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Mutations in KARS, Encoding Lysyl-tRNA
Synthetase, Cause Autosomal-Recessive
Nonsyndromic Hearing Impairment DFNB89

Regie Lyn P. Santos-Cortez,1,8 Kwanghyuk Lee,1,8 Zahid Azeem,2,3 Patrick J. Antonellis,4,5

Lana M. Pollock,4,6 Saadullah Khan,2 Irfanullah,2 Paula B. Andrade-Elizondo,1

Ilene Chiu,1 Mark D. Adams,6 Sulman Basit,2 Joshua D. Smith,7 University of Washington
Center for Mendelian Genomics, Deborah A. Nickerson,7 Brian M. McDermott, Jr.,4,5,6

Wasim Ahmad,2 and Suzanne M. Leal1,*

Previously, DFNB89, a locus associated with autosomal-recessive nonsyndromic hearing impairment (ARNSHI), was mapped to chromo-

somal region 16q21–q23.2 in three unrelated, consanguineous Pakistani families. Through whole-exome sequencing of a hearing-

impaired individual from each family, missense mutations were identified at highly conserved residues of lysyl-tRNA synthetase

(KARS): the c.1129G>A (p.Asp377Asn) variant was found in one family, and the c.517T>C (p.Tyr173His) variant was found in the other

two families. Both variants were predicted to be damaging by multiple bioinformatics tools. The two variants both segregated with the

nonsyndromic-hearing-impairment phenotype within the three families, and neither mutation was identified in ethnically matched

controls or within variant databases. Individuals homozygous for KARS mutations had symmetric, severe hearing impairment across

all frequencies but did not show evidence of auditory or limb neuropathy. It has been demonstrated that KARS is expressed in hair cells

of zebrafish, chickens, andmice.Moreover, KARS has strong localization to the spiral ligament region of the cochlea, as well as to Deiters’

cells, the sulcus epithelium, the basilar membrane, and the surface of the spiral limbus. It is hypothesized that KARS variants affect ami-

noacylation in inner-ear cells by interfering with binding activity to tRNA or p38 and with tetramer formation. The identification of rare

KARS variants in ARNSHI-affected families defines a gene that is associated with ARNSHI.
Hearing impairment (HI) affects nearly 300 million people

of all ages globally and increases in prevalence per decade

of life.1 Children and adults with bilateral, moderate-to-

profound HI have a poorer quality of life, which encom-

passes not only problems in physical function but also

socioemotional, mental, and cognitive difficulties.2,3 In

particular, children with congenital HI must be identified

and habilitated within the first 6 months of life so that de-

lays in the acquisition of speech, language, and reading

skills can be prevented.4

Among children with congenital sensorineural HI, more

than 80% do not display syndromic features and ~60%

have a family history of HI or a confirmed genetic etiol-

ogy.5 Because of the complex cellular organization of the

inner ear, hundreds of genes and proteins are predicted

to influence auditory mechanisms. To date, for nonsyn-

dromic HI (NSHI), about 170 loci have been localized

and mutations in ~75 genes have been identified in hu-

mans (Hereditary Hearing Loss Homepage). Of the gene

variants that have been implicated in NSHI, almost 60%

are autosomal recessive (AR) in inheritance, and 95% of

the genes that harbor mutations that cause ARNSHI were

initially mapped and identified in consanguineous fam-
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ilies. The knowledge that has been gained from functional,

expression, and localization studies after the identification

of genes with mutations that cause NSHI has immensely

expanded our understanding of inner-ear physiology.

Previously, an ARNSHI-associated locus, DFNB89, was

mapped to chromosomal region 16q21–q23.2 in two unre-

lated, consanguineous Pakistani families.6 The two fam-

ilies, 4338 and 4406 (Figures 1A and 1B), had maximum

multipoint LOD scores of 6.0 and 3.7, respectively. The ho-

mozygosity regions that overlap in the two families led to

the identification of a 16.1 Mb locus (chr16: 63.6–79.7 Mb)

that includes 180 genes. Additionally, a third consanguin-

eous Pakistani family, 4284 (Figure 1C), was identified, and

showed suggestive linkage to the DFNB89 region with a

maximum multipoint parametric LOD score of 1.93. For

family 4284, linkage analysis was performed for ~6,000

SNP markers that were genotyped across the genome

with the Illumina Linkage Panel IVb.

Consanguineous families 4284, 4338, and 4406 from

Pakistan are affected by ARNSHI, which was found to

segregate with unique haplotypes within the DFNB89 lo-

cus (Figures 1A–1C). From the medical history, no other

risk factors were identified as a possible cause of HI. For
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all HI individuals, there were no reports of vertigo or other

neurologic complaints. Additionally, from physical exami-

nation, no other syndromic, vestibular, neurologic, or sys-

temic abnormalities were detected. One HI individual from

each family, namely V-6 from family 4338, IV-2 from fam-

ily 4406, and IV-2 from family 4284 (Figures 1A–1C), was

tested for air-conduction audiometry (Figure 1D). Bilateral,

symmetric severe-to-profound hearing impairment was

demonstrated in HI individuals from families 4284 and

4338, whereas individual IV-2 from family 4406 had sym-

metric moderate-to-severe hearing impairment across all

frequencies tested (Figure 1D).

