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Abstract
This paper is concerned with the prediction of the occurrence of Periventricular Leukomalacia
(PVL) that occurs in neonates after heart surgery. The data which is collected over a period of 12
hours after the cardiac surgery contains vital measurements as well as blood gas measurements
with different resolutions. The decision tree classification technique has been selected as a tool for
prediction of the PVL because of its capacity for discovering rules and novel associations in the
data. Vital data measured using near-inferred spectroscopy (NIRS) at the sampling rate of 0.25 Hz
and blood gas measurement up to 12 times with irregular time intervals for 35 patients collected
from Children's Hospital of Philadelphia (CHOP) are used for this study. Vital data contain heart
rate (HR), mean arterial pressure (MAP), right atrium pressure (RAP), blood hemoglobin (Hb),
hemoglobin oxygen content (HbO2), oxygen saturation (SpO2) and relative cerebral blood flow
(rCBF). Features derived from the data include statistical moments (mean, variance, skewness and
kurtosis), trend and min and max of the vital data and rate of change, time weighted mean and a
custom defined out of range index (ORI) for the blood gas data. A decision tree is developed for
the vital data in order to identify the most important vital measurements. In addition, a decision
tree is developed for blood gas data to find important factors for the prediction of PVL occurrence.
Results show that in blood gas data, maximum rate of change in the concentration of bicarbonate
ions in blood (HCO3) and minimum rate of change in the partial pressure of dissolved CO2 in the
blood (PaCO2) are the most important factors for prediction of the PVL. Among vital features the
kurtosis of HR and Hb are the most important parameters.

I. INTRODUCTION
Periventricular leukomalacia (PVL) is a neonatal brain injury. The PVL condition causes
damage in the ventricles of the brain [1]. Generally motor control problems or other neuro-
developmental problems and also cerebral palsy or epilepsy are common in the PVL patients
[2], [3]. Recent researches have shown that PVL is very common in neonates before and
after cardiac surgery [4]–[6] and so there is a growing interest among clinical researchers to
attempt to understand the physiology and pathology of PVL, develop clinical protocols for
the prediction and prevention of PVL and also to predict the outcomes of individual patients
suffering from PVL [7], [8].

Despite advancement in research in the field of PVL, there are no treatments currently
prescribed for PVL. This is due to fact that the origin of PVL and its physiology still remain
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to be clearly understood. Consequently, all treatment strategies are based in response to
pathologies that develop as a consequence of the PVL. In view of the fact that white matter
injury in the ventricular parts of the brain can cause variety of deficits and side effects,
therefor constant monitoring of PVL infants is necessary to determine the severity of their
conditions [9].

Computational intelligence (CI) techniques attract more and more attention from researchers
in the biomedical field as a result of their superior performance in comparison with
traditional stochastic approaches in prediction, modeling and classification of biomedical
signals [10]–[14]. Data mining facilitates data exploration using data analysis methods with
sophisticated algorithms in order to discover unknown patterns. The CI techniques include
data mining algorithms and techniques such as decision tree (DT) [14]–[16], artificial neural
networks (ANNs) [17], support vector machine (SVM), and adaptive neuro-fuzzy inference
system (ANFIS) [18].

The main advantages of the decision tree approach are the ability to discover rules hidden in
the dataset, the ability to handle both continuous and categorical output variables, and
constructing easily interpretable classification rules. Moreover, DT algorithms produce noise
robust models and rules because they are constructed based on the maximizing information
gain. Also DT algorithms produce reliable and effective results with high accuracy and
could handle missing data and are especially appropriate to support decision-making
processes in medicine.

In this study, we investigate how DT algorithms are valuable to discover rules from the
collected data and help clinicians predict the occurrence of the PVL. The aim is to identify
the most important measurements and derived features based on the extracted classification
rules. These rules will enable better management of the patients.

II. MATERIALS AND METHODS
A. Data Collection

Data from 35 neonates after neonatal cardiac surgery were collected according to a pre-
specified protocol at the Children's Hospital of Philadelphia (CHOP). Subjects of this study
are limited to two cases of congenital heart disease, hypoplastic left heart syndrome (HLHS)
and transposition of great arteries (TGA), accounting for the fact that these two diseases are
considered to have the highest likelihood of PVL occurrence as their postoperative effect.
For each patient, vital data collected every 4 seconds contains heart rate (HR), mean arterial
pressure (MAP), right atrium pressure (RAP), oxygen saturation (SpO2), hemoglobin (Hb),
hemoglobin oxygen content (HbO2) and relative cerebral blood flow (rCBF). Hb, HbO2 and
rCBF are collected using near-infrared spectroscopy (NIRS). The NIRS is a spectroscopic
method that uses the near-infrared region of the electromagnetic spectrum. Demographic
data collected includes sex, type of disease, cardiac bypass duration and deep hypothermic
circulatory arrest duration for each patient as well as blood gas measurements. Collected
blood gas measurements are presented in Tab. I.

