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Fine Mapping of the 1p36 Deletion Syndrome
Identifies Mutation of PRDM16
as a Cause of Cardiomyopathy
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Deletion 1p36 syndrome is recognized as the most common terminal deletion syndrome. Here, we describe the loss of a gene within the

deletion that is responsible for the cardiomyopathy associated withmonosomy 1p36, and we confirm its role in nonsyndromic left ven-

tricular noncompaction cardiomyopathy (LVNC) and dilated cardiomyopathy (DCM). With our own data and publically available data

from array comparative genomic hybridization (aCGH), we identified a minimal deletion for the cardiomyopathy associated with

1p36del syndrome that included only the terminal 14 exons of the transcription factor PRDM16 (PR domain containing 16), a gene

that had previously been shown to direct brown fat determination and differentiation. Resequencing of PRDM16 in a cohort of 75 non-

syndromic individuals with LVNC detected three mutations, including one truncationmutant, one frameshift null mutation, and a sin-

glemissensemutant. In addition, in a series of cardiac biopsies from 131 individuals with DCM,we found 5 individuals with 4 previously

unreported nonsynonymous variants in the coding region of PRDM16.None of the PRDM16mutations identifiedwere observed inmore

than 6,400 controls. PRDM16 has not previously been associated with cardiac disease but is localized in the nuclei of cardiomyocytes

throughout murine and human development and in the adult heart. Modeling of PRDM16 haploinsufficiency and a human truncation

mutant in zebrafish resulted in both contractile dysfunction and partial uncoupling of cardiomyocytes and also revealed evidence of

impaired cardiomyocyte proliferative capacity. In conclusion, mutation of PRDM16 causes the cardiomyopathy in 1p36 deletion syn-

drome as well as a proportion of nonsyndromic LVNC and DCM.
Introduction

Chromosome 1p36 deletion syndrome (MIM 607872) is

the most common human terminal deletion syndrome,

occurring in 1 out of 5,000 births.1 Among the major char-

acteristics of the syndrome are craniofacial dysmorphism,

structural brain abnormalities, seizure disorder, hearing

loss, intellectual disability, and growth delay.2–4 A substan-

tial proportion (23%–27%) of individuals with 1p36 dele-

tion syndrome have cardiomyopathy, which may occur

in the presence or absence of structural heart disease.3,4

In a systematic clinical and molecular characterization of

a 1p36 deletion syndrome cohort, left ventricular noncom-

paction (LVNC [MIM 604169]) was identified in 23% and

dilated cardiomyopathy (DCM [MIM 115200]) in 4% of in-
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dividuals.4 LVNC is a common feature in early embryop-

athy in humans and in rodent models and is characterized

by a two-layered myocardium consisting of a thin

compacted epicardial layer and a thick noncompacted

endocardial layer with numerous prominent ventricular

trabeculations and deep intertrabecular recesses.5 It can

be associated with increased ventricular chamber dimen-

sions and impaired systolic function, which are cardinal

features of DCM. Both LVNC and DCM are genetically het-

erogeneous, withmutations in genes encoding sarcomeric,

cytoskeletal, mitochondrial, and calcium handling pro-

teins causing either phenotype.6 Clinical features of both

cardiomyopathies include progressive deterioration in car-

diac function that results in heart failure, arrhythmias, and

sudden cardiac death. Loss or disruption of a gene
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responsible for the cardiomyopathy in individuals with

monosomy 1p36 has not previously been identified.

We present detailed multiallelic mapping in the 1p36

deletion syndrome that identifies loss of PRDM16 (MIM

605557) as underlying the cardiomyopathy in this syn-

drome. We independently confirm a causal role for

PRDM16 in human myocardial disease in two separate co-

horts: one with nonsyndromic LVNC and one with sim-

plex cases of dilated cardiomyopathy (DCM). We are able

to recapitulate biological features of human cardiomyopa-

thy in the zebrafish bymodeling of both PRDM16 haploin-

sufficiency and a human truncation mutant. This

modeling implicates impaired proliferative capacity during

cardiogenesis as a primary mechanism of these inherited

forms of heart failure caused by PRDM16 mutations.
Material and Methods

Comparative Genomic Hybridization
Genomic imbalances were analyzed by array comparative

genomic hybridization (aCGH) with different oligonucleotide

platforms (Agilent Technologies) at the Charité University Hospi-

tal Berlin7 and University Hospital Schleswig-Holstein, Kiel.8

Further genomic and phenotypic data from probands with mono-

somy 1p36 (Tables S1 and S2 available online) were extracted from

the following databases: Decipher,9 ECARUCA database,10 NCBI,

and Genoglyphix. Genomic positions in the text are cited accord-

ing to the reference human genome (UCSC Genome Browser

GRCh37/hg19) (Table S1).
Study Participants and Clinical Evaluation
A total of 206 probands with nonsyndromic cardiomyopathy were

recruited at tertiary referral centers, the Charité University Hospi-

tal and the German Heart Institute (both in Berlin, Germany), the

University Hospital Zürich (Switzerland), and the Harefield Hospi-

tal (Harefield, UK). Informed consent was obtained from all

participants according to institutional guidelines. Probands and

available family members were clinically evaluated as described

previously.11 LVNC and DCM were diagnosed on the basis of es-

tablished criteria.5,12 A total of 75 individuals with LVNC were

studied and only LVNC probands without a known mutation in

genes encoding sarcomere proteins were enrolled in the study.