Before the commencement of the study, approval was

obtained from the institutional review boards of Quaid-i-

Azam University and Baylor College of Medicine and the

affiliated hospitals. Informed consent was obtained from

all family members who participated in the study. DNA

samples of HI individuals V-7 from family 4338, IV-5

from family 4406, and IV-1 from family 4284 (Figures

1A–1C) were submitted for whole-exome sequencing at

the University of Washington Center for Mendelian Geno-

mics. For families 4338 and 4406, sequence capture was

performed in solution with the Roche NimbleGen SeqCap

EZ Human Exome Library v.2.0 (~36.6 Mb of target

sequence), whereas for family 4284, the NimbleGen Big

Exome 2011 Library (EZ Exome v.3.0 with ~64 Mb target

sequence) was used. Sequencing was performed with an Il-

lumina HiSeq, and average read depths were 1213 for sam-

ple V-7 (family 4338), 99 3 for sample IV-5 (family 4406),

and 53 3 for sample IV-1 (family 4284). Fastq files were

aligned to the human reference sequence (UCSC Genome

Browser hg19) with the Burrows-Wheeler Aligner7 for the

generation of demultiplexed BAM files. Realignment of in-

del regions, recalibration of base qualities, and variant

detection and calling were performed with various compo-

nents of the Genome Analysis Toolkit8 for the production

of VCF files. Variant sites that were of low quality andmore

likely to be false positives were flagged. Annotation was

performed with SeattleSeq 137.

For all variants that were homozygous for the minor

allele and that were identified within the DFNB89

interval through exome sequencing, potentially func-

tional variants, including nonsense, missense, splice-site,

and indel variants, were screened for quality and against

public variant databases dbSNP, 1000 Genomes, and

the National Heart, Lung, and Blood Institute (NHLBI)

Exome Sequencing Project Exome Variant Server. Within

the DFNB89 interval, five rare missense variants within

four genes, namely COG4 (MIM 606976), ZFHX3 (MIM

104155), KARS (MIM 601421), and CNTNAP4 (MIM

610518), were homozygous for the nonreference allele

and were not observed in variant databases (Table 1).

Of these five missense variants, only variants within

KARS were observed in all three families affected by

DFNB89-associated ARNSHI (Table 1). Additionally, for in-

dividual IV-1 from family 4284, only one homozygous

KARS missense variant, c.517T>C (p.Tyr173His) (isoform
The Am
1 [RefSeq accession number NM_001130089.1]), was

found within the DFNB89 locus and not in variant data-

bases and also passed quality measures. This same variant

was also homozygous in individual IV-5 from family

4406. On the other hand, individual V-7 from family

4338 was homozygous for KARS variant c.1129G>A

(p.Asp377Asn).

For missense variants that were of good quality and not

observed in variant databases, five bioinformatics tools

were used to evaluate potential functionality: PolyPhen-

2,9 SIFT,10 MutationTaster,11 MutationAssessor,12 and the

likelihood ratio test (LRT).13 Only the two variants within

KARS—c.1129G>A (p.Asp377Asn) and c.517T>C

(p.Tyr173His)—were deemed damaging by all five bioin-

formatics tools used for prediction of functionality of

missense variants (Table 1).

To estimate the evolutionary conservation of the nucle-

otides and the amino acid residues at which the variants

occur, we derived GERP14 and phyloP15 (with the phy-

loP46wayall option) scores from the UCSC Genome

Browser. Nucleotides c.1129G and c.517T within KARS

are highly conserved according to both PhyloP and GERP

scores (Table 1). Protein sequences from nonhuman spe-

cies were derived from the UniProtKB database with blastp

and were aligned with ClustalW2.16 Multiple-sequence

alignment of human KARS with 165 nonhuman KARS

and similar proteins from primates to fungi provided

further strong evidence of evolutionary conservation at

the amino acid residues where the two variants occur

(Figure 1E and Figure S1, available online). The tyrosine

residue at position 173 is highly conserved except in three

insect species, whereas the aspartic acid residue at position

377 is identical in all aligned sequences (Figure S1).

We sequenced variants predicted to be damaging in all

family members and 325 ethnically matched control indi-

viduals to check for segregation with HI. We designed

primers by using Primer3 software17 to amplify exons 5

and 9 of KARS. PCR-amplified DNA products were purified

with ExoSAP-IT (Affymetrix-USB) and sequenced with the

BigDye Terminator v.3.1 Cycle Sequencing Kit and an

Applied Biosystems 3730 DNA Analyzer (Life Technolo-

gies). DNA sequences were analyzed with Sequencher soft-

ware v.4.9 (Gene Codes). DNA samples from all available

family members were sequenced for KARS variant

c.1129G>A (p.Asp377Asn) in family 4338 and c.517T>C

(p.Tyr173His) in both families 4284 and 4406 (Figures

1A–1C and 1F). In all three families, the KARS variants

segregated with HI status. Neither KARS variant was identi-

fied in 650 ethnically matched control chromosomes.

