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The p30 movement protein (MP) is essential for cell-to-cell spread of tobacco mosaic virus in planta. We
used anion-exchange chromatography and preparative sodium dodecyl sulfate-polyacrylamide gel electro-
phoresis (SDS-PAGE) to obtain highly purified 30-kDa MP, which migrated as a single band in native PAGE.
Analytical ultracentrifugation suggested that the protein was monodisperse and dimeric in the nonionic
detergent n-octyl-�-D-glucopyranoside. Circular dichroism (CD) spectroscopy showed that the detergent-
solubilized protein contained significant �-helical secondary structure. Proteolysis of the C-tail generated a
trypsin-resistant core that was a mixture of primarily monomers and some dimers. We propose that MP dimers
are stabilized by electrostatic interactions in the C terminus as well as hydrophobic interactions between
putative transmembrane �-helical coiled coils.

The 30-kDa movement protein (MP) is a nonstructural pro-
tein that is encoded by the single-stranded RNA genome of
tobacco mosaic virus (TMV) (24). The MP is required for
cell-to-cell spread of TMV infection (10, 26, 32) and partici-
pates in systemic spread of disease (2).

MPs of many plant viruses are associated with plasmodes-
mata, the pores that provide intercellular (symplastic) connec-
tions between plant cells (1, 14, 15, 25, 30). TMV infection
results in a temporary increase in the size exclusion limit of
plasmodesmata from �0.4 to �20 kDa in tobacco leaf epider-
mis and mesophyll tissues (29, 41). The MP is required for
increased intercellular permeability, but the mechanisms re-
sponsible for increased size exclusion limits are unclear (32).
Associated proteins such as pectin methylesterase may interact
with MP to facilitate cell-to-cell spread of infection (8, 11).

Many plant and animal viruses form replication complexes
in association with cellular membranes such as the endoplas-
mic reticulum (ER) (14–16, 22, 23, 25, 33, 36, 40). The MP
appears to promote the aggregation of ER during the forma-
tion of virus replication “factories” (15, 18, 20, 22, 23). Con-
sistent with this hypothesis, the MP behaves as an intrinsic
membrane protein with a tendency to self-aggregate (6, 27,
33). However, molecular mechanisms of viral replication in
association with membranes are unknown.

Recombinant viral MPs expressed in Escherichia coli typi-
cally form insoluble inclusion bodies. To obtain purified re-
combinant MP for biophysical analysis, we previously used
anion-exchange chromatography to remove contaminating
RNA. This one-step procedure yielded milligram quantities of
MP contained in two peaks designated P1 and P2. Hydropathy
analysis, circular dichroism (CD) spectroscopy, mass spectrom-

etry, and proteolytic digestion experiments suggested that the
MP solubilized in 0.1% sodium dodecyl sulfate (SDS) and 2 M
urea is a polytopic, �-helical membrane protein (6). In the
present study, biophysical analysis of highly purified TMV MP
suggests that the full-length protein associates as a dimer in the
nonionic detergent n-octyl-�-D-glucopyranoside (�OG).

MATERIALS AND METHODS

Preparation of full-length MP (MP-FL). E. coli pET3MP was used to express
recombinant MP in 4 liters of culture per preparation (6). In most experiments,
lysozyme (1.0 mg/ml) was included in the buffer used to resuspend bacterial
pellets. Inclusion bodies were isolated, solubilized, and subjected to anion-ex-
change chromatography (6). MP eluted in two peaks, P1 and P2, and the frac-
tions containing purified MP were pooled and concentrated to �10 mg of protein
per ml by ultrafiltration (6). Protein concentrations were estimated by compar-
ison with bovine serum albumin standards in digital scans of Coomassie-stained
proteins separated via SDS-polyacrylyamide gel electrophoresis (PAGE) gels
(Adobe Systems, Inc., San Jose, Calif.).