In 56/75 probands, no mutations had been detected and 19/75

probands had not been tested.13 In 11/75 LVNC probands, at least

one more first-degree relative had been clinically diagnosed to be

affected but not all first-degree family members were systemati-

cally available and could be investigated. For RNA-seq studies,

131 explanted heart biopsies samples from individuals with

confirmed DCM undergoing heart transplantation were used

with local ethical approval. From probands with DCM, the family

history and the number of familial or simplex cases was unknown

and they had not been screened for mutations in genes encoding

sarcomere proteins.
Mutational Analysis
PCR and Sanger sequencing of PRDM16 (RefSeq accession number

NM_022114.3) in probands with LVNC or DCM and of SKI

(MIM 164780 [RefSeq NM_003036.3]) in probands with LVNC

were performed by standard methods. Primer sequences and
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PCR details are available on request. Sequences were analyzed

with Sequencher 4.10.1 (Gene Codes Corporation). In the 131

DCM individuals, poly(A) RNA was sequenced on the Illumina

HiSeq 2000 platform with TruSeq library preparation and 2 3

100 bp paired-end sequencing chemistry. Reads were mapped

stringently against the hg19 reference genome with Tophat

1.3.1,14 allowing only a total of 2 mismatches in 100 bp and

supplying transcript information as annotated by the Ensembl

database15 to aid the mapping process. SNP calling in the coding

region of PRDM16was performedwith SAMtools16 only with reads

mapping uniquely to the genome. Genomic positions covered

with more than 15 unique reads (no PCR duplicates) were consid-

ered for SNP detection.
Immunofluorescence Staining and Microscopy
Paraffin sections of 19-week-old fetal and adult human left ventric-

ular myocardium (48-year-old male individual as donor for heart

transplantation; cause of death was subarachnoid hemorrhage)

and wild-type embryonic mouse hearts (13.5 dpc) were deparaffi-

nized and rehydrated and heat-mediated antigen retrieval was

performed in sodium citrate buffer (10 mM [pH 6.0]) for 20 min.

Sectionswere allowed to cool to room temperature before blocking

in antibody solution containing 5% normal goat serum for 1 hr.

For staining of adultmouse hearts, cryosections of fresh frozen car-

diac tissue were used after 20 min postfixation in 4% PFA. Primary

antibodies were applied at 4�C overnight, sections were washed

three times in PBS, and secondary antibody detection was per-

formed at room temperature for 1 hr with Alexa 488 or Alexa

555 goat anti-rabbit or goat anti-mouse antibodies (Invitrogen).

Nuclei were stained with TO-PRO-3 or DAPI (Invitrogen) and sec-

tions were mounted in Prolong Gold antifade reagent (Invitro-

gen). The primary antibodies used were rabbit anti-PRDM16

(Abcam) and mouse anti-Troponin T (Developmental Studies Hy-

bridoma Bank at the University of Iowa). For staining cell mem-

branes, FITC-conjugated wheat germ agglutinin (WGA) was used

while endocardial cells were stained with FITC-conjugated Isolec-

tin B4 (Enzo Life Sciences), both of which were incubated together

with the primary antibody at 4�C overnight. The specificity of

PRDM16 staining was tested by preincubating the primary

PRDM16 antibody with the respective immunizing peptide (Acris

Antibodies) at 4�C overnight prior to the immunofluorescence

procedure. Images were taken with a Leica SP5 confocal laser-scan-

ning microscope.
Zebrafish Studies
Morpholino Antisense Oligonucleotide Injections

Antisensemorpholinos were injected as described17 at the one-cell

stage. Concentrations of 0.2 mM were used; for synergistic exper-

iments the concentration was reduced to 0.1 mM. Embryos were

then analyzed at 24, 48, and 72 hr postfertilization (hpf). Morpho-

linos directed against the translation start codon were 50-
TCATCGCTGTCTTCCCGCTCCTGCT-30 for prdm16, 50-TAATC
GATGTCTTACCACTCCTCCT-30 for pdrm16 mismatch control,

and the splice donor site of exon 2 50-TCGCTCTCC

TCCCCATCGTTTCCCT-30 for skia (RefSeq NM_130935.2). Mor-

pholinos were purchased from Gene Tools.

Cardiac Overexpression

For cardiac-specific overexpression experiments, the human

PRDM16 truncation mutation (c.2104A>T [p.Lys702*]) and the

human PRDM16 wild-type were cloned downstream of the cmlc2

promoter into the Tol2kit expression system by Gateway



technology (Invitrogen). We coinjected the PRDM16 constructs

(15 ng/ml) with 10 ng/ml capped Tol2 transposase mRNA into

one-cell-stage zebrafish embryos.