Previously, an individual with both recessive intermedi-

ate Charcot-Marie-Tooth disease B (MIM 613641) and

bilateral acoustic neuroma was described in the literature

to have compound-heterozygous mutations in KARS.18

Additional testing was performed for the evaluation of

both conditions within the families affected by DFNB89-

associated ARNSHI. For HI individuals IV-2 and IV-7

from family 4406 (Figure 1B), tests for tympanometry,
erican Journal of Human Genetics 93, 132–140, July 11, 2013 133
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Figure 1. Pedigree Drawings, Clinical Data, and Mutation Information for Families Affected by KARS Variants
(A–C) Family 4338 (A), affected by the c.1129G>A (p.Asp377Asn) variant, and families 4406 (B) and 4284 (C), affected by the c.517T>C
(p.Tyr173His) variant segregating with hearing impairment. Each family has a unique haplotype within the DFNB89 locus.
(D) Air-conduction audiograms for individuals V-6 of family 4338 (black solid), IV-2 of family 4406 (gray), and IV-2 of family 4284 (black
dotted). Circles are for the right ear, and crosses are for the left ear. All three individuals have symmetric, moderate-to-profound impair-
ment across all frequencies.
(E) Multiple-sequence alignment showing evolutionary conservation of amino acid residues Asp377 and Tyr173 (black arrows) in hu-
mans, chickens, mice, and zebrafish.
(F) Chromatograms comparing an HI individual who is homozygous for each KARS variant, a heterozygous carrier, and an individual
with normal hearing.
(G) Auditory brainstem response (ABR) tracings at 80–100 dB from two individuals from family 4406. Red lines are for the right ear, and
blue lines are for the left ear. Crosses mark the latency peaks at waves I, III, and V. ABR waveforms were well formed in both individuals
but showed unilateral delay in interpeak latencies I-III or I-Vand a difference> 0.2ms in the interaural latencies of wave V. For individual

(legend continued on next page)
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Table 1. Bioinformatic Evaluation of Rare Missense Variants Observed from Exome Sequence Data to Be within the DFNB89 Region at
16q21–q23.2

Sample ID

4406 IV-5 4406 IV-5 4406 IV-5 and 4284 IV-1 4338 V-7 4338 V-7

hg19 coordinate 70,543,852 72,830,796 75,670,401 75,665,624 76,587,774

Gene COG4 ZFHX3 KARS KARS CNTNAP4

RefSeq accession number NM_015386.2 NM_006885.3 NM_001130089.1 NM_001130089.1 NM_033401.3

Nucleotide mutation c.811A>G c.5785C>T c.517T>C c.1129G>A c.3703G>A

PhyloPa 2.37 1.18 4.89 6.04 2.24

GERPb 5.61 2.48 5.96 6.03 3.47

Amino acid substitution p.Ile271Val p.Pro1929Ser p.Tyr173His p.Asp377Asn p.Ala1235Thr

PolyPhen-2c benign benign probably damaging probably damaging benign

SIFT tolerated tolerated damaging damaging tolerated

MutationTaster disease causing polymorphism disease causing disease causing disease causing

Mutation Assessor neutral neutral functional, high functional, high not available

LRT deleterious neutral deleterious deleterious deleterious

All variants listed are absent from publically available databases. The following abbreviation is used: LRT, likelihood ratio test.
aPhyloP scores indicate nucleotide conservation under a null hypothesis of neutral evolution.
bGERP provides position-specific estimates of evolutionary constraint.
cBased on HumVar data set for PolyPhen-2.
otoacoustic emissions (OAEs), and auditory brainstem

response (ABR) were performed (Figure 1G). In both HI in-

dividuals, OAEs were absent and well-formed ABR wave-

forms were present (Figure 1G), thus ruling out auditory

neuropathy and supporting the occurrence of cochlear pa-

thology, particularly of the outer hair cells. Although the

ABR waveforms in both individuals showed unilateral

delay in interpeak latencies I-III or I-V and a difference >

0.2 ms in the interaural latencies of wave V (Figure 1G

and Table S1), the delay in interpeak I-III or I-V for individ-

ual IV-2 was seen only at 100 dB, but not at 90 dB. Addi-

tionally, individual IV-7 had an absent compliance peak

during tympanometry of the left ear, which is suggestive

of otitis media or middle-ear effusion at the time of testing.

To further exclude Charcot-Marie-Tooth disease (CMT), we

tested HI individual V-6 from family 4338 (Figure 1A) for

nerve conduction velocity of the median, tibial, common

peroneal, and sural nerves and for electromyography of

the abductor pollicis brevis, first dorsal interosseous,

extensor hallucis longus, and tibialis anterior muscles. All

motor and sensory action potentials were bilaterally

normal; thus, in this individual, CMT is unlikely.

To predict the possible effect of KARS variants on protein

structure, we used InterProScan19 to search for protein sig-

natures within KARS and used SWISS-MODEL20 for protein

modeling. The KARS c.517T>C (p.Tyr173His) variant was

identified in two families (4284 and 4406) affected by
IV-2, the delay in interpeak I-III or I-V was seen only at 100 dB, but no
peak from tympanometry on the left ear, suggesting otitis media or m
latency delays on the left ear compared to the right ear. Otoacoustic e
out auditory neuropathy.