In our previous work [19] we developed a cycle-averaged model of the HLHS heart to study
effects of the various parameters on surgical outcome. The developed model provides a very
useful tool to better understand the principal factors that drive the HLHS physiology and
could be significant for improving patient management. However, there is no physics based
model for the blood gas data and also of vital data such as hemoglobin which renders
application of CI based techniques particularly attractive for this problem.
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B. Feature Extraction
Based on the collected set of physiological parameters a feature pool was developed. The
feature pool is different for vital and blood gas measurements. The derived features of vital
measurements include: min, max, mean, variation, skewness, kurtosis and trend. Skewness
and kurtosis are third and forth order statistical moment of random variable defined by Eq.
(1).

(1)

where, n is the order, μ is the mean value of the data and E is the expected value. The
derived features from the blood gas data are maximum and minimum values of the rate of
change of measurements, time weighted mean, and out of range index (ORI). The rate of
blood gas measurement change is defined as the slope of the line connecting two
consecutive measurements. Blood gas measurements are discontinuous and to overcome this
problem the data is linearly interpolated assuming there is no sudden change happening in
the data, a fact confirmed by the clinicians. Time weighted mean is simply calculated using
Eq. (2).

(2)

where, m is the number of measurements and x is the measured variable. We define the out
of range index (ORI) as an area which is bounded by lower or upper normal range of the
data and the measurement waveform. The upper and lower limit of the normal range for the
measured blood gas data are presented in Tab. II. This index is an important indicator taking
into account both the time that variable has been out of range and also the out of range
value. The ORI has the unit of the variable it is calculated for multiplied by time. For
example the ORI for PaCO2 has units of mmhg.s. Figure (1) shows the defined feature for a
data sample.

III. DECISION TREE
The goal of DT is to use a dataset with known attribute-class combinations for generating a
tree structure with a set of rules for classification and prediction of the desired event. The
DT consists of a root, the internal decision nodes and a set of terminal nodes or leaves, each
representing a class. There are two phases in DT induction: tree building and tree pruning.

A. Tree Building
The CART algorithm [20], which uses the recursive partitioning approach to DT rule
induction, is employed to develop DT. The algorithm uses a selected criterion to build the
tree. It works topdown, seeking at each stage an attribute to split on that which best
separates the classes, and then recursively processing the sub problems that result from the
split. The algorithm uses a heuristic algorithm for pruning which is based on the statistical
significance of the splits.

To split the data, DT maximizes the information gain (IG) of the system (which in turn
reduces the information entropy). The IG of an attribute A is used to select the best splitting
criterion attribute. The features with the highest IG is selected to build the DT. The IG for
attribute A is defined by Eqn. (3):
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(3)

where, pi is the probability of class i in dataset D, m is the number of classes in this study 2, |
Dj| is the number of observations with attribute value j in dataset D, |D| is the total number
of observations in dataset D, and ν is number of all attribute values. For example, if attribute
S has values {1, 2, 2, 3, 2, 3, 1}, then ν will be 3.

Large number of different values for the output will cause problems in implementing the
information gain measure of the data, in this case the gain ratio is used instead [16]. The
Gini index (GI) is an impurity-based criterion that measures the divergence between the
probability distributions of the target attributes values [21]. The GI is defined by Eqn. (4)
and Eqn. (5):

(4)

where,

(5)

B. Tree Pruning
The tree generated in the tree building phase is usually large, complex, and an over-fit to the
training data. Over-fitting is a significant practical difficulty for decision tree learning
especially if the training dataset is noisy or if it is not large enough to represent the test
dataset. To improve generalization of the classification tree, we prune the tree using a
Fishers exact test (FET) based pruning approach as described in [14], [22]. We use 0.05 as
the p-value threshold for determining whether or not to prune a node of the developed tree.