Preparative SDS-PAGE was used to remove the small fraction of contaminat-
ing fragments and aggregates of MP that remained in P1 and P2. Samples
containing �10 to �25 mg of protein in �1 to �2.5 ml were mixed with 1/2
volume of 3� SDS-PAGE sample buffer (35) and warmed to 40°C for 8 min. The
manufacturer’s instructions were followed for preparative SDS-PAGE (model
491 Prep Cell; Bio-Rad Inc., Hercules, Calif.), except that the stacking gel
volume was fourfold larger than the sample volume. Preparative separating gels
were formed from 80 ml of 10% polyacrylamide, and stacking gels were formed
from 4% polyacrylamide. (Separating and stacking gels were cast with 37.5:1
acrylamide-bisacrylamide.) Preparative electrophoresis was performed at 11.5 or
12.0 W. Immediately following elution of the tracking dye, 2.5-ml fractions were
collected at an elution rate of 1 ml/min. Aliquots (12 �l) of the fractions were
subjected to analytical (slab [described below]) SDS-PAGE to identify prepar-
ative SDS-PAGE fractions containing MP-FL. The MP-FL fractions were
pooled, dialyzed extensively against TNEM2MU buffer (10 mM Tris [pH 9.0],
500 mM NaCl, 5 mM EDTA, 1 mM 2-mercaptoethanol, and 2 M urea) contain-
ing 0.1% SDS, and then concentrated to �10 mg of protein per ml by ultrafil-
tration as described above.

The protein was then dialyzed stepwise at 22°C from TNEM2MU buffer
containing 0.1% SDS into TN buffer (10 mM Tris [pH 9.0], 400 mM NaCl)
containing 0.05% (wt/vol) �OG detergent (Calbiochem, Inc., La Jolla, Calif.).
The concentration of urea was halved every 2 h until the dialysis buffer contained
0.062 M urea–0.003% SDS. The protein was then dialyzed against TN buffer
containing 0.05% �OG (lacking urea and SDS) overnight at 22°C. The contents
of dialysis bags were subjected to centrifugation at 22°C for 15 min at 15,000 �
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g. The protein concentration of the supernatant was estimated as described
above and was adjusted to �8 mg/ml by dilution with TN buffer containing 0.05%
�OG. The purified MP-FL was divided into 100-�l aliquots, flash-frozen in liquid
nitrogen, and stored at �80°C until needed. For biochemical studies, samples
were thawed at 40°C for 5 min. MP was stable at 22°C but tended to aggregate
with time when stored at 4°C.

Analytical SDS-PAGE, Western immunoblotting, and native PAGE. Analyti-
cal SDS-PAGE and Western immunoblotting were performed as described pre-
viously (6). For native PAGE, we used 4 to 20% precast Novex Tris-glycine
polyacrylamide minigels (Invitrogen, Carlsbad, Calif.). MP samples in TN buffer
containing 0.05% �OG were mixed 1:1 (vol/vol) with 2� Novex native gel sample
buffer. Native gel standards (Sigma Chemical Co., St. Louis, Mo.) were prepared
according to the manufacturer’s instructions. The electrode buffer contained 25
mM Tris base–192 mM glycine. Following electrophoresis, proteins were stained
with Coomassie brilliant blue R-250.

Analytical ultracentrifugation. Sedimentation velocity and equilibrium analyt-
ical ultracentrifugation of MP-FLP1 and MP-FLP2 were performed in TN buffer
containing 0.05% �OG. Data were collected on a temperature-controlled Beck-
man XL-I analytical ultracentrifuge equipped with an An60 Ti rotor and pho-
toelectric scanner (Beckman Instruments, Inc., Palo Alto, Calif.). A double-
sector cell equipped with a 12-mm Epon centerpiece and sapphire windows was
loaded with �400 �l of sample by using a Hamilton syringe. Rotor speeds were
3,000 to 50,000 rpm in continuous mode at 20°C, with a step size of 0.005 cm,
employing an average of 1 scan per point. Analysis by a time derivative method
using the DCDT� program (31, 38) yielded the distribution of soluble species,
which was represented by a range of s values.

Hydrodynamic molecular weights of the samples were confirmed by sedimen-
tation equilibrium using the same analytical ultracentrifuge. The reference com-
partment was loaded with TN buffer containing 0.05% �OG (140 �l). Samples
(100 �l) were monitored for A260 at 3,000 to 20,000 rpm (for MP-FLP1 and
MP-FLP2) and 3,000 to 27,000 rpm (for MP-CP1) at 20°C. Nonlinear least-
squares analysis of single species and two species models was performed using
Origin software (Microcal Software, Inc., Northampton, Mass.).