The Am
DFNB89-associated ARNSHI. When modeled on the basis

of the known structure of human KARS (Protein Data

Bank ID 3BJU),21 position 173 occurs within b strand 2,

and the change from the aromatic side chain of tyrosine

to the basic side chain of histidine results in the loss of

an H-bond with the asparagine residue at position 201

within a-helix 3 (Figures S2A and S2B). MutationTaster pre-

dicted the p.Tyr173His variant to cause the loss of the b

strand. The residue at position 173 also forms two H-bonds

with valine at position 184 within b strand 3; however,

despite the amino acid change, these two bonds, which

contribute to the maintenance of the antiparallel sheet,

remain unchanged (Figures S2A and S2B).

The tyrosine residue at position 173 is predicted to occur

within the oligomer-binding (OB)-foldmotif of thenucleic-

acid- or anticodon-binding domain. The OB-fold motif is

composed of a highly conserved five-stranded b-barrel

that is further organized into a b-meander made up of b

strands 1–3 and a b-hairpin made up of b strands 4 and 5;

the b-meander and b-hairpin are connected by a less

conserved a-helix (i.e., a-helix 3 in KARS), which caps the

entire b-barrel.22 Of the b-barrel components in KARS,

strands b-1 and b-2 are least resistant to denaturation,23

which might imply the importance of the stability of these

strands to the domain structure. The tyrosine residue at po-

sition173 lies in themiddle of the b-2 strand, and the loss of

theH-bondwith an asparagine residue ata-helix 3probably
t at 90 dB. Additionally, individual IV-7 had an absent compliance
iddle-ear effusion at the time of testing, which could explain the

missions (OAEs) were bilaterally absent in both individuals, ruling
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Figure 2. Expression of KARS in Chicken
Hair Cells
Expression of KARS in purified chicken
hair cells was detected by RNA-seq. The
alignment of reads was visualized with
the Integrative Genomics Viewer; blue
read color represents forward orientation
relative to the reference genome, and red
color represents reverse reads.
affects the conformation of the b-barrel within the OB-fold

motif. Moreover, the tyrosine residue at position 173 is

adjacent to a phenylalanine residue that aligns with the

active binding site of the anticodon-binding domain of

aspartyl-tRNA synthetase (DARS).22 The p.Tyr173His

variant is therefore hypothesized to interfere with tRNA

binding and consequently the catalytic activity of KARS.

For family 4338, the KARS c.1129G>A (p.Asp377Asn)

variant was found to segregate with HI. For position 377

within a-helix 9 of KARS, when the acidic side chain of

the aspartic acid residue is changed to the amide side chain

of asparagine, the H-bonds with glutamic acid at position

380 and isoleucine at 381 are maintained (Figures S2C

and S2D). On the other hand, one out of three H-bonds

with the aspartic acid residue at position 374, particularly

the bond between the amine group at 374 and the

carboxyl side chain at 377, is lost (Figures S2C and S2D).

Also, the amino acid change introduces an H-bond with

the lysine residue at position 126 of another KARS mono-

mer within the tetrameric structure (Figures S2C and

S2D). The amide side chain of asparagine has a different

rotation angle than does the carboxyl side chain of aspartic

acid. MutationTaster predicted the p.Asp377Asn variant

to cause the loss of the a-helical structure. It can be seen

that the H-bond-formation changes due to p.Asp377Asn

interfere with the formation of the a-helix and cause the

subsequent loss of the H-bond between the C¼O group

of tyrosine at position 375 and the NH group of leucine

at 378 (Figures S2C and S2D).

In addition to having a role in charging lysyl-tRNA mol-

ecules, KARS plays a role in the stabilization of the multi-

synthetase complex (MSC) because of the high affinity of

MSC scaffold proteins (e.g., p38) to KARS.24 The aspartic

acid residue at position 377 within a-helix 9 of the amino-

acylation domain is three residues upstream of the KARS

tetramer interface that not only creates binding surfaces

for KARS dimers to interact but also binds p38 scaffolding

protein within the MSC.21 Loss of a-helix 9 due to the

c.1129G>A (p.Asp377Asn) variant that was identified in

family 4338 is predicted to affect the configuration of the
136 The American Journal of Human Genetics 93, 132–140, July 11, 2013
tetramer interface. Additionally, the

fact that the p.Asp377Asn variant

causes the gain of an H-bond with

another KARS monomer might affect

dimer or tetramer formation. KARS is

least active in aminoacylation as a

tetramer that is unbound to p38, whereas the p38-bound

KARS dimer and tetramer are both more than twice as

active as the unbound tetramer.25 The p.Asp377Asn

variant might also affect KARS activity by changing the

equilibrium of the bound and unbound dimer-tetramer

forms of KARS.

To further elucidate the role of KARS in hearing, we

tested the occurrence of KARS cDNA in hair cells in

chickens, zebrafish, and mice. All animals were kept with

the approval of the Case Western Reserve University Insti-

tutional Animal Care and Use Committee. Sensory patches

were dissected from white leghorn chickens that were less

than 3 weeks old and incubated for 20 min in dissociation

chicken saline solution (154mMNaCl, 6 mM KCl, 0.1 mM

CaCl2, 8 mM glucose, and 5 mM HEPES [pH ¼ 7.4]) with

Type XXVI endopeptidase (Sigma-Aldrich) at 0.1 mg/ml.