Rescue Experiments

To rescue the cardiac phenotype, different doses of human wild-

type mRNA were coinjected with either PRDM16 morpholino or

PRDM16 truncation construct into the one-cell-stage zebrafish em-

bryo.

Zebrafish Physiologic Analysis

For analysis of cardiac function, embryos were laterally positioned

and allowed to acclimate at 24�C. Video microscopy was per-

formed on an Axioplan (Zeiss) upright microscope with a Fast-

Cam-PCI high-Speed digital camera (Photron) on top. A total of

1,088 frames were digitally captured at identical frame rates (250

frames per second) and magnification (53). Sequential images

were analyzed for heart rate and cardiac output by IMAGEJ and

Excel. Experiments were repeated at least three times on each occa-

sion with ten animals.

Intercellular coupling parameters in zebrafish embryo hearts

were measured by previously reported techniques.18 In brief,

hearts were isolated from zebrafish embryos, stained with the

transmembrane-potential-sensitive dye di-8-ANEPPS (Invitrogen),

and placed into a perfusion chamber that was mounted onto the

stage of an inverted microscope. Excitation light from a high-

intensity Hg arc lampwas transmitted through a 525/50 nm band-

pass filter and reflected onto the preparation via a 565 nm dichroic

mirror. Fluorescence emission was filtered by a 685/80 nm band-

pass filter and recorded at a rate of 2,000 s�1 by a high-speed

CCD camera (CardioCCD-SMQ, RedshirtImaging, LLC). Single-

pixel action potentials were extracted from the fluorescence data

and conduction velocities were estimated by an established algo-

rithm. Experiments were repeated at least two times with five

animals.

RNA In Situ Hybridization, Immunofluorescence, and Detection of

Apotosis

24-, 48-, and 72-hpf-old zebrafish embryos were used for in situ hy-

bridization carried out by standard protocols with fluorescein-

labeled sense and antisense RNA probes for prdm16 (RefSeq

XM_01922892.3).

For proliferation detection, hearts from 28-, 48-, 72-, and 96-

hpf-old zebrafish embryos were isolated and fixed in Prefer fixative

(Anatech). The fixed hearts were stained with the primary anti-

bodies rabbit anti-PCNA 1:200 (Abcam) and mouse anti-MF20

1:100 (DSHB) and with the secondary antibodies donkey or goat

anti-rabbit or mouse Alexa 488 or 546 conjugated (Invitrogen)

1:1,000. Hearts were mounted with ProLong Antifade reagent

with DAPI mounting medium on a slide. Confocal images were

analyzed with IMAGEJ.

For detection of apoptosis, hearts from 48-, 72-, and 96-hpf-old

zebrafish embryos were isolated and fixed in 4% PFA/PBS for

30 min and washed twice in PBS-T for 30 min. TUNEL assay was

performed with the in situ cell detection kit from Roche. Hearts

weremountedwith ProLong Antifade reagent with DAPI on a slide

and confocal images were analyzed with IMAGEJ. Transgenic

cmlc-Gal4 zebrafish embryos were either coinjected with

PRDM16 truncation construct or PRDM16 morpholino and UAS-

Annexin-V-YFP construct or alone with the UAS-Annexin-V-YFP

construct19 (a gift from Dr. Randall T. Peterson) at the one cell

stage. 48-, 72-, and 96-hpf-old zebrafish hearts were isolated and

fixed in 4% PFA/PBS for 20 min and washed twice in PBS-T for

30 min. Then the hearts were mounted with ProLong Antifade re-

agent with DAPI on a slide. Confocal images were analyzed with
The
IMAGEJ. A minimum of five animals were used for each time

point.

Statistical Analysis
For functional experiments in zebrafish, one-way ANOVA was

used. Fisher’s exact test was used to test the significance of muta-

tional variants found in nonsyndromic LVNC and DCM. Data

are presented as means 5 SEM. p < 0.05 was considered statisti-

cally significant for all tests; *p < 0.05, **p < 0.005, ***p < 0.0005.
Results

Alignment of Regions of Loss in Individuals with 1p36

Deletion Syndrome and Cardiomyopathy

In order to identify potential candidate genes involved in

the pathogenesis of the cardiac phenotypes in chromo-

some 1p36 deletion syndrome, we aligned the regions of

chromosomal loss in individuals with cardiomyopathy

from our institutional cohorts and from publicly available

databases (Figure 1A). In total, we identified 18 individuals

(17 from available databases and 1 from our institution)

with a deletion in 1p36 with evidence of heart muscle

disease (Figure 1A and Table S1). Various extracardiac phe-

notypes were present in the 18 individuals with cardiomy-

opathy, most frequently developmental delay (13/18) and

intellectual disability (11/18) (Table S2). With the excep-

tion of a single case that had a very large deleted segment

(7.2Mb), all identified individuals shared aminimal region

of loss at chr1: 3,224,674–3,354,772 bp (UCSC Genome

Browser GRCh37/hg19) that affected only a single gene,

PRDM16. In particular, exons 4–17 of PRDM16 were

included in the minimal interval, suggesting perturbation

of the function of this gene as the cause of the cardiomyop-

athy in chromosome 1p36 deletion syndrome.