Isolation of the core domain of MP. To isolate the protease-resistant core of
MP (MP-C), chromatographic peak P1 was prepared in TNEM2MU buffer
containing 0.1% SDS. The protein was gradually dialyzed against an increasing
percentage of TN buffer containing 0.05% �OG as described above. After a
preliminary study to establish digestion conditions, modified trypsin (Promega,
Inc., Madison, Wis.) was added to 10 to 20 mg of MP in 1 to 2 ml with a 1:500
(wt/wt) ratio of trypsin to MP. Proteolysis was stopped after 10 to 20 min by
reactions with 1/2 volume of 3� SDS-PAGE sample buffer. Samples were heated
to 40°C for 8 min, and preparative SDS-PAGE was performed as described
above. Fractions containing MP-CP1 domain were identified, pooled, and pro-
cessed as described above for MP-FL.

CD spectroscopy. CD spectra were recorded with an AVIV model 202SF CD
spectrometer equipped with a Peltier temperature-controlled cell holder. MP
samples at 1 mg/ml in TN buffer containing 0.05% �OG were placed in a Suprasil
quartz cell with a path length of 0.1 cm (Hellma, Forest Hills, N.Y.). CD spectra
were recorded at wavelengths from 200 to 250 nm at 25°C in 0.5-nm steps with
an averaging time of 2.0 s per step. Molar ellipticity was calculated by the formula
[�]	 
 (� � MW)/(10cl), where � is the measured ellipticity in degrees at a given
wavelength (	), MW is the molecular mass of MP (30 kDa for MP-FL monomer
and 28 kDa for MP-C), c is the protein concentration in milligrams per milliliter,
and l is the light path length in centimeters.

RESULTS

Isolation of MP-FL. Anion-exchange chromatography of re-
combinant MP yields peaks designated P1 and P2 that are free
of detectable RNA and are highly purified (6). However, they
do contain a small fraction of proteolytic fragments and aggre-
gates of MP (Fig. 1B, lanes P1 and P2). Proteolytic degradation
was minimized (but not eliminated) by inclusion of 1 mg of
lysozyme per ml in the buffer used for resuspension of the
bacterial pellet (data not shown). Because analytical SDS-
PAGE is capable of separating the MP-FL from fragments and
aggregates (Fig. 1) and SDS apparently does not denature the
protein (6), we used preparative SDS-PAGE to isolate highly
purified MP-FL (Fig. 1A and B). Analytical SDS-PAGE (Fig.
1A) was used to identify fractions containing isolated MP-FL.

Pooled samples that contained concentrated MP-FLP1 (Fig.
1B) and MP-FLP2 (not shown) displayed a single band of the
predicted mobility. Although not seen in Fig. 1B, discrete
bands with reduced mobility were frequently detected in MP-
FLP1 and MP-FLP2.

Soluble MP-FL is primarily dimeric. We used dialysis to
remove urea and SDS from the sample and to solubilize MP-
FLP1 and MP-FLP2 in the nonionic detergent �OG (0.05%
[wt/vol]). The dialysis began at �50% of the SDS critical mi-
celle concentration and ended with dialysis against a buffer
lacking SDS, so we expect that the SDS had been largely
replaced by �OG. Nevertheless, there may still be some SDS
molecules that are tightly bound to the protein. We note that
other membrane proteins, such as aquaporin AqpZ from E.
coli (4), the Streptomyces lividans potassium channel homolog
(9), phospholamban from cardiac sarcoplasmic reticulum (3),
and glycophorin A from human erythrocyte membranes (12,
21), retain their oligomeric state and secondary structure in
SDS. Indeed, MP displayed a remarkable degree of �-helical
secondary structure in the presence of 2 M urea and 0.1% SDS
(6). Therefore, even if some tightly bound SDS molecules