After trituration, 200 hair cells were isolated by picking

with a glass micropipette.26 RNA was isolated from these

cells, and this was followed by synthesis and amplification

of cDNA (Ovation RNA-Seq System, NuGen Technologies),

which was subjected to massively parallel sequencing with

an Illumina HiScan for the production of single-end reads.

Quality control was performed on the raw sequencing data

with FASTQC software, and TopHat27 was used for aligning

the reads to the galGal3 reference genome. Cufflinks28 was

then used on these alignment files for the generation of a

transcriptome assembly. There were 103,045,330 total

mapped reads. Expression values for each transcript were

calculated as read counts (1,012 reads aligned to KARS

and 1,286 reads aligned to protocadherin 15 or PCDH15),

and the read alignments to galGal4 were viewed with the

Integrated Genome Viewer29 through the Galaxy plat-

form.30–32 KARS is expressed in chicken hair cells (Figure 2),

as determined by massively parallel sequencing of the hair

cell transcriptome. The reads per kilobase per million map-

ped reads was 4.61 for KARS (RefSeq NM_001030583) and

1.84 for PCDH15 (RefSeq NM_001044654), a gene which is

known to be expressed specifically in hair cells.33

For RT-PCR experiments, zebrafish cDNA was produced

from purified adult hair cells, adult maculae, and whole
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Figure 3. Expression and Localization of Kars in Zebrafish and
Mice
RT-PCR analyses of zebrafish (A) and mouse (B) Kars mRNAs with
the use of three separate primer sets for each species (Table S2).
Tick marks in (A) and (B) correspond to molecular weights of
500 bp (upper) and 400 bp (lower). Confocal images of whole-
mount mouse vestibular tissue (C and D) and cochlear cryosec-
tions (E–H) are displayed. Scale bars represent 1 mm in (A) and
(B) and 10 mm in (C)–(H).
(A) Agarose gel confirms the expected amplicon size with the use
of primer set 1, directed toward kars cDNA with zebrafish hair
cell (HC), macula (M), and whole fish (WF) cDNA templates
(lanes 1, 2, and 3, respectively). No product was observed
without the template (–) (lane 4). The same pattern of template
cDNAs was repeated for primer sets 2 (lanes 5–8) and 3 (lanes
9–12).
(B) Agarose gel confirms the expected Kars amplicon size with the
use of primer set 1 and mouse macula cDNA (lane 1), but no prod-
uct was observed without the template (lane 2). The same pattern
of template cDNA was used for primer sets 2 (lanes 3–4) and 3
(lanes 5–6).
(C) Mouse vestibular tissue labeled with KARS polyclonal antibody
(green) and phalloidin (red) reveals the broad distribution of KARS
in hair cells and supporting cells.
(D) Control mouse vestibular tissue labeled with only secondary
antibody and phalloidin.
(E) Mouse organ of Corti section labeled with KARS antibody and
phalloidin demonstrates KARS localization to inner hair cells,
outer hair cells, and supporting cells. Hair cell nuclei are denoted
by asterisks.
(F) Control organ of Corti tissue labeled exclusively with second-
ary antibody.

The Am
embryos. Adult hair cell and macula cDNA were produced

as previously described.26 To make cDNA from the whole

fish, we isolated RNA from approximately 20 embryos

that were 7 days postfertilization (RNeasy Mini Kit,

QIAGEN) and used it to synthesize randomly primed

cDNA (SuperScript III Reverse Transcriptase, Life Technolo-

gies). We followed the same procedure to produce cDNA

from maculae of three adult mice of the FVB/NJ strain.

PCR amplifications were performed (Ex Taq DNA Polymer-

ase, Takara Bio) with interexonic primers designed to

recognize different exons of Kars of either the zebrafish

or the mouse. Each primer set (Table S2) was used with

PCR parameters designed to amplify a segment of the

Kars cDNA, but not the genomic locus. Kars expression

was detected in zebrafish hair cells and in maculae of

both zebrafish and mice (Figures 3A and 3B).

For immunolabeling experiments, 6- to 12-month-old

FVB/NJ mice were used. The vestibular tissue was extracted

and fixed in 4% paraformaldehyde (PFA) in PBS for 1 hr. Af-

ter three washes with PBS, the tissue was permeabilized

with 0.05% Triton X-100 in PBS for 2 hr and then blocked

with 1% BSA in 0.05% Triton X-100 for 2 hr. The tissue was

then incubated overnight at 4�C with primary antibody

(rabbit polyclonal to Lysyl tRNA synthetase ab31532, Ab-

cam) at a 1:300 dilution in blocking solution. This anti-

body has been effectively used for immunolabeling fixed

cultured cells.34 After a 30 min wash in PBS, the tissue

was incubated with secondary antibody (Alexa Fluor 488

goat anti-rabbit IgG, Life Technologies) at a 1:200 dilution,

and actin filaments were labeled with phalloidin (Alexa

Fluor 568 phalloidin, Life Technologies) at a 1:50 dilution.

After a final 30 min wash in PBS, the tissue was mounted

on a slide with mounting medium (Vectashield, Vector

Laboratories). For immunolabeling of the cochlea, the in-

ternal ears of mice were removed, fixed, and sectioned as

previously described.26 Sections were postfixed with 4%

PFA for 15 min and then washed three times with PBS.