Identification of PRDM16 Point Mutations in

Nonsyndromic Cardiomyopathy

To independently assess the role of PRDM16mutations as a

genetic cause of cardiomyopathy, we extended our ana-

lyses to nonsyndromic forms of both LVNC and DCM.

We sequenced the entire coding region of PRDM16 in 75

unrelated individuals of Western European descent (49

men and 26 women; mean age, 43 years; range 0.4 to 78

years) that had previously been diagnosed with LVNC via

standard criteria. Heterozygous PRDM16 mutations were

identified in 3/75 probands that were not present in 156

in-house control subjects or in the 1000 Genomes Project

(p ¼ 0.00021) (Figures 1B, 2, and S1A). The LVNC muta-

tions all resided in the large exon 9 of PRDM16 and

included one truncation (c.2104A>T [p.Lys702*]), one

frameshift null mutation (c.1573dupC [p.Arg525Profs*

79]), and one missense mutation (c.2447A>G

[p.Asn816Ser]) affecting an amino acid residue with com-

plete evolutionary conservation to zebrafish. Figure 2 de-

scribes the phenotype of three LVNC probands with

PRDM16 mutations. To evaluate DCM subjects, we per-

formed RNA-seq on RNA extracted from 131 heart biopsies
American Journal of Human Genetics 93, 67–77, July 11, 2013 69



Figure 1. Alignment of Regions of Loss
in Individuals with 1p36del Syndrome
Associated with Cardiomyopathy and
Identification of PRDM16 Mutations in
Nonsyndromic LVNC and DCM
(A) Mapping in 18 probands (for further
information see Tables S1 and S2) with
chromosome 1p36 deletion syndrome
and cardiomyopathy shows the respective
1p36-deleted intervals (blue, according to
the five data sources: NCBI, Genoglyphix,
Charite Berlin, Decipher, and Ecaruca)
and the common minimal region of dele-
tion (yellow) to contain the PRDM16
gene (GRCh37/hg19). The common mini-
mal region (yellow) in probands with car-
diomyopathy comprises of 130,098 bp at
3,224,674–3,354,772 bp in 17/18 pro-
bands and contains exon 4–17 of
PRDM16. Abbreviations are as follows:
ASD, atrial septal defect; VSD, ventricular
septal defect; PDA, patent ductus arterio-
sus; MI, mitral insufficiency.
(B) PRDM16 domain structure with
conserved motifs and binding domains
and location of amino acid changes in
three nonsyndromic LVNC and five non-
syndromic DCM probands. The three mu-
tations in LVNC are all located in exon 9
(orange); two DCM probands share the
same substitution (p.Val1101Met). The
complete PRDM16 1,276 aa containing
protein with the N-terminal PR domain
(violet), two zinc finger DNA binding do-
mains (black bars), and a PLDLS motif at
position 804–808 (red bar) is shown. The
PR region corresponds to a SET domain,
an 130 amino acid, evolutionarily
conserved sequence motif with histone

methyltransferase activity. The ten zinc finger domains correspond to the classical C2H2-type, in which the first pair of zinc-coordi-
nating residues are cysteines and the second pair are histidines, conferring zinc-dependent DNA- or RNA-binding properties.
obtained from unrelated individuals with simplex cases of

the disorder. This identified four previously unreported

nonsynonymous variants in the coding region of

PRDM16 in five individuals. These variants were confirmed

by Sanger sequencing of genomic DNA from peripheral

blood (Figures 1B and S1B). The four identified variants

were not listed by the 1000 Genomes Project or detected

in the more than 6,400 control individuals of the Exome

Sequencing Project (ESP) and were thus considered novel.

Considering the prevalence of missense variants in

PRDM16 (n ¼ 55 in 6,400 exomes) in the ESP control pop-

ulation, we would expect only ~1.2 novel mutations in a

set of 131 individuals. When compared to the novel vari-

ants identified from the 6,400 individuals sequenced by

ESP, this represents a more than 4-fold enrichment of

novel nonsynonymous coding variants (p ¼ 0.006). The

significant enrichment of novel nonsynonymous variants

affecting PRDM16 in the cohort further supports a role for

PRDM16 in DCM. One mutation is located in a zinc finger

domain of exon 6 (c.872C>T [p.Pro291Leu]) and three in-

dividuals are affected by mutations that disrupt the coding

sequence at the C terminus of PRDM16 that mediates the

regulation of TGFb signaling (c.2660T>C [p.Leu887Pro]),
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of which two share the same mutation (c.3301G>A

[p.Val1101Met]) (Table 1). Only the mutation c.811G>A

(p.Glu271Lys) is not linked to any known functional

domain. All five missense mutations in probands with

LVNC and DCM occur at evolutionarily conserved residues

(Figure S1B).

