
Multi-profile hidden Markov model for mood, dietary intake, and
physical activity in an intervention study of childhood obesity

E. H. Ip*, Q. Zhang, R. Schwartz, J. Tooze, X. Leng, H. Han, and D.A. Williamson
Department of Biostatistical Sciences, Wake Forest University School of Medicine, Winston
Salem, NC 27157

Abstract
Motivated by an application to childhood obesity data in a clinical trial, this paper describes a
multi-profile hidden Markov model (HMM) that uses several temporal chains of measures
respectively related to psychosocial attributes, dietary intake, and energy expenditure behaviors of
adolescents in a school setting. Using these psychological and behavioral profiles, the model
delineates health states from the longitudinal data set. Furthermore, a two-level regression model
that takes into account the clustering effects of students within school is used to assess the effects
of school- and community-based interventions and other risk factors on the transition between
health states over time. The results from our study suggest that female students tend to decrease
their physical activities despite a high level of anxiety about weight. The finding is consistent
across intervention and control arms.
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1. Introduction
Childhood obesity has now been recognized as a major public health problem that persists
from childhood to adolescence and well into adulthood [1]. In 2003–2004, 17.1% of
children aged 2 to 19 years were at or above the previously benchmarked 95th percentile of
body mass index (BMI), compared with 5–6% in the 1970s [2]. Overweight and obesity in
children is associated with numerous adverse health effects including early onset of type 2
diabetes, metabolic syndrome, and cardiovascular diseases [3]. Children who were obese
were also more likely to develop into obese adults. These adults would have increased
morbidity and chronic diseases compared to those who were not obese during childhood.
Thus, preventive and intervention efforts have been focusing on weight gain in children and
young adolescents [4, 5].

Partly because of the lack of consideration for contextual factors and an overemphasis on the
direct effect of intervention on single outcomes such as BMI, preventive efforts targeting
risk behaviors have had only limited effectiveness [6, 7 ]. There is a growing awareness that
a multi-dimensional, multi-level, dynamic approach — in terms of study design,
intervention strategy, and associated methodologies — should be more extensively
deployed. The Working Group Report on future research directions in childhood obesity
prevention and treatment (NHLBI, 2007), for example, called for multi-level, multi-
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component interventions and development of methodologies for comprehensively assessing
outcomes in prevention and treatment studies.

This article is motivated by an application that requires a multi-dimensional, dynamic
approach in analyzing childhood obesity data. The Louisiana (LA) Health Study [8] is a
three-arm intervention cohort study that aims to prevent weight gain in school children in
high-poverty rural areas. Besides anthropometric measurements, the LA Health Study also
collected extensive data through groups of measurements regarding food intake (at school),
physical activity (PA), sedentary behavior, dietary and PA social support, mood and eating
attitudes, and family involvement data from parents. Although the primary endpoint of the
study was body mass index (BMI) z-score (using NHANES norms) of the students, there
exists in the data set a repertoire of rich health outcome measures that could provide a more
comprehensive view of changes in students’ weight-related behavior and psychology.
Appropriately modeling repeated measurements over time in diet, physical activities, and
mental health of the students could shed light on the dynamic relationship between these
health characteristics and obesity. Overweight and obese students, for example, face
significant mental health and psychosocial barriers that often create concurrent health
problems not entirely captured by a single index such as BMI z-score [9].

In this paper, we propose to use a multiple profile approach to form an obesity-relevant
characterization of each student. Here a profile refers to a set of empirically derived states
within a domain of interest (e.g., physical activity). The multiple profiles we consider in this
paper include: (1) a psycho-social profile that indicates the mood and attitude toward eating;
(2) a food intake profile that is based on digital photographs of individuals’ meals taken at
the school cafeteria before and after lunch; and (3) a physical exercise and sedentary activity
profile that is based on self-reported activities. Each of these profiles was defined by a
cluster of representative variables, or indicators, which were selected by content experts.

The broadened view of jointly analyzing multiple profiles over time poses several
challenges in statistical modeling. First, multiple profiles require the use of multiple groups
of observed variables for describing the entire outcome space in a longitudinal setting.
Commonly used longitudinal statistical methods including mixed models and generalized
estimating equation (GEE) often focus on handling a single outcome variable. Second, for
longitudinal data, the serial dependence of observations — on more than one variable in this
case — needs to be accounted for. The third statistical challenge is the presence of possible
clustering effects for students within the same school. This implies that any modeling
approach for delineating risk factors that potentially moderate obesity-related behavioral
outcomes also need to account for school-level clustering effects. Finally, the broadening of
interest in health outcomes calls for regression models that incorporate covariates as
predictors of transition between health statuses over time. While each statistical challenge
could be solved individually using existing methods, incorporating all four considerations
into a joint model requires novel analytic tools.