We performed antigen retrieval by incubating sections

for 5 min with 1% sodium dodecyl sulfate and washing

them three times with PBS. Sections were blocked with

5% goat serum and 0.1% Triton X-100 in PBS for 1 hr. Spec-

imens were sequentially incubated with primary and sec-

ondary antibodies diluted in 5% goat serum and 0.1%

Triton X-100. Prior to imaging, sections were set in Vecta-

shield with a coverslip. All immunolabeled images were

captured with a laser-scanning confocal microscope (Leica

Microsystems) and a 403 oil-immersion objective.

Hair cells of the vestibular system exhibited labeling

with KARS antibody (Figures 3C and 3D). Additionally,

within the mouse organ of Corti, KARS was localized to

the inner and outer hair cells, Deiters’ cells, and the basilar

membrane (Figure 3E). The tectorial membrane showed a
(G) A cochlear section reveals KARS localization to an area that
contains otic fibrocytes (arrowhead). Localization to this area
was observed in 41% (n ¼ 21) of sections.
(H) Control, cochlear section labeled with only secondary anti-
body and phalloidin.
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strong affinity for KARS antibody, and KARS labeling was

strongest within the spiral ligament, particularly in

the area containing type II and Type IV fibrocytes

(Figure 3G). KARS was also strongly localized to the outer

and inner sulcus cells and spiral limbus epithelium. On

the other hand, KARS showed weak localization to the stria

vascularis, Reissner’s membrane, and cochlear nerve end-

ings (Figure 3G).

In this report, three ARNSHI-affected families that segre-

gate different haplotypes overlapping within the DFNB89

interval6 were found to each have a missense mutation

within KARS, which encodes a ubiquitously expressed pro-

tein, lysyl-tRNA synthetase (UniGene 131351 – Hs.3100).

Many genes that are involved in the etiology of ARNSHI

also encode ubiquitously expressed proteins, e.g., ESRRB

(DFNB35),35 HGF (DFNB39),36 ILDR1 (DFNB42),37 and

MSRB3 (DFNB74)38 to name a few.

Fourteen human phenotypes, all of which manifest as

neurologic defects, are due to mutations in amino-acyl

tRNA synthetase (ARS)-encoding genes, nine of which

are mitochondrial. Of these phenotypes, five include

sensorineural hearing impairment, namely Perrault syn-

drome (from mutations in mitochondrial leucyl-tRNA

synthetase 2 [LARS2 [MIM 604544]39 and histidyl-tRNA

synthetase 2 [HARS2 [MIM 600783]),40 Usher syndrome

type IIIB (MIM 614504) (caused by a homozygous variant

in cytoplasmic histidyl-tRNA synthetase [HARS (MIM

142810)]),41 CMT type 2N (MIM 613287) (due to a variant

in dominant alanyl-tRNA synthetase [AARS (MIM

601065)]),42 and pontocerebellar hypoplasia type 6

(caused by compound-heterozygous mutations in

arginyl-tRNA synthetase 2 [RARS2 (MIM 611524)]).43

Functional studies for the missense mutations in these

ARS-encoding genes showed adequate localization but

decreased aminoacylation activity.40–42 Alternatively, ARS

variants that have normal enzymatic and localizing capa-

bilities can also have decreased aminoacylation activity

as a result of misfolding and failure to adopt a globule-

like state.44

For KARS, studies using bacteria and cultured mamma-

lian cell lines have demonstrated that KARS mutations

result in a temperature-regulated decrease in KARS activity

or cell apoptosis.45,46 An individual with CMT was found

to have compound-heterozygous KARS variants18

c.398T>A (p.Leu133His) and a duplication of TT nucleo-

tides, which results in a frameshift change and leads to a

null allele via nonsense-mediated decay. It was previously

shown that these two KARS variants significantly reduce

the enzyme activity of the protein.18 Additional testing

in HI individuals from the two families affected by

DFNB89-associated ARNSHI ruled out auditory neuropa-

thy and CMT, thus identifying NSHI as a phenotype asso-

ciated with KARS mutations.

KARS mRNA was detected in isolated hair cells of

chickens and zebrafish, and additional mouse studies

demonstrated strong localization of KARS to otic fibrocytes

and the hair cells and supporting cells of the cochlea. The
138 The American Journal of Human Genetics 93, 132–140, July 11, 2
presence of this protein within inner-ear structures that are

involved in mechanotransduction provides further evi-

dence of a role for KARS in hearing. Because of the localiza-

tion pattern of KARS within the cochlea, perturbations in

aminoacylationmight affect many of the cellular processes

of the different specialized cells of the cochlea and there-

fore result in hearing impairment. The identification of

rare KARS variants in ARNSHI-affected families defines a

gene that is associated with NSHI.
Supplemental Data

Supplemental Data include two figures and two tables and can be

found with this article online at http://www.cell.com/AJHG.
Acknowledgments

We are very thankful to the families who participated in the study.

This study was funded by grants DC003594, DC011651, and

DC009437 from the National Institute on Deafness and Other

Communication Disorders of the National Institutes of Health

(NIH), grant HG006493 from the National Human Genome

Research Institute of the NIH, and the Higher Education Commis-

sion of Pakistan. Genotyping of the families was performed at the

Center for Inherited Disease Research, which is funded through

the NIH to The Johns Hopkins University under contract number

N01-HG-065403.