Cardiac Localization Profile of PRDM16

To investigate a potential role for alterations in PRDM16 in

cardiac structure and function, we first evaluated PRDM16

protein localization in the left ventricle of wild-type mice

and in the human heart (Figures 3 and S2). In fetal and

adult human heart, PRDM16 was localized in the nuclei

of both cardiomyocytes and interstitial cells. At mouse em-

bryonic day 13.5, PRDM16 was localized throughout the

ventricular myocardium including endocardium and

epicardium. In the adult mouse, PRDM16 localization

was predominantly restricted to the nuclei of cardiomyo-

cytes. Taken together, these data support the hypothesis

that PRDM16 is expressed in embryonic and adult

mammalian left ventricular myocardium. RNA in situ hy-

bridization in zebrafish revealed predominant expression

of prdm16 in the brain and heart (Figure S3).



Figure 2. Left Ventricular Morphology
and Clinical Description of LVNC Pro-
bands with PRDM16 Mutations
(A) Echocardiographic apical 4-chamber
view of proband 1 showing involve-
ment of apical and lateral segments. Pro-
band 1 carried a frameshift mutation
(c.1573dupC [p.Arg525Profs*79]) and
presented at age 33 years with severe biven-
tricular heart failure with systolic and dia-
stolic dysfunction, secondary pulmonary
hypertension, and dilatation of both atria
and ventricles. He received a biventricular
intracardiac defibrillator.
(B) Short axis view of the same proband at
the level below the LV papillary muscles
showing marked thickening of the inferior
noncompacted layer and thinning of the
compacted layer.
(C) Echocardiographic apical 4-chamber
view of proband 2 showing involvement
of the LV midventricular lateral wall. Pro-
band 2, with a truncation mutation
(c.2104A>T [p.Lys702*]), was diagnosed
at age 12 years because of arrhythmias
and showed mild to moderate left ventric-
ular dysfunction and dilatation in addition
to LVNC.
(D) Haematoxylin staining of LV myo-
cardium of proband 3. In proband 3
a missense mutation (c.2447A>G
[p.Asn816Ser]) was detected. He had
been sent to cardiac surgery for the

reconstruction of a dysplastic mitral valve at the age of 11 years because of mitral insufficiency grade 3. The left atrium and left ventricle
were enlarged with preserved cardiac function. Histology of a left ventricular biopsy taken at cardiac surgery showed increased interstitial
fibrosis and myocyte disarray.
Loss of Function and Mutant Transgenic Analysis in

Zebrafish

To examine the effect of PRDM16mutations, we performed

knockdown of the zebrafish ortholog of PRDM16 by using

translation-blocking morpholinos to recapitulate potential

haploinsufficiency. We also generated fish transgenic for

the truncated mutant form of PRDM16 (c.2104A>T

[p.Lys702*]) driven by the cardiac-specific cmlc2 promoter.

Dose-dependent bradycardia was observed and cardiac

output was significantly reduced in both morphant (p <

0.0005) and in truncation mutant transgenics (p <

0.0005) when compared with controls (Figure 4A). Impor-

tantly, the contractile impairment in both the morphant

knockdown embryos and in the truncation mutant trans-

genics was efficiently rescued by the wild-type human

PRDM16 (Figure S4) in a dose-dependent manner. Notably,

to rescue the truncation mutant (Figure S4B), a 10-fold

excess of wild-type RNA was necessary compared to the

morphant knockdown (Figure S4A).

Semiautomated cell counting documented a significant

decrease in total cardiomyocyte numbers in PRDM16 mor-

phant hearts when compared toWTcontrols (p< 0.05) and

PRDM16WT (p< 0.05) at 48 hpf (Figures 4B and 4C). At 96

hpf, total cardiomyocyte numbers were also decreased in

the mutant hearts compared to WT controls (p < 0.005)

and PRDM16WT (p< 0.05) (Figure 4C). Thiswas associated

with significantly decreased cardiomyocyte proliferation
The
(percentage of PCNA-positive cells) in the hearts of the

morphant (p < 0.0005), the truncation (p < 0.0005), and

PRDM16-overexpressing wild-type (p < 0.005) hearts at

28 and 48 hpf (p < 0.0005; p < 0.005; p < 0.005) consecu-

tively (Figures 4B and 4C). Proliferation of control WT

decreased over time (28–96 hpf). Interestingly, the effects

of mutant and wild-type PRDM16 constructs on prolifera-

tion appear to act in opposing directions between 48 or

96 hpf and 72 hpf. In addition, there was evidence of a

concomitant increase in apoptosis in the PRDM16mutants

at 48 hpf by using either TUNEL assay (p < 0.005) or

annexin V transgenic reporter lines (p< 0.005) (Figure S5).