One statistical approach that shows promise to solve these challenges is the hidden Markov
model (HMM) [10, 11]. The HMM posits that the observed longitudinal data can be
described and modeled by two interconnected processes — first, an observed set of data that
is a statistical manifestation of a latent set of hidden variables; second, the set of hidden
variables that are linked together through a Markov process — that is, the conditional value
of the latent variable at time t given its past history is only dependent on its immediate
history (i.e., its value at t − 1). This basic HMM setup models a dynamic process of the
observed variables — the multiple response indicators, with the serial correlation between
responses over time being captured through the Markov assumption on the set of hidden
variables. While traditional HMMs typically model a single outcome, it is rather
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straightforward to extend them to include multiple outcomes by assuming that the multiple
outcomes are conditionally independent given the latent (hidden) variable. Scott et al. [12]
proposed a Bayesian approach in analyzing multiple continuous responses using non-
homogeneous HMM. More recently, Wall and Li [13] used a multiple-indicator HMM for
medical utilization data. Ip et al. [14] used discrete multiple indicators to represent the
behavioral profile of batterers in an application of HMM to domestic violence. However, all
of these approaches only consider a single profile. For example, Wall and Li [13] considered
four indicators for medical encounters to represent a meaningful health-state process related
to alcoholism treatment. In this paper, we extend the HMM to handle multiple profiles by
including an additional process to the HMM — a set of so called hidden superstates that is
intended for describing the heterogeneity across the multiple profiles. Details will be
provided in the Model section.

There is a substantial literature on handling clustered data in the latent class and latent
Markov models that is highly relevant to the current study. A random-effects model, for
example, can be used to capture clustered data within the latent class analysis framework
[15]. An alternative approach is a marginal approach based on the GEE [16]. In the context
of HMM, Altman [17], and more recently Zhang et al. [18], proposed mixed-effects models,
which offer a general framework for handling clustered data. Other recent advances in
HMM include Desantis and Bandyopadhyay [19] for modeling zero-inflated Poisson counts,
and Scharpf et al. [20] and Choi et al. [21] for applications to clustered data in
bioinformatics. In this paper, we incorporate into the multi-profile HMM a multi-level
model in which a random effect is used to capture the clustering of students within the same
school. All features of the multi-profile HMM that have been outlined here are implemented
within the maximum likelihood framework for statistical inference, using an extended
Matlab toolbox that was based on the work of Murphy [22], Rijmen[23], and Zhang et al.
[18].

In Section 2, we describe the LA Health Study data set, and in Section 3, the multi-profile
HMM is introduced. Model estimation and evaluation are provided in Section 4, and Section
5 reports the results from applying the multi-profile HMM to the LA Health Study data set.
Finally, Section 6 provides some discussion of the results, as well as the strengths and
limitations of the approach.

2. Data Description
The LA Health Study was a cluster, randomized, controlled trial that enrolled N = 2, 201
school students across 17 rural school clusters in the state of Louisiana [8]. It is worth noting
that Louisiana has one of the highest rates of poor health in the nation. Students were
randomly assigned to one of three intervention arms — primary prevention (PP), combined
primary and secondary prevention (CP), and no-intervention control (C). PP emphasized the
modification of environmental cues, enhancement of social support, and promotion of self-
efficacy for health behavior change. CP relies on both the PP approach and an Internet-based
educational program reinforced with regular classroom instruction and synchronous online
counseling and asynchronous (e-mail) communication for children and their parents. Besides
the primary endpoint of body mass index (BMI), other outcome measures were collected in
the LA Health Study: (1) energy and nutrient measurements, (2) physical and sedentary
activity measurements, and (3) psycho-social measurements. For the first category, digital
photos were used for food selection at school, and dietary measures including total calories,
macro-nutrient content, and total dietary fat were collected. Physical activities were
measured by the Self-Administered Physical Activity Checklist (SAPAC), while sedentary
behavior was assessed by questionnaires about number of hours spent on TV, video,
computer, homework, and telephone. The Children’s Eating Attitudes Test (ChEAT) and the
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Child Depression Inventory (CDI) were used to respectively measure eating disorder
symptoms and symptoms of childhood depression. Subscales from ChEAT such as social
pressure and food preoccupation were used for our analysis. All of the above measurements
were taken at baseline, month 18, and month 30.

The purpose of the analysis is to (1) delineate different phenotypes of obesity-related
attitude and behavior, (2) model the dynamics of change of attitude and behavior over the
course of the study, and (3) assess the impact of intervention, individual-level risk factors,
and school-level factors on the dynamics of change of attitude and behavior. As described in
the Introduction, three attitudinal and behavioral profiles were used in our subsequent
analysis; besides the primary predictor variable intervention status, individual-level
covariates including race, BMI, and age, and a school-level covariate of an indicator of free
lunch were included in the model.

Because female and male students exhibit rather different developmental trajectories, we
conducted separate analyses for each gender. In the interest of saving space, we only show
the analysis for female students. Only female students with data on all three time-points
were included in this analysis. As a result, the sample contained N=687 female students.
Table 1 shows the characteristics of the sample.

3. Model
The presentation of the basic HMM in this paper is similar to the ones presented in Scott et
al. [12], Ip et al. [14] and Zhang et al. [18]. We present a framework that can be applied to
both continuous and discrete outcomes. The term superstate is used to refer to discrete latent
(hidden) states that represent phenotypes of individuals with characterization in several
domains – e.g., psycho-social, food intake behavior, and physical activity behavior. Within
each domain, a latent categorical variable is used to represent different domain-level states.
The resulting collection of states is termed a profile. There are numerous possible
combinations of the profile states. If there are three profiles and within each profile there are
four states, then there are 43 = 64 possible combinations, assuming that an indicator of a
profile state can only take 0/1 value. However, some of these combinations would not be
empirically supported by the data. The second level of hidden states or superstates is a
useful way to capture the heterogeneity across the profiles. Note that this two-level model of
hidden states and hidden superstates here should be distinguished from the multi-level,
hierarchical linear model for clustered data [24], in the sense that the first level could refer to
school, and the second level could refer to students within school. In the current model,
school-level clustering effects are accounted for via a mixed effects regression model. In this
sense, the proposed model is a two-level HMM as well as a two-level hierarchical linear
model.