Received: April 9, 2013

Revised: May 2, 2013

Accepted: May 20, 2013

Published: June 13, 2013
Web Resources

The URLs for data presented herein are as follows:

1000 Genomes, http://www.1000genomes.org

Burrows-Wheeler Aligner, http://bio-bwa.sourceforge.net/

ClustalW2, http://www.ebi.ac.uk/Tools/msa/clustalw2/

Cufflinks, http://cufflinks.cbcb.umd.edu/

dbSNP, http://www.ncbi.nlm.nih.gov/projects/SNP

FASTQC, http://www.bioinformatics.babraham.ac.uk/projects/

fastqc/

Galaxy, https://main.g2.bx.psu.edu/

Genome Analysis Toolkit, http://www.broadinstitute.org/gatk/

Hereditary Hearing Loss Homepage, http://hereditaryhearing

loss.org

Integrative Genomics Viewer, www.broadinstitute.org/igv/

InterProScan, http://www.ebi.ac.uk/Tools/pfa/iprscan/

Likelihood Ratio Test, http://www.genetics.wustl.edu/jflab/

MutationAssessor, http://mutationassessor.org

MutationTaster, http://www.mutationtaster.org

NHLBI Exome Sequencing Project (ESP) Exome Variant Server,

http://evs.gs.washington.edu/EVS/

Online Mendelian Inheritance in Man (OMIM), http://www.

omim.org/

PolyPhen-2, http://genetics.bwh.harvard.edu/pph2/

Primer3, http://primer3.wi.mit.edu/

RefSeq, http://www.ncbi.nlm.nih.gov/RefSeq
013

http://www.cell.com/AJHG
http://www.1000genomes.org
http://bio-bwa.sourceforge.net/
http://www.ebi.ac.uk/Tools/msa/clustalw2/
http://cufflinks.cbcb.umd.edu/
http://www.ncbi.nlm.nih.gov/projects/SNP
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://main.g2.bx.psu.edu/
http://www.broadinstitute.org/gatk/
http://hereditaryhearingloss.org
http://hereditaryhearingloss.org
http://www.broadinstitute.org/igv/
http://www.ebi.ac.uk/Tools/pfa/iprscan/
http://www.genetics.wustl.edu/jflab/
http://mutationassessor.org
http://www.mutationtaster.org
http://evs.gs.washington.edu/EVS/
http://www.omim.org/
http://www.omim.org/
http://genetics.bwh.harvard.edu/pph2/
http://primer3.wi.mit.edu/
http://www.ncbi.nlm.nih.gov/RefSeq


SeattleSeq Annotation 137, http://snp.gs.washington.edu/

SeattleSeqAnnotation137/

SIFT, http://sift.jcvi.org/

SWISS-MODEL, http://swissmodel.expasy.org/

TopHat, http://tophat.cbcb.umd.edu/

UCSC Genome Browser, http://genome.ucsc.edu/

UniGene, http://www.ncbi.nlm.nih.gov/unigene/

UniProt, http://www.uniprot.org/
References

1. Lin, F.R.,Niparko, J.K., andFerrucci, L. (2011).Hearing lossprev-

alence in theUnited States. Arch. Intern.Med. 171, 1851–1852.

2. Fellinger, J., Holzinger, D., Sattel, H., and Laucht, M. (2008).

Mental health and quality of life in deaf pupils. Eur. Child

Adolesc. Psychiatry 17, 414–423.

3. Chia, E.M.,Wang, J.J., Rochtchina, E., Cumming, R.R., Newall,

P., and Mitchell, P. (2007). Hearing impairment and health-

related quality of life: the Blue Mountains Hearing Study. Ear

Hear. 28, 187–195.

4. Yoshinaga-Itano, C., Sedey, A.L., Coulter, D.K., and Mehl, A.L.

(1998). Language of early- and later-identified children with

hearing loss. Pediatrics 102, 1161–1171.

5. Yaeger, D., McCallum, J., Lewis, K., Soslow, L., Shah, U., Potsic,

W., Stolle, C., and Krantz, I.D. (2006). Outcomes of clinical ex-

amination and genetic testing of 500 individuals with hearing

loss evaluated through a genetics of hearing loss clinic. Am. J.

Med. Genet. A. 140, 827–836.

6. Basit, S., Lee, K., Habib, R., Chen, L., Umm-e-Kalsoom, Santos-

Cortez, R.L., Azeem, Z., Andrade, P., Ansar, M., Ahmad, W.,

and Leal, S.M. (2011). DFNB89, a novel autosomal recessive

nonsyndromic hearing impairment locus on chromosome

16q21-q23.2. Hum. Genet. 129, 379–385.

7. Li, H., and Durbin, R. (2009). Fast and accurate short read

alignment with Burrows-Wheeler transform. Bioinformatics

25, 1754–1760.

8. McKenna, A., Hanna, M., Banks, E., Sivachenko, A., Cibulskis,

K., Kernytsky, A., Garimella, K., Altshuler, D., Gabriel, S., Daly,

M., andDePristo,M.A. (2010). The GenomeAnalysis Toolkit: a

MapReduce framework for analyzing next-generation DNA

sequencing data. Genome Res. 20, 1297–1303.

