E and poly(A) dependent 
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