3.1. The Multiple Profile Discrete and Continuous Hidden Markov Model
Let yiptj denote the discrete response of subject i at occasion t on outcome j in profile p, i =
1, …, N; j = 1, …, Jp; t = 1, …, T, p = 1, …, P. Here, an outcome could be a discrete
response (yes/no) to an item such as a survey question, or a continuous measure, such as
minutes of physical activity. Hereinafter, the terms “response” and “outcome” are used
interchangeably. The variable yiptj can take on a discrete value k = 1, …, Kpj or a continuous
value. Specifically, yipt = (yipt1, …, yiptJp)′ denotes the response vector of subject i at

occasion t in profile p,  represents the response pattern of subject i in

profile p, and  represents the complete response pattern of subject i. The
categorical (unobserved) latent state of subject i at occasion t in profile p is denoted by zipt =
1, …, Sp, named as a profile state thereafter, and zip = (zip1, …, zipt)′ is the latent-state
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sequence of subject i in profile p. At the second level, the categorical latent state of subject i
at occasion t is denoted by , namely as a superstate thereafter. Thus,

 is the superstate sequence of subject i through the latent space over time. A
first-order Markov chain for the latent superstate assumes that the superstate at occasion t +

1 depends only upon the superstate at occasion t — i.e., ∀i, .
Accordingly, the multi-profile HMM (MPHMM) contains the following six sets of
parameters:

1. τ = (τrs), an S × S matrix of time-homogeneous transition probabilities between
latent superstates, where ∀i and ∀t,

(1)

In the extended MPHMM, the transition probabilities would depend on subject-
specific factors, and we use  to denote the transition probability from state

 at time (t − 1) to state  at time t for subject i; i.e.,

(2)

for given i and t, and 1 ≤ s, r ≤ S.

2. α1 = (α11, …, α1S)′, an S × 1 vector of marginal probabilities of the superstates at
occasion 1; i.e., ∀i,

(3)

The vector αt = (αt1, …, αtS)′, t = 2, …, T, can be recursively derived by the

formula .

3. φ = (φprs), a P × S × Sp array of superstate-conditional probabilities in profile p,
where ∀i and ∀t,

(4)

4. π = (πpsjk), an P × Sp × Jp1 × Kpj array of state-conditional response probabilities
in profile p for discrete outcomes, where k is the index of outcome category, k = 1,
…, Kpj, and ∀i, ∀t,

(5)

where , and Jp1 is the number of discrete outcomes in profile p.

5. μ = (μpsj), an P × Sp × Jp2 array of Gaussian mixture means in profile p for
continuous outcomes; i.e., ∀i, ∀t,

(6)

6. σ = (σpsj), an P × Sp × Jp2 array of Gaussian mixture standard deviations in profile
p for continuous outcomes; i.e., ∀i, ∀t,
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(7)

Jp2 is the number of continuous outcomes in profile p, and Jp = Jp1 + Jp2.

Four conditional independencies are assumed here. First, given a superstate at time t, the
profile states at time t are independent from superstates at other time points; i.e.,

(8)

Second, given a superstate at time t, the profile states at time t are independent from each
other; i.e.,

(9)

Third, given profile states, the outcome conditional probabilities are independent from the
superstates; i.e.,

(10)

Fourth, given a profile state at time t, the outcome conditional probabilities at time t are
independent from each other; i.e., ∀t,

(11)

From the first two assumptions, we have:

(12)

and from the Markov chain assumption,

(13)

Hence, the joint probability of a response pattern together with the profile states and the
superstates can be written as:

(14)

and the marginal probability of a response pattern yi is given by
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(15)

with the summation over the entire superstate space  of size ST and each profile state space

 of size .

Figure 1 graphically illustrates the MPHMM, where each arrow indicates a conditional
probability and for simplicity we have assumed all profiles have the same number of
outcomes J.

For discrete outcomes, the profile state-conditional probabilities are

(16)

where δ(yiptj, k) = 1 if yiptj = k, and 0 otherwise. For continuous outcomes, we have the
Gaussian mixture model

(17)

3.2. Mixed regression model on superstate transitions
For simplicity, we only consider transition from a specific superstate (for convenience, state
S) to all other superstates in the model. The regression model is given by:

(18)

where xit is a vector of given fixed-effects covariates, possibly time-varying, and wit is a
vector of given random-effects covariates. The coefficients for fixed and random effects are
respectively given by γrs and θi, and the intercept term by ζrs. Here, we assume that the

random effects is a scalar such that . Extension to a multidimensional model is
straightforward, even though the computational burden grows rapidly as the dimension
grows. In this specific application, the random effect is used to capture clustering effects
within a school [25]. The formulation in (18) can be modified as follows:

(19)

where i(g), g = 1, · · ·, G, indicates that individual i is nested within school g, and

. The term θi(g) can be interpreted as deviation of the school g from the overall
adjusted mean.
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4. Model Estimation
The MPHMM is estimated by the maximum likelihood method. The EM algorithm [26] is
particularly useful for handling the presence of latent states and random effects within the
MPHMM. For historical reasons, a version of the EM algorithm used to estimate the basic
HMM is also known as the Baum-Welch algorithm [27]. Here, we extend the Baum-Welch
algorithm for inference for the mixed effects model for transition probabilities in (18).
Briefly, in the EM terminology, the latent states — including the superstates — and random
effects are treated as “missing data.” The objective here is to maximize the conditional
expected log-likelihood of the complete data, which includes the observed data y and the
latent states z and z★, given y and some provisional estimates for the parameters, where y, z,

and z★ respectively denote the vectors of the collections of (yi), (zi), and ( ).

Denote the entire parameter set defined in (1), (3) – (7) and (18) by β and its estimate at the
nth iteration of the EM algorithm by β(n). Furthermore, let

where the conditional expected log-likelihood of the complete data Q(β, β(n)) is given by:

(20)

where θ = (θi(g)) denotes the individuals’ random effects. For readability, we write θi(g) as
θi. Assuming that θ = (θi) and z are independent, we have

where fβ(n)(θi|yi) is the Gaussian posterior density of θi given yi, and from (12) and (13),

(21)

The objective function is

(22)

in which the joint distribution of the complete data of subject i within (22) is similar to (14):

(23)

where  is given by model (18).

By taking the logarithm on (23) and substituting (22), we rewrite the objective function as
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(24)

where h is the inverse link function specified in (18). One appealing feature about (24) is the
separability of the six sets of parameters, namely α1s, φ, π, μ, σ, and (ζ, γ, σθ), which can
be optimized individually.

Before we study the second and fifth terms of the RHS of (24), we see that the first, third,
and fourth terms do not involve the random effects and can be computed separately. The
updating equation for maximum likelihood estimates (MLEs)[18] of α1s and φprs are:

(25)

(26)

For continuous outcomes, we estimate the Gaussian mixture means and variances [28]
through the following set of equations:

(27)

(28)

The above description for the maximization of the first, third, and fourth terms highlights the
E- and the M-steps of the EM algorithm: the E-step computes the posterior probabilities and
pseudo-counts, whereas the M-step updates the estimates using pseudo-counts via closed-
form equations (25) to (28). Here pseudo-counts refer to quantities such as

 in equation (25). The implementation of EM with mixed effects for
discrete outcomes for a single profile is documented in a recent article [18].

For the second and fifth terms of the RHS of (24), which contains both the fixed- and
random-effects parameters in the linear poset model, the E-step is similar. However, the M-
step does not have a closed-form solution and requires an iterative method. The estimation
of fixed effects will be described further below. For the random effects, we use Gauss-
Hermite quadrature for integration. Denote the vector of q quadrature points by v = (vl). The

corresponding collection of weights , which depend upon the current estimate of

the variance structure, , are used to approximate fβ(n)(θi). At a quadrature point vl,
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denote the transition probability by τitrsl = [τitrs(θi)]θi=vl. The computation of random effects
can be conducted using codes for fixed effects HMM by adding a dimension for discretized
θ. When θi is a scalar, we reparameterize θi by θi = σθθ̃i, and thus θ̃i ~ N (0, 1). The
quadrature points and weights can be evaluated together using the standard normal
distribution and these quantities remain constant throughout the iterations, while σθ is
treated as one of the covariate coefficients, γ.

The M-step for updating the regression parameters in (18) — the second term in the RHS of
(24) — involves an iterative procedure within each EM cycle: denote the parameters of the
regression model (ζ, γ, σθ) by ξ. Maximize the following function for the estimate of ξ,
given ξ(n) at the nth iteration of the EM algorithm:

(29)

where , and . Updating
parameter values in (29) follows the Fisher scoring iteration within each EM cycle [29, p.
42]:

(30)

where Xit is the design matrix for subject i at time t, and Witrl is given by,

(31)

and τitrl = {τitrsl, s = 2, …, S}. Here n* is the inner Fisher scoring iteration index and n is the

outer EM loop index. Throughout the inner Fisher scoring iteration, the pseudo-counts 
remains unchanged.

We also note that in the E-step, the posterior probabilities, or the pseudo-counts, , can be

computed by first computing , and then
using a junction tree algorithm [30], which is a generalized Baum-Welch algorithm for
general Bayesian network in which the HMM is a special case; see [31]. The junction tree is
especially efficient for computing the joint distribution when the dimension of the HMM is
high [18]. Of note, we used the Viterbi algorithm [32] to the compute the most likely
trajectory, and given the most likely trajectory, estimate the profile states. Thus the
algorithm considers all previous data and states, and its implementation was adapted from
the codes of Murphy [22].