Proliferation is often reciprocally related to cell coupling.

Inmurinemodelswhere LVNC is observed, it has been asso-

ciated with evidence of partial cellular uncoupling, so we

tested the effects of PRDM16 on intercellular impulse prop-

agation across the myocardium, identifying a significant

reduction in coupling in morphant and in mutant hearts

(Figure 5A). Mean estimated conduction velocities from

the outer curvature of the ventricle (OC) confirm a signifi-

cant reduction in impulse propagation velocities in mor-

phant (p < 0.0005) and mutant (p < 0.0005) hearts when

comparedwithuninjected controlsorwild-type (Figure5B).

Genetic Interaction of PRDM16 with SKI

The deletion of the TGF-b repressor SKI in individuals with

1p36del syndrome has been hypothesized to contribute to
American Journal of Human Genetics 93, 67–77, July 11, 2013 71



Table 1. PRDM16 Mutations in Nonsyndromic Probands with LVNC and DCM

Disease Variant Nucleotide Change Exon SIFTa PolyPhen-2b Sequence Features (Uniprot) Affected Individuals

DCM p.Glu271Lys c.811G>A 6 0.16 0.56 – 1

DCM p.Pro291Leu c.872C>T 6 0.01 0.75 zinc finger 23 C2H2-type 2 1

LVNC p.Arg525Profs*79 c.1573dupC 9 – – – 1

LVNC p.Lys702* c.2104A>T 9 – – – 1

LVNC p.Asn816Ser c.2447A>G 9 0.23 0.196 – 1

DCM p.Leu887Pro c.2660T>C 10 0.00 0.79 mediates interaction with SKI and
regulation of TGF-b signaling

1

DCM p.Val1101Met c.3301G>A 15 0.15 0.46 mediates interaction with SKI and
regulation of TGF-b signaling

2

Abbreviations are as follows: LVNC, left ventricular noncompaction; DCM, dilated cardiomyopathy.
aScores less than 0.05 indicate substitutions are predicted as intolerant.
bScores are evaluated as 0.000 (most probably benign) to 0.999 (most probably damaging).
some of the associated syndromic features.20 Indeed, in 14

of 18 probands with a deletion in chromosome 1p36, SKI

was deleted in addition to PRDM16 (Table S1). To evaluate

this possibility, we screened our independent nonsyn-

dromic LVNC cohort for mutations in SKI, but no muta-

tions were identified. In addition, we tested for genetic

interactions between PRDM16 and the zebrafish ortholog

of SKI. Coinjection of subthreshold doses of PRDM16 and

SKI MOs reduced cardiac output (Figure 5C), suggesting

significant functional synergy between these two genes

in their effects on contractility (p < 0.0005).
Discussion

By using existing genomic data, we identified PRDM16 in

the region of minimal genomic overlap in individuals

with 1p36 deletion syndrome and cardiomyopathy. We

went on to identify mutations in PRDM16 in two cohorts

of nonsyndromic LVNC and DCM, independently con-

firming a causal role for the gene in these forms of human

myocardial disease. Together these data implicate another

pathway in the spectrum of known monogenic causes of

heart failure and offer the potential for studies of themech-

anisms of this morbid condition and possible therapies.

The 1p36del syndrome is the most common form of

large-scale terminal deletion observed in humans.1 Clearly,

the disruption or dose reduction of multiple different

genes may contribute to the various phenotypes observed

in this syndrome and to the pleiotropic manifestations re-

ported.2–4 We focused on the most specific cardiac pheno-

type present in the individuals with 1p36del syndrome

and were able to identify a minimal interval containing

only part of a single gene (PRDM16). Several other studies

havemapped critical regions within the 1p36 deletion syn-

drome.21,22 Candidate genes for features of 1p36del syn-

drome, including facial clefting anomalies (SKI),20 seizures

(KCNAB2 [MIM 601142]),23 and cranial suture closure

(MMP23 A/B [MIM 603320 and 603321]),24 have been pro-

posed. Gajecka et al.25 suggested five candidate genes,
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among them PRDM16, that might contribute to the

phenotypic feature of LVNC. PRDM16 was anticipated to

play a role in heart development because mutant mice

had gross cardiac ventricular hypoplasia.26

Mutations in SKI have recently been shown to cause

Shprintzen-Goldberg syndrome (MIM 182212) with aortic

aneurysm and a role for SKI in early cardiovascular devel-

opment has been proposed.27,28 Our observation that

loss of function of both SKI and PRDM16 act synergistically

would support the interaction with SKI as a potential

mechanism in some of the known deletions. In 14 of our

18 probands with a deletion in chromosome 1p36, SKI

was deleted in addition to PRDM16. Although there were

no obvious phenotypic differences between probands

with or without a deletion of SKI, our studies raise the pos-

sibility of a modifier effect of SKI in the 1p36del syndrome.