FIG. 1. Preparative SDS-PAGE was used to isolate soluble MP-
FL. (A) SDS-PAGE of every fifth fraction. (B) MP-FLP1 contained
isolated MP monomer, in contrast with chromatographic peaks P1 and
P2 (6), which contained MP aggregates, monomer, and fragments. Mr,
molecular mass standards in kilodaltons (A and B). (C) Migration of
MP-FLP1 and MP-FLP2 in native PAGE suggested that the MP was
essentially monodisperse. Numbers above the first five lanes denote
the molecular masses of protein standards (in kilodaltons): 14, �-lac-
toglobulin; 29, carbonic anhydrase; 45, egg white albumin; 66 and 132,
BSA monomers and dimers (and some higher-order oligomers); 272
and 545, urease trimers and hexamers. Lanes containing MP-FLP1 or
MP-FLP2 are indicated. Asterisks mark urease trimer and hexamer
bands. An arrowhead points to the MP. Note that migration was not
necessarily proportional to the molecular mass in native PAGE (panel
C only). Gels were stained with Coomassie brilliant blue R-250.

VOL. 78, 2004 DIMERIZATION OF TMV MP 3373



remain with the protein in �OG buffer, we expect that our
physicochemical measurements are relevant to understanding
the structure of MP. Native PAGE showed single bands of
similar mobility for MP-FLP1 and MP-FLP2 (Fig. 1C). Thus,
native gel electrophoresis demonstrated that MP-FLP1 and
MP-FLP2 are monodisperse in TN buffer containing 0.05%
�OG. However, native PAGE does not provide reliable esti-
mates of molecular mass, especially with highly basic proteins
such as the TMV MP.

Analytical ultracentrifugation can provide good estimates of
molecular mass and dispersity. Equilibrium analytical ultracen-
trifugation suggested that MP-FLP1 and MP-FLP2 were mono-
disperse and had mean molecular masses of �62 and �51 kDa,
respectively (Fig. 2). Because TMV MP monomers have a mo-
lecular mass of 30 kDa (6, 13), MP-FLP1 and MP-FLP2 pre-
sumably associate as dimers in TN buffer containing 0.05%
�OG. The modest difference in molecular mass estimated
from analytical ultracentrifugation may be due to slight con-
formational differences between MP-FLP1 and MP-FLP2 and/
or differences in bound detergent. Sedimentation velocity an-
alytical ultracentrifugation also suggested that MP-FLP1 and
MP-FLP2 are dimeric (data not shown).

A trypsin-resistant core domain lacks the C-tail and is pri-
marily monomeric. Proteolysis of chromatographic peaks P1
and P2 generates a trypsin-resistant core domain (MP-C) (6).
MP-CP1 was isolated by preparative SDS-PAGE and displayed
the expected mobility (�28 kDa) by analytical SDS-PAGE
(Fig. 3A). In native PAGE, MP-CP1 exhibited two dominant

bands (Fig. 3B). Equilibrium analytical ultracentrifugation ex-
periments strongly supported a two-species monomer-dimer
model with molecular masses of 28 and 56 kDa (Fig. 3C) in
which the monomer was the dominant molecular species. Sed-
imentation velocity analytical ultracentrifugation also strongly
supported the two-species model (data not shown).

MP in �OG has �-helical secondary structure. CD spec-
troscopy was used to compare the secondary structure content
of MP-CP1, MP-FLP1, and MP-FLP2 in the detergent �OG.
The minima at 208 and 222 nm suggested that the MP prep-
arations exhibited a high content of �-helix (Fig. 4) (7). The
CD spectra of MP-FLP1 and MP-FLP2 were similar to those of
P1 and P2 in 0.1% SDS and 2 M urea (6). Although CD
spectroscopy is not a quantitative technique, the �-helical con-
tent of MP-CP1 appeared to be slightly lower than that of MP-
FLP1 and MP-FLP2 (Fig. 4).

DISCUSSION

When TMV-MP is produced in E. coli, it accumulates in
inclusion bodies along with RNA. However, the RNA was re-
moved by anion-exchange chromatography, revealing two
peaks, designated P1 and P2, both of which contained highly
purified MP (6). Characterization of the protein by hydropathy
analysis, CD spectroscopy, mass spectrometry, and proteolytic
digestion experiments supported a model in which MP is an
integral membrane protein with two transmembrane �-helices,
a flexible, proteolytically sensitive C-terminal tail and a tightly