Because the EM algorithm does not directly operate on the marginal likelihood, it does not
provide the observed information matrix necessary for computing standard errors. Several
methods have been proposed to calculate standard errors for the HMM. Lystig and Hughes
[33] provide an overview and also propose an efficient method based upon a forward-
backward algorithm. We have extended [33] using the method described in [34], which was
based upon the sum of the outer product of the individual contributions to the score function;
see also [35].
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5. Model determination
Instead of relying solely on a model-selection criterion such as the Bayesian Information
Criterion (BIC) for determining the appropriate number of profile- and super-hidden states,
we adopted a model evaluation strategy that emphasized the tradeoff between the
complexity of models and their clinical interpretations. One important reason for adopting
this strategy was that at the second level of the MPHMM, in which the domain-level states
were treated as categories of a variable, even with a small number of superstates,
interpreting the different combinations of categories of outcome proved to be highly
challenging. Since superstates are to be understood in the context of combinations of states
from each profile, complex models create high cognitive burden for interpretation and
render superstates useless in practice.

Our alternative strategy to solve this problem involved two stages: first, a data-driven hill-
climbing procedure for searching the optimal model using a simple fit index [36], the BIC;
and second, an expert-driven decision process for refining the model - e.g., combining
clinically redundant states - obtained from the first stage. Specifically, the model
determination strategy involves the following steps. (1) Start with a small number of profile
states and superstates, fit the model and compute a goodness-of-fit index. (2) Increment the
number of states by one for one of the profile states, and compare how well the new model
fits the data; if the model fit improves very little, then stop, fix the number of states for that
specific profile, and go to step (3), else continue to increment the number of profile states
until the improvement is insignificant. (3) Increment the number of a second profile state
and repeat steps (2). (4) When the number of profile states is determined, increment the
number of superstates by one and repeat until there is no significant gain. (5) Inspect models
with similar goodness-of-fit indexes for meaningful clinical interpretation and determine the
most appropriate model; furthermore combine states if needed. (6) Conduct out-of-sample
validation to assess the “sacrifice” for using a simpler model of combined states over the
statistically selected model. Steps (1)–(4) search for an empirical solution to the number of
profile states and superstates. Like determining the number of factors using a scree plot in
factor analysis, Step (1)–(4) inspects the BIC values and selects the model beyond which the
gain becomes marginal. In our implementation, to avoid local optima within the EM
algorithm, we used 20 random starting values each time when selecting the number of
profile states, and 100 random starting values for selecting the number of superstates. While
the commonly used BIC has the advantage of ease in computation, we acknowledge that the
goodness-of-fit index has limitations for model selection in HMM [37]. As we shall see,
using BIC for this application seems to produce a rather robust solution, thus alleviating
some concern about its appropriateness. Step (5) uses content experts’ opinions to form a
practical solution that could provide useful clinical interpretation. Finally, Step (6) uses 20%
of the subjects to form the held-out-sample and trains the model using the remaining 80% of
data. The root mean squared root (RMSE) is then computed for the held-out-sample for both
the simpler model chosen by the experts and the statistically selected model. Using a five-
fold cross-validation design, the RMSEs are then averaged over 5 samples and compared
across different measures. This step ascertains the consequences of using a simpler model,
measured as prediction errors in the same units as the original measurements.

6. Results
Table 1 provides a brief description of the (continuous) variables used for creating the three
separate profiles – psychosocial (PS), food intake (FI), and physical and sedentary activities
(PSA). Table 2 reports the results of the hill-climbing algorithm. We started with small
values of profile states and superstates S1 = 2, S2 = 2, S3 = 2, and S = 2. Using BIC as the
criterion for model fit, the selected model has 4, 3, and 5 states for the PS, FI, and PSA
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profiles, respectively. For superstate selection, the 3-state model turned out to have a small
but insignificant increase (i.e., less than 0.2%) in BIC over the 2-state model. It appeared
that the 2-, 3-, and 4-superstate models were all close in terms of their model fit to the data.
For comparison, we also computed the BIC value for a simple model that treats the time
points and profiles as independent variables. The BIC value of the model is 142,649, which
was significantly worse than the joint models of the (4, 3, 5) profile states and the 2, 3, and 4
superstates that were under final consideration. Furthermore, as a check on the Markov
assumption, we computed several autocorrelations. Figure 2 shows the scatterplot of
autocorrelation between all observed measures at time points 1 and 3, and the squared
autocorrelation between observations at time points 2 and 3. Under the Markov assumption,
the autocorrelation between observations at time points t and t+2 equals to the square of the
autocorrelation between observations at time t and t+1. While the autocorrelations between
time points 1 and 3 appear to be slightly higher, there is no strong evidence to invalidate the
Markov assumption.

To visualize the conditional distributions of the profiles at the domain level of the MPHMM,
we depict the results in the form of a dot chart with a bar of length ±2 and with standard
deviations centered at the dot. Superstates were visualized by bar charts in which
probabilities of belonging to a profile state were stacked on a scale of 0 to 1. With the help
of the dot charts and bar-charts for different numbers of super-states, the investigative team
was able to determine models that have a manageable number of states and meaningful
interpretation.

Figure 3 shows the 4-state conditional distribution of the 4-state psycho-social profile
estimated by the MPHMM procedure. Except for the perception of social pressure from
peers, the other four variables—over-concern about weight, concern about dieting, concern
about self-control, and level of depression — all tend to move in tandem. State 1 is
characterized by a high level of concerns and depression, together with a high level of
perceived pressure from peers. State 2 is the antithesis of State 1; the level of concerns about
weight, diet, self-control, perceived social pressure, and depression for this state is lower
than average. State 3 is similar to State 1, except that this group does not have the same high
level of perceived social pressure about weight issues. State 4 is almost a mirror-image of
State 3.