9. Adzhubei, I.A., Schmidt, S., Peshkin, L., Ramensky, V.E., Gera-

simova, A., Bork, P., Kondrashov, A.S., and Sunyaev, S.R.

(2010). A method and server for predicting damaging

missense mutations. Nat. Methods 7, 248–249.

10. Ng, P.C., and Henikoff, S. (2001). Predicting deleterious amino

acid substitutions. Genome Res. 11, 863–874.

11. Schwarz, J.M., Rödelsperger, C., Schuelke, M., and Seelow, D.

(2010). MutationTaster evaluates disease-causing potential of

sequence alterations. Nat. Methods 7, 575–576.

12. Reva, B., Antipin, Y., and Sander, C. (2011). Predicting the

functional impact of protein mutations: application to cancer

genomics. Nucleic Acids Res. 39, e118.

13. Chun, S., and Fay, J.C. (2009). Identification of deleterious

mutations within three human genomes. Genome Res. 19,

1553–1561.

14. Cooper, G.M., Stone, E.A., Asimenos, G., Green, E.D., Batzo-

glou, S., and Sidow, A.; NISC Comparative Sequencing Pro-

gram. (2005). Distribution and intensity of constraint in

mammalian genomic sequence. Genome Res. 15, 901–913.
The Am
15. Pollard, K.S., Hubisz, M.J., Rosenbloom, K.R., and Siepel, A.

(2010). Detection of nonneutral substitution rates on

mammalian phylogenies. Genome Res. 20, 110–121.

16. Larkin, M.A., Blackshields, G., Brown, N.P., Chenna, R.,

McGettigan, P.A., McWilliam, H., Valentin, F., Wallace, I.M.,

Wilm, A., Lopez, R., et al. (2007). Clustal W and Clustal X

version 2.0. Bioinformatics 23, 2947–2948.

17. Rozen, S., and Skaletsky, H.J. (2000). Primer3 on theWWWfor

general users and for biologist programmers. In Bioinformat-

ics Methods and Protocols: Methods in Molecular Biology, S.

Krawetz and S. Misener, eds. (New Jersey: Humana Press),

pp. 365–386.

18. McLaughlin, H.M., Sakaguchi, R., Liu, C., Igarashi, T., Pehli-

van, D., Chu, K., Iyer, R., Cruz, P., Cherukuri, P.F., Hansen,

N.F., et al.; NISC Comparative Sequencing Program. (2010).

Compound heterozygosity for loss-of-function lysyl-tRNA

synthetasemutations in a patient with peripheral neuropathy.

Am. J. Hum. Genet. 87, 560–566.

19. Zdobnov, E.M., and Apweiler, R. (2001). InterProScan—an

integration platform for the signature-recognition methods

in InterPro. Bioinformatics 17, 847–848.

20. Arnold, K., Bordoli, L., Kopp, J., and Schwede, T. (2006). The

SWISS-MODEL workspace: a web-based environment for

protein structure homology modelling. Bioinformatics 22,

195–201.

21. Guo, M., Ignatov, M., Musier-Forsyth, K., Schimmel, P., and

Yang, X.L. (2008). Crystal structure of tetrameric form of hu-

man lysyl-tRNA synthetase: Implications for multisynthetase

complex formation. Proc. Natl. Acad. Sci. USA 105, 2331–

2336.

22. Murzin, A.G. (1993). OB(oligonucleotide/oligosaccharide

binding)-fold: common structural and functional solution

for non-homologous sequences. EMBO J. 12, 861–867.

23. Alexandrescu, A.T., Jaravine, V.A., Dames, S.A., and Lamour,

F.P. (1999). NMR hydrogen exchange of the OB-fold protein

LysN as a function of denaturant: the most conserved ele-

ments of structure are the most stable to unfolding. J. Mol.

Biol. 289, 1041–1054.

24. Robinson, J.C., Kerjan, P., and Mirande, M. (2000). Macromo-

lecular assemblage of aminoacyl-tRNA synthetases: quantita-

tive analysis of protein-protein interactions and mechanism

of complex assembly. J. Mol. Biol. 304, 983–994.

25. Fang, P., Zhang, H.M., Shapiro, R., Marshall, A.G., Schim-

mel, P., Yang, X.L., and Guo, M. (2011). Structural context

for mobilization of a human tRNA synthetase from its cyto-

plasmic complex. Proc. Natl. Acad. Sci. USA 108, 8239–

8244.

26. McDermott, B.M., Jr., Baucom, J.M., and Hudspeth, A.J.

(2007). Analysis and functional evaluation of the hair-cell

transcriptome. Proc. Natl. Acad. Sci. USA 104, 11820–11825.

27. Trapnell, C., Pachter, L., and Salzberg, S.L. (2009). TopHat:

discovering splice junctions with RNA-Seq. Bioinformatics

25, 1105–1111.

28. Trapnell, C., Williams, B.A., Pertea, G., Mortazavi, A., Kwan,

G., van Baren, M.J., Salzberg, S.L., Wold, B.J., and Pachter, L.

(2010). Transcript assembly and quantification by RNA-Seq

reveals unannotated transcripts and isoform switching during

cell differentiation. Nat. Biotechnol. 28, 511–515.
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