FIG. 2. Equilibrium analytical ultracentrifugation of MP-FLP1 and MP-FLP2. Residuals (upper panels) and A260 (lower panels) versus radius
are shown. Molecular mass estimates are also shown for MP-FLP1 (A) and MP-FLP2 (B). The data are fitted very well by a one-state model,
suggesting that the 30-kDa MP-FL is monodisperse and dimeric in TN buffer containing 0.05% �OG.
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folded “core” that is resistant to proteolysis. In the present
study, we used preparative SDS-PAGE to obtain highly puri-
fied, homogenous preparations of MP-FLP1, MP-FLP2, and a
trypsin-resistant core of MP-FLP1, named MP-CP1. The esti-
mated molecular mass of the MP-FLP2 dimer (�51 kDa) was
lower than that of MP-FLP1 (�62 kDa) (Fig. 2), possibly due
to tighter folding or a change in bound detergent.

CD spectroscopy showed that MP retains ordered �-helical
structure in the presence of chaotropes such as urea and SDS
(6). Such resistance to denaturation has been observed for
some soluble proteins such as staphylococcal nuclease, which

retains “native-like” structure in the presence of 8 M urea (37).
Some membrane proteins, including MP, also resist denatur-
ation by chaotropes (4, 6, 9, 12, 17). Nevertheless, for further
biophysical characterization, we transferred the purified MP
from chaotropic buffers containing 0.1% SDS and 2 M urea
into a buffer containing the nonionic detergent �OG.

Similar to our previous experiments with buffer containing
1% Tween 20 (in which MP demonstrated lower solubility and
increased polydispersity), trypsin treatment of MP-FL in TN
buffer containing 0.05% �OG released a core polypeptide with
a molecular mass of �28 kDa by SDS-PAGE. Resistance to
trypsin implies structural stability of this core. We believe that
the core, which contains abundant lysine and arginine residues
at its C terminus, is compact. Acidic regions near the carboxy
terminus of the MP have been designated regions A and C,
while a basic region was designated region B (Fig. 5) (34).
Trypsin removed region C from the monomer to yield the core
(6).

Analytical ultracentrifugation experiments showed that MP-
FLP1 and MP-FLP2 solubilized in 0.05% �OG were dimeric
(Fig. 2), whereas MP-CP1 was predominantly monomeric, with
a small fraction of dimers (Fig. 3C). MP-CP1 also had a some-
what lower �-helical content than did MP-FL (Fig. 4). Taken
together, these results support a model in which interactions
between positively charged residues in region B and negatively
charged residues in region C may participate in the stabiliza-
tion of dimers and �-helices of the MP (Fig. 5). Residual
dimers in MP-CP1 suggest that the transmembrane domains
may participate in stabilizing MP dimers, possibly as a dimer of
antiparallel �-helical coiled coils, analogous to the hepatitis
core capsid protein (42).

We proposed previously that MP residues 150 to 169 span
ER membranes (6). In contrast, Boyko et al. (5) proposed that
residues 144 to 169 include a region of homology with tubulin
and may participate in lateral contacts with or within microtu-
bules. It is possible that residues �144 to �169 of the MP

FIG. 3. Isolated core domain of MP from P1 (MP-CP1) was com-
posed of monomers and dimers. Migration of preparations of MP-
FLP1 and MP-CP1 in analytical SDS-PAGE (A) and native PAGE (B).
Protein standards and asterisks are as described in the legend to Fig.
1. (C) Equilibrium analytical ultracentrifugation of MP-CP1. The re-
sults are fitted very well by a two-species model, suggesting that the MP
core exists primarily as monomers and some dimers.

FIG. 4. CD spectroscopy suggested that the �-helical content of
MP-CP1 was slightly lower than that of MP-FLP1 and MP-FLP2. MP
was at 1 mg/ml in TN buffer containing 0.05% �OG. Molar ellipticity
is shown from 200 to 250 nm; shorter-wavelength data were unreliable
due to UV absorption by the buffer.
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interact with microtubules and membranes at different stages
of TMV infection.

Plant virus MPs may generally interact with cellular macro-
molecules through hydrophobic interactions (28). The TMV
MP is known to be associated with membranes in vivo (22, 27,
33). Oligomerization of the MP may play a role in the aggre-
gation of ER-containing TMV replication complexes. The MP
may also interact with and anchor other proteins associated
with replication complexes, such as TMV replicase and coat
protein (15, 22).
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