The MPHMM analysis for the 3-state FI profile is shown in Figure 4. State 1 shows that
female students who belong to this state tend to have a low-fat, low-protein, high-carb diet.
State 2 female students, on the other hand, are a mirror image of State 1 students: they have
a higher-fat, high-protein, low-carb diet. State 3 is characterized by slightly high-fat
consumption, with average levels of proteins and carbs.

Finally, the 5-state PA profile is shown in Figure 5. State 3 distinguishes itself as the state
that exhibits a high level of physical activity — before, during, and after school. The other
states all show, to various degrees, a low-to-average level of physical activity. The variable
“hours of total TV watching” does not seem discriminating. Somewhat to our surprise, the
active State 3 female students reported watching even slightly more TV than the other four
groups.

While the states at the first (profile) level appear to make sense to content experts in
childhood obesity, the superstates that were derived from the (4, 3, 5)-state models,
respectively, for PS, FI, and PA turned out to be still difficult to interpret. After consultation
with the content experts, we consolidated the states in the respective profiles to enhance the
interpretation of the superstates. For PS, we combined State 1 and State 3 to form a new
State 1 that we termed High-Concerns-About-Weight, and State 2 and State 4 to form a
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Low-Concerns-About-Weight state (Fig. 6). For FI, we did not combine states because the
three states were relatively distinct, and we respectively labeled them High-Carb, High-Fat,
and Average-Diet (Fig. 4). For PA, we combined the three physically inactive groups –
States 1, 2 and 5 - all of which have below-average physical activity. States 3 and 4 were
also combined. As a result, the new State 1 (comprise the original States 1, 2, and 5) was
labeled Physically-Inactive, and the new State 2 (originally States 3 and 4) was labeled
Physically-Active (Fig. 7). The content experts also examined the models with 2, 3, and 4-
superstates. It was decided that the 3-superstate model provided the most reasonable
interpretation in terms of the clinical meaning of the superstates.

The parameters within the consolidated model were determined by applying Eqs. (26) – (28)
to the data. In other words, the probabilities of two collapsed states were summed. The M-
step was then implemented to obtain the necessary estimates for the collapsed model. Note
that this (2,3,2)-state model is different from the (2,3,2)-state model estimated “from
scratch” using EM. Consolidating the profile states represented a tradeoff between
improving the model interpretability and loss in the goodness of fit. We compared the
consolidated model with the model with (2,3,2) profile states and 3 superstates, and the
parameter estimates of the two models were almost identical. For the out-of-sample analysis,
Table 3 shows the averaged RMSEs of the collapsed (2,3,2)-model and the (4,3,5)-model for
all measurements used. Out of the 12 measurements, the (2,3,2) model actually exhibits
lower prediction error in 8 of them, which is quite surprising to us. It seems to suggest that
the complex model might have overfitted the data.

The superstate profiles after consolidation of domain-level states are shown in Fig. 8. The
domains PS, FI, and PA are presented in three separate panels, and each column within a
panel represents the profile of a superstate for the specific domain. For example, the third
column in the PS panel shows that Superstate 3 contains a high proportion of female
students with a Low-Concerns-About-Weight profile. This superstate also contains a high
proportion of High-Carb (panel 2, column 3) and Physically-Inactive (panel 3, column 3)
female students. Therefore, this superstate is dominated by female students who are not
concerned about their weight, eat a relatively high-carb diet, and are not physically active.
Superstate 2 consists of female students who are rather concerned about weight, consume an
average diet, and are physically active. Superstate 1 appears to be a state that is
characterized by a high level of concern about weight and diet, a high-carb, high-fat type of
diet, and a low-physical-activity lifestyle.

The transitions over time across the different superstates are revealing. Figure 9 shows the
prevalence of the three superstates over time across the three arms. The patterns across all
three arms are surprisingly similar: Superstate 2 female students - the High-Concerns-
About-Weight, Average-Diet, and Physically-Active individuals - tend to transition to either
Superstate 1 or Superstate 3. This trend is confirmed by examining the transition probability
table shown in Table 4. Superstate 2, which is characterized by a high level of physical
activity, has a high probability of transitioning into State 1 or State 3, respectively, with
probabilities 0.36 and 0.35. This implies that the physically active female students tended to
engage in less physical activity during the last two time points of the study. From Figure 9, it
can be seen that the interventions - both primary and combined primary and secondary - do
not substantially moderate the trend, even though there appears to be a small intervention
effect in that (1) the interventions tend to increase concern over the PS domain in female
students over time, as evidenced by the higher cumulative area of the bars for the High-
Concerns-About-Weight group across the three time points in the intervention arms, and (2)
the combined intervention group has a slightly higher proportion of Superstate 2 female
students than the other two arms at the last time point. From the transition probability table,
it can also be seen that Superstates 1 and 3 are essentially absorbing, implying that
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regardless of their levels of concern about weight, their high-carb-high-fat and inactive
lifestyle remain unchanged throughout the period of study.