All but one (case 16, arr CGH 1p36(5,400,000–

12,700,000)31) (Table S1) of the individuals with

1p36del syndrome were hemizygous for PRDM16. Though

knockdown of PRDM16 and the single PRDM16 truncation

mutant appear equivalent in our zebrafish model, it is

certainly possible that perturbation or dose reduction of

other genes and/or a long-range regulatory effect29 within

the interval contribute to the cardiac phenotypes

observed. Monosomy 1p36 may not be a simple contig-

uous gene deletion syndrome and deletions of variable

size may account for the characteristic phenotype by posi-

tion effect on one or more genes along the 1p36 region.30

Several hypotheses have been formed, following the

description of different chromosomal rearrangements

occurring next to variants in genes that cause human

developmental disorders.31 In case 16, it is unknown

whether a position effect would be possible because the

distal deletion breakpoint is not adjacent to PRDM16, be-

ing ~2 Mb (2,044,815 bp) away from the proximal bound-

ary of PRDM16. Case 16 was taken from a publicly available

database. Neither PRDM16 nor SKI were deleted and we

could not rule out possible mutations in these genes.

Other possibilities are that this individual represents a



Figure 3. PRDM16 Localization in the Hu-
man and Mouse Heart
(A and B) Immunofluorescence staining of
fetal (A) and adult (B) human left ventricular
myocardium showing PRDM16 (in red) in
the nuclei (in blue) of both cardiomyocytes
(positive for Troponin T, in green, arrow-
heads) and interstitial cells (arrows).
(C) Within the ventricular myocardium of
13.5 dpc mouse embryos, PRDM16 localiza-
tion is detectable in cardiomyocytes of the
compact and trabeculated layer as well as
in epicardial (arrowheads) and endocardial
(arrows) cells.
(D) In the adult mouse heart, PRDM16 is
located primarily in cardiomyocyte nuclei
(identified by WGA membrane staining, in
green, see arrowheads), although some non-
myocytes show weak PRDM16 staining as
well (arrows).
Scale bars represent 25 mm.
phenocopy and that another locus than the one on chro-

mosome 1p36 or a nongenetic etiology is responsible for

this person’s cardiomyopathy.

Notably, the 1p36del syndrome exhibits gender bias,

raising the possibilities of a sex-linked modifier or of

some form of imprinting.2 Out of 18 individuals with

1p36del syndrome reported in this study, 16 were females.

Further work in zebrafish and extent murine models will

help to clarify the mechanistic basis of this effect.

LVNC has recently been classified as a distinct primary

cardiomyopathy with a genetic etiology. Mutations in

genes endoding sarcomere proteins account for 30% of

cases of isolated, nonsyndromic LVNC.13 LVNC is seen

in a number of genetic syndromes, and like DCM has

been associated with neuromuscular disorders such as dys-

trophinopathies and with mitochondrial disease. Many
The American Journal of H
individuals with 1p36del syndrome

that have been published in small and

large studies are deleted for this region

but do not have any features of

LVNC. This observation is in accor-

dance with the observation that

incomplete penetrance is a hallmark

of the cardiomyopathic phenotypes.6

Diagnosis is mostly made by echocardi-

ography, and in previously studied co-

horts some asymptomatic individuals

with 1p36del syndrome with mild

LVNC or DCM may not have been

recognized.

There appears to be a correlation

between the size of the deletion and

severity of some clinical features

although there is no correlation

between the deletion size and number

of observed clinical features.3 Even

individuals with deletions <3 Mb can
present with most of the features associated with mono-

somy 1p36.32 Individuals with overlapping or even

identical regions of deletion demonstrate variable ex-

pression of the phenotype.25 In a case of recurrent mono-

somy 1p36 observed in siblings secondary to potential

germline mosaicism, LVNC was present in both individ-

uals with different severity of the disease.25 Whereas the

one individual showed signs of mild left ventricular

dysfunction with DCM that required anticongestive heart

failure treatment, the cardiomyopathy of the sibling re-

mained clinically silent. Although these cases share the

same underlying molecular etiology of the cardiomyo-

pathic phenotypes, interactions of genetic etiology, back-

ground modifier genes, and/or hemodynamic factors

most probably contribute to the development of the

phenotype.11
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Figure 4. PRDM16 Knockdown and Human PRDM16 Truncation Mutant in a Zebrafish Model
(A) There is significantly reduced heart rate and cardiac output in PRDM16MO and PRDM16mutant animals compared toWT, MO con-
trol, and PRDM16 WT.
(B) In PRDM16MO and PRDM16mutant hearts, there is significant reduction in total cell number and rates of cellular proliferation at 48
hpf that is only partially rescued by PRDM16 WT overexpression.
(C) Time-dependent effect of PRDM16 on cell number and proliferation in WT, PRDM16 MO, PRDM16 mutant, and PRDM16 WT em-
bryos. Plotting cell number during cardiac development reveals that both morphant and mutant fish exhibit reduced cell numbers that
despite changes in proliferation rates are not fully recovered by 96 hpf. The effects of mutant andwild-type PRDM16 constructs appear to
act in opposing directions between 48 or 96 hpf and 72 hpf. The mechanism for this effect is unknown but is not related to changes in
the baseline expression of PRDM16.
One-way ANOVA test: *p < 0.05; **p < 0.005; ***p < 0.0005. The error bars represent the mean 5 SEM.
PRDM16 acts as a transcription factor with zinc finger