IV. RESULTS
A DT based on the features derived from blood gas data was generated and is shown in Fig.
(2). Results show that among all the variables and features the maximum rate of change of
HCO3 and the minimum rate of change of PaCO2 are the most important parameters for the
PVL occurrence prediction. This result confirms our previous finding presented in [17]
which highlighted the role of blood CO2 concentration as an important factor in the PVL
prediction. This result also show the importance of the rate of change in blood gas data as an
indicator of hemodynamic instability which could lead to PVL. The developed DT also
shows that the following rule plays the strongest role in the prediction of PVL based on the
blood gas measurements.

(6)

where, ∧ is the logical and operator.

In order to investigate the next important features of blood gas measurements, we drop rate
of change features from our feature pool and form a DT based on the remaining feature pool.
The resulting DT is shown in Fig. (3) and illustrates the importance of our defined ORI. The
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results are surprising in that the developed DT shows that an increase in Ca++ and K+ ORI
and the condition that HCO3 ORI is high will decrease the probability of PVL occurrence.
At this time the exact physiological basis for f this finding is not understood.

Next, a DT is built from the features of vital measurements and is shown in Figure (4).
According to this, the kurtosis of HR and Hb are the most important factors for PVL
prediction. In probability theory and statistics, kurtosis is any measure of the “peakedness”
of the probability distribution of a real-valued random variable [23]. High kurtosis is
associated with more outlying values. Increased HR uncertainty is suggested as a PVL
predictor in some references [4]. A possible explanation for this result is that an increase in
uncertainty in HR will increase instability in the cardiac output which directly affects the
oxygen delivery to the brain. Insufficient and unstable supply of oxygen will severely
damage any organ, especially a sensitive organ such as the brain.

V. CONCLUSIONS
In this paper we have applied a Computational Intelligence technique to discover and
highlight hidden patterns in the hemodynamic data collected from neonates after heart
surgery which may aid in the development of a predictive tool for periventricular
leukomalacia (PVL). The PVL is a type of white matter brain injury which is common in
neonates after congenital heart surgery. The exact causes of PVL still remain unknown. Our
results show that HR and Hb from vital data are the most important vital measurements to
look at for the PVL prediction. Moreover, the maximum and minimum values of the rate of
change of HCO3 and PaCO2 are the most important parameters from the blood gas data.
While the findings of this study seem to be very interesting and important, it still needs more
validation from a physiological point of view. Hence, the next step of the current study is to
investigate the physiological reasons behind these findings. For example, questions that need
investigating include: how does increased uncertainty in Hb result in the PVL occurrence
and how does the CO2 will affect the PVL occurrence. Furthermore, additional data is
needed to prove the robustness of the developed algorithm to measurement noise and
application to special cases.
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Fig. 1.
Plot of features derived from a sample blood gas measurement. The blue area is the ORI
index of the PaCO2 for a sample patient.
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Fig. 2.
Result of forming DT for all features derived from blood gas data. Results show that among
all variables and features maximum rate of change of HCO3 and minimum rate of change of
PaCO2 are the most valuable parameters for predicting PVL. The green path represent the
strongest rule in DT decision making.
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Fig. 3.
Result of forming DT from remaining features derived from blood gas data. Results show
that K, CA and HCO3 ORI are the most valuable parameters for predicting PVL. The green
path represent the strongest rule in DT decision making.
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Fig. 4.
Result of forming DT from features derived from vital measurements. Results show that
kurtosis of HR and Hb are the most important factors for PVL prediction from vital
measurements. The green path represents the strongest rule in DT decision making.
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TABLE I

Collected Blood Gas Data

Measurement Description Unit

pH Arterial blood pH

PaCO 2 Partial pressure of dissolved CO2 mmHg

PaO 2 Partial pressure of dissolved O2 mmHg

HCO 3 Concentration of bicarbonate ions mmol/L

O 2 Sat Arterial oxygen saturation %

Hgb Hemoglobin concentration g/dL

K + Ionized Potassium mmol/L

Ca ++ Ionized Calcium mmol/L

Na + Ionized sodium mmol L

Hct Hematocrit %
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TABLE II

Normal Range of Blood Gas Data

Measurement Lower Limit Upper Limit

pH 7.34 7.44

PaCO 2 35 45

PaO 2 75 100

HCO 3 22 26

O 2 Sat 95 100

Hgb 14 16

K + 3.5 5

Ca ++ 8.5 10.5

Na + 135 145

Hct 36 44
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