We further examined factors that might moderate the transition from Superstate 2 into
Superstate 1 or Superstate 3. A mixed-effects regression model was applied to model the
transition probabilities conditional on the current state being Superstate 2 (High-Concern-
About-Weight, High-Fat, Physically-Active). The fixed effects we considered included
intervention status, race (African American vs. non-African American), and BMI (time-
varying). As described in the Model section, a random effect was introduced to account for
potential clustering effects of students within the same school. Table 5 shows the estimates
in the mixed-effects model. The combined primary and secondary intervention arm shows a
significant positive effect in decelerating the transition from Superstate 2 to Superstate 3.
The factor BMI is statistically significant and increases the probability of transitioning from
the more physically active state to the less physically active and low-concern state
(Superstate 3). The random effect does not suggest any statistically significant effect of
school clusters. Briefly, the mixed-effect analysis suggests that the combined intervention
has a statistically significant positive effect in preventing female students from becoming
less active, and higher-BMI female students tend to have a higher chance of becoming less
physically active over the period of the study. Because the two other superstates – i.e.,
Superstates 1 and 3 – are close to absorbing, within rounding error, any analysis that uses
them as originating states would not be interesting, and we have not pursued that.

7. Discussion
A recent follow-up paper [38], which also used the LA Health data set, reported a general
decrease of physical activities over time, as measured by both self-report and accelerometer,
accompanied by a general increase in sedentary activities, for both boys and girls. The
general trend was moderated, to different degrees, by participation in the primary and
secondary intervention. Because of our focus on methodological development, we have not
shown the analysis results for boys, which are in many ways, similar to those for girls.
However, our overall results are consistent with the new findings in [38]. The LA Health
follow-up paper did not include the psychosocial variables and all analyses were conducted
separately for each outcome variable.

This paper demonstrates how multiple profiles, each characterized by a set of several
indicators, can be used to jointly describe heterogeneous patterns of behaviors in more than
one domain of interest; it also demonstrates how the dynamics of change, manifested across
multiple domains, can be captured. The basic model for the task is the HMM. The
superstate, as an extension of the hidden states in the basic HMM, can be used to prescribe a
parsimonious representation of the potentially large number of combinations of behavioral
patterns generated by the individual profiles. The structure of the HMM is also amenable to
the use of mixed effects, which render it flexible enough to take into account covariate
effects as well as individual-specific effects. In this paper, we exploit the random effects
component for modeling school clusters.

Although in this paper we only used continuous variables as profile indicators, the method
can be applied to discrete outcome variables as well [14, 18 ]. For cross-sectional data with
discrete outcomes, this is equivalent to latent class analysis that contains an additional level
of latent “super” class [39], which is related to the hierarchical latent class model [42]. For
example, [39] applied a latent (super) class analysis to examine clusters of diabetes patients
on their beliefs about several domains including symptom, cause, and medical management
of diabetes. Thus, the current paper can be viewed as an extension of the latent (super) class
analysis to a longitudinal setting.
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The proposed MPHMM methodology has several limitations. First, the model could become
difficult to interpret for a large number of profiles, especially when each profile contains a
substantial number of hidden states. While computationally more complex MPHMMs are
feasible even with a large number of profiles, in practice it is difficult to envision the use of
more than three or four profiles for behavioral data. We have followed a hybrid data- and
expert-driven approach to determine the appropriate number of states and have consolidated
some states to improve interpretation. It is still not clear how the consolidation procedure
can be formalized. Currently, the consolidation of states is highly reliant on clinical
knowledge of the content experts. Indeed, the LA Health study example demonstrated the
challenges for simultaneously handling multiple profiles in a longitudinal setting: first, the
number of states could be too large for meaningful interpretation, and second, requirements
of interpretation of states at both the local (profile state) level and the global (superstate)
level might be different. Our experience suggested that at the global level parsimonious
individual profile models were preferred, reflecting the need to reduce the cognitive load in
processing and interpreting results across multiple domains. Or, to put it slightly differently,
when models were examined individually at the local level, the tolerance for more complex
models tended to be higher. Additionally, the out-of-sample validation procedure seems to
suggest that the simpler model is empirically rather robust and actually exhibits lower
prediction error than the more complex model. Apparently, the strategy for determining the
models for respective profile states and for the superstate was not as clean as we wanted it to
be. Like other applications in social sciences[40], criteria based on reasonableness, common
sense, and clinical interpretation have been used for comparing and selecting models. We
present specific details of our experience to illustrate the challenge in arriving at a practical
compromise between clinical interpretability of the results and the complexity of statistical
models.

We remark here that the profiles estimated from the joint model within each domain using
the maximum-likelihood procedure described in the Methods section are not necessarily
identical to the profiles estimated using only data from the individual domains. The current
approach used the joint model and a hill-climbing strategy to simultaneously determine the
number of profile states and superstates. An alternative strategy is to first determine the
number of profile states by only using data from each domain and then determine the
number of superstates conditioned on the number of profile states. However, as pointed out
by a referee, joint model selection in profile states and superstates, while computationally
more intensive, would be more consistent with the unified model based on the maximum
likelihood procedure.