DNA-binding domains and positive regulatory (PR),

repressor, and acidic domains. PRDM16 regulates leukamo-

genesis, palatogenesis, neurogenesis, and brown fat devel-

opment.26,33–35 Chromosomal translocations resulting in

increased expression of isoforms of PRDM16 that lack the

PR domain are found recurrently in myelodysplastic

syndrome and acute myeloid leukemias.33 PRDM16 has

been shown to direct brown fat determination and differ-

entiation34 by forming a transcriptional complex with

the active form of C/EBP-b and acting as a critical complex

in the control of the cell fate switch from myoblastic pre-

cursors to brown fat cells.36 PRDM16 has also been

described to have a regulatory role in transforming growth

factor (TGF)-b signaling. A negative effect of PRDM16 on

TGF-b signaling has been demonstrated in vitro and acti-

vated or repressed levels of activity in vivo may disrupt

the delicate balance between cell proliferation and differ-

entiation.26

Interestingly, PRDM16 has a dominant-positive effect on

cardiomyocyte proliferation in zebrafish where either acti-
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vated or repressed levels of activity of PRDM16 impair car-

diomyocyte proliferation (Figure 4C). This reduction in cell

number appears to result from a combination of dimin-

ished proliferation and increased apoptosis, possibly

through effects mediated via TGF-b signaling26 or interac-

tion with C/EBP-b.36 We noted distinctive effects on subse-

quent waves of cardiomyocyte proliferation, suggesting

that mutant and wild-type PRDM16 are acting in opposite

directions, possibly as a result of differential interaction

with developmental partners during the serial waves of

proliferation in the developing heart.

Perturbation of intercellular coupling can lead to cardio-

myopathy and has also been implicated in the regulation

of cardiomyocyte differentiation.37 Specificmutants in car-

diac desmosomal genes38 have suggested abnormalities

along the spectrum of differentiation between adipocyte

and myocyte39 and, together with the discovery of

PRDM16 mutations, implicate a complex role for electrical

or mechanical refinement of a basic transcriptional pro-

gram in refining myocardial differentiation. PRDM16 has

been implicated in the myocyte-adipocyte fate switch



Figure 5. Cell Coupling in a PRDM16 Zebrafish Model and Interaction of PRDM16 with SKI
(A) Loss of PRMD16 leads to partial uncoupling of cardiomyocytes in the zebrafish ventricle. Isochronal maps of wild-type (WT),
PRDM16 WT transgenic, PRDM16 morphant (MO), and PRMD16 mutant transgenic hearts. The lines represent the positions of the ac-
tion potential wavefront at 5ms intervals. The color scale depicts the timing of electrical activation (blue areas activated before red areas).
(B) Mean estimated conduction velocities from the outer curvature of the ventricle (OC) confirm a significant reduction in impulse prop-
agation velocities in morphant and mutant hearts when compared with uninjected controls or wild-type.
(C) PRDM16 and SKI double morphant embryos have a more profound effect on cardiac output, suggesting a synergistic genetic inter-
action.
One-way ANOVA test: *p < 0.05; **p < 0.005; ***p < 0.0005. The error bars represent the mean 5 SEM.
in skeletal muscle,34 and the loss of coupling that charac-

terizes more adipogenic fates may underlie the profound

effects we have observed with PRDM16 knockdown or mu-

tation. The highly orchestrated myocardial coupling

evident in the later stages of cardiogenesis may require a

critical mass of cardiomyocytes or a critical physiologic

stimulus.40 In addition, the emerging role of epigenetic

factors in refining cardiac development, modulating cardi-

omyocyte differentiation, and establishing definitive

cardiac structure and function suggests that there is likely

to be complex interplay among these various mechanisms.

Interestingly, PRDM16 helps maintain the integrity of

mammalian heterochromatin and the structure of the

nuclear lamina.41 Understanding the reduced stimulus

or its transduction failure will provide a unifying frame-

work for the analysis of a wide range of human conditions

and animal model phenotypes associated with cardiomy-

opathy.
The
In conclusion, we show that mutation of the transcrip-

tion factor PRDM16 is an important cause of cardiomyop-

athy in individuals with the chromosome 1p36 deletion

syndrome as well as in nonsyndromic forms of LVNC

and DCM. Our functional studies implicate impaired pro-

liferative capacity during cardiogenesis as a primary mech-

anism of these PRDM16-related cardiomyopathies and

suggest a pathway in human heart failure that may be

amenable to therapeutic intervention.

Supplemental Data

Supplemental Data include five figures and two tables and can be

found with this article online at http://www.cell.com/AJHG/.
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