A second limitation of the method is the potential local optimum issue with the hill-climbing
approach for determining the number states. The greedy hill-climbing algorithm described
here is not guaranteed to result in a global optimum. Although recent literature shows that
the hill-climbing method generally performs well in model selection [41], further
refinements, such as a hybrid approach using random permutation of the order of profiles in
the hill-climbing sequence, may be necessary for optimizing its performance in multi-profile
HMM.

Another limitation of the proposed model is its difficulty in handling the potentially large
number of covariates in the transition model. Currently, with only three superstates, the
effects of intervention and several other risk factors can be assessed by fitting separate
models for transitions of interest (Superstate 2 to 1 and to 3). When the number of
(super)states and the number of covariates increase, or when a summary measure is required
across all transitions, the current strategy would have limitations. An alternative is to impose
an ordinal structure on the states and then apply ordinal statistical methods to the transitions
[43, 44]. A Bayesian approach to inference is another potentially fruitful approach for
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inference when the number of parameters within the HMM is high [12, 45 ]. Finally, another
limitation of the proposed model is its strict model assumptions, including the conditional
independence assumption, invariance of model structure across time points, and the
invariance of the transition matrix. These are, to a certain extent, inherent features of the
HMM, which is a special case of the dynamic Bayesian network [46]. Conditional
independence assumptions could generally be evaluated by residual analysis, similar to the
way the Markov assumption was evaluated in the Results section. The limitation to the
structure and the transition parameter may not be an important issue in the current
application, which involves a short duration of study. However, in long-range health and
medical applications, the assumption of invariance may be questionable. Some recent
developments have emerged in the dynamic Bayesian network literature to ease the
limitation [47].
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Figure 1.
An illustration of the multi-profile HMM (MPHMM). Circle indicates observed variable;
square indicates latent (hidden) variable. Dependence across time is assumed to be captured

by Markov dependence across superstates .
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Figure 2.
Scatterplot of lag 1 and squared lag 2 autocorrelations.
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Figure 3.
Conditional probability profile of psycho-social factors.
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Figure 4.
Conditional probability profile of food intake.
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Figure 5.
Conditional probability profile of physical activity.
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Figure 6.
Conditional probability profile of psycho-social after combining states. States 1 and 2 are
respectively labeled High-Concerns-About-Weight, and Low-Concerns-About-Weight.
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Figure 7.
Conditional probability profile of physical activity after combining states. States 1 and 2 are
respectively labeled Physically-Inactive and Physically-Active.
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Figure 8.
Conditional probability profile of the super states. Profile states are ordered such that the
lowest numbered state is at the bottom of the stack.
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Figure 9.
Superstate prevalence comparison over time (1=baseline, 2=18 month, 3=30 month)
between the randomization groups. Superstates are ordered such that the lowest numbered
superstate is at the bottom of the stack.
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Table 1

Descriptive Statistics of LA Health Female Participants (N = 687)

Characteristics Mean/Percentage SD

Ethnicity

 White 23.7

 Black 74.7

 Others 1.6

Baseline Grade

 4th grade 39.6

 5th grade 32.0

 6th grad 28.4

Randomization Group (%)

 Control 33.9

 Primary 38.7

 Primary and Secondary 27.4

Age 13.95 1.19

Height (cm) 157.44 7.51

Weight (kg) 59.33 19.31

BMI (kgm−2) 23.71 6.74

Psycho-social profile (factor loading)

 Overconcern 11.28 5.34

 Dieting 8.25 3.85

 Social Pressure 6.02 3.86

 Self-control 6.31 3.01

 Depression 46.33 8.33

Food intake profile

 % from Fat 33.05 6.29

 % from Protein 18.34 4.65

 % from Carbohydrate 49.68 8.72

Physical activity profile (min/day)

 Total TV 174.28 137.71

 Before School PA 7.23 18.18

 During School PA 17.80 23.98

 After School PA 65.26 69.99

Stat Med. Author manuscript; available in PMC 2014 August 30.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Ip et al. Page 29

Table 2

BIC values for hill-climbing model determination. An asterisk represents the starting point of a new search in
the succeeding profile.

PS FI PA Superstate BIC

2 2 2 2 145225

3 2 2 2 142075

4 2 2 2 140574★

5 2 2 2 140426

4 3 2 2 139657★

4 4 2 2 139382

4 3 3 2 138668

4 3 4 2 136240

4 3 5 2 134959★

4 3 6 2 134856

4 3 5 3 135188

4 3 5 4 134853
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Table 3

Averaged RMSEs of the model of combined states and statistically optimal model.

Measurement (2,3,2) model (4,3,5) model

Overconcern 1.81 2.31

Dieting 1.44 1.57

Social pressure 1.75 1.50

Self-control 1.27 1.38

Depression 3.49 3.75

Percentage from fat 1.87 1.96

Percentage from protein 1.71 1.60

Percentage from carbohydrate 2.16 2.25

Total TV 10.42 10.49

Before school PA 1.15 0.89

During school PA 1.84 1.22

After school PA 4.74 5.10
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Table 4

Estimated prior probabilities (α) and transition probabilities (τ) between superstates. The entry (i, j) indicates
the probability of transition from the i-th superstate to the j-th superstate.

State 1 State 2 State 3

α: 0.22 0.50 0.28

τ: 0.94 0.00 0.06

0.36 0.29 0.35

0.00 0.00 1.00
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