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Gain-of-Function Mutations in RIT1 Cause
Noonan Syndrome, a RAS/MAPK Pathway Syndrome

Yoko Aoki,1,* Tetsuya Niihori,1 Toshihiro Banjo,2 Nobuhiko Okamoto,3 Seiji Mizuno,4 Kenji Kurosawa,5

Tsutomu Ogata,6 Fumio Takada,7 Michihiro Yano,8 Toru Ando,9 Tadataka Hoshika,10

Christopher Barnett,11,12 Hirofumi Ohashi,13 Hiroshi Kawame,14 Tomonobu Hasegawa,15

Takahiro Okutani,16 Tatsuo Nagashima,17 Satoshi Hasegawa,18 Ryo Funayama,19 Takeshi Nagashima,19

Keiko Nakayama,19 Shin-ichi Inoue,1 Yusuke Watanabe,2 Toshihiko Ogura,2 and Yoichi Matsubara1,20

RAS GTPases mediate a wide variety of cellular functions, including cell proliferation, survival, and differentiation. Recent studies have

revealed that germline mutations and mosaicism for classical RAS mutations, including those in HRAS, KRAS, and NRAS, cause a wide

spectrum of genetic disorders. These include Noonan syndrome and related disorders (RAS/mitogen-activated protein kinase [RAS/

MAPK] pathway syndromes, or RASopathies), nevus sebaceous, and Schimmelpenning syndrome. In the present study, we identified

a total of nine missense, nonsynonymous mutations in RIT1, encoding a member of the RAS subfamily, in 17 of 180 individuals

(9%) with Noonan syndrome or a related condition but with no detectable mutations in known Noonan-related genes. Clinical

manifestations in the RIT1-mutation-positive individuals are consistent with those of Noonan syndrome, which is characterized by

distinctive facial features, short stature, and congenital heart defects. Seventy percent of mutation-positive individuals presented

with hypertrophic cardiomyopathy; this frequency is high relative to the overall 20% incidence in individuals with Noonan syndrome.

Luciferase assays in NIH 3T3 cells showed that five RIT1 alterations identified in children with Noonan syndrome enhanced ELK1 trans-

activation. The introduction of mRNAs of mutant RIT1 into 1-cell-stage zebrafish embryos was found to result in a significant increase of

embryos with craniofacial abnormalities, incomplete looping, a hypoplastic chamber in the heart, and an elongated yolk sac. These re-

sults demonstrate that gain-of-function mutations in RIT1 cause Noonan syndrome and show a similar biological effect to mutations in

other RASopathy-related genes.
RAS GTPases are monomeric G proteins with a

molecular mass of 20–40 kDa and cycle between a

GTP-bound active and a GDP-bound inactive state. The

members of the RAS superfamily are structurally classified

into at least five subfamilies: RAS, Rho, Rab, Sar1/Arf,

and Ran families.1,2 The Ras subfamily consists of classical

RAS proteins (HRAS, KRAS, and NRAS), RRAS, RRAS2

(TC21), RRAS3 (MRAS), RAPs, RAEB, RALs, RIT1,

and RIT2 (RIN). RAS proteins interact with multiple

effectors, including RAF kinases, phosphatidylinositol 3-

kinase (PI-3 kinase), RalGDS, p120GAP, MEKK1, RIN1,

AF-6, phospholipase C epsilon, and the Nore-MST1

complex, and activate multiple downstream signaling

cascades.1,2 Of these signaling pathways, the RAS/

mitogen-activated protein kinase (RAS/MAPK) signaling

pathway plays a central role in cellular proliferation and

differentiation.
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Noonan syndrome (MIM 163950) is an autosomal-domi-

nant disorder characterized by short stature, distinctive

facial features, and congenital heart defects.3,4 The distinc-

tive facial features include hypertelorism, downslanting

palpebral fissures, ptosis, a webbed or short neck, and

low-set, posteriorly rotated ears. Congenital heart defects,

including pulmonary valve stenosis and atrial septal de-

fects, occur in 50%–80% of individuals. Hypertrophic car-

diomyopathy is observed in 20% of affected individuals.

Other clinical manifestations include cryptorchidism,

mild intellectual disability, bleeding tendency, and hy-

drops fetalis. The incidence of this syndrome is estimated

to be between 1 in 1,000 to 1 in 2,500 live births. Individ-

uals with Noonan syndrome are at risk of juvenile myelo-

monocytic leukemia (JMML), a myeloproliferative disorder

characterized by excessive production of myelomonocytic

cells.4 Noonan syndrome exhibits phenotypic overlap
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with Costello syndrome (MIM 218040) and cardiofaciocu-

taneous (CFC) syndrome (MIM 115150).

In 2001, Tartaglia et al. identified missense mutations in

protein-tyrosine phosphatase, nonreceptor type 11

(PTPN11 [MIM 176876]), which encodes the tyrosine

phosphatase SHP-2 in 50% of individuals with Noonan

syndrome.5 In contrast, loss-of-function or dominant-

negative mutations in PTPN11 have been reported in indi-

viduals with Noonan syndrome with multiple lentigines6

(formerly referred to as LEOPARD [multiple lentigines,

electrocardiographic conduction abnormalities, ocular hy-

pertelorism, pulmonic stenosis, abnormal genitalia, retar-

dation of growth, and sensorineural deafness] syndrome

[MIM 151100]). To date, germline mutations in PTPN11,

KRAS (MIM 190070), SOS1 (MIM 182530), RAF1 (MIM

164760), and NRAS (MIM 164790) have been identified

in individuals with Noonan syndrome7–12 (NS1 [MIM

163950], NS3 [MIM 609942], NS4 [MIM 610733], NS5

[MIM 611553], and NS6 [MIM 613224]), and mutations

in SHOC2 (MIM 602775) and CBL (MIM 165360) have

been identified in two Noonan-syndrome-like syn-

dromes13–16 (NSLH [MIM 607721] and NSLL [MIM

613563], respectively) (Figure S1, available online). More-

over, we and another group have identified germlinemuta-

tions in HRAS (MIM 190020) in individuals with Costello

syndrome17 and germline mutations in KRAS, BRAF

(MIM 164757), MAP2K1 (MIM 176872), and MAP2K2

(MIM 601263) in individuals with CFC syndrome.18,19 Mu-

tations in BRAF have been also identified in a small per-

centage of individuals with Noonan syndrome (NS7

[MIM 613706]). A line of studies have shown that a group

of the above genetic disorders result from dysregulation of

the RAS and downstream signaling cascade (RAS/MAPK

pathway syndromes, or RASopathies).20,21 Recently, mosa-

icism for KRAS and HRAS mutations has been reported in

nevus sebaceous and Schimmelpenning syndrome,22

further extending a spectrum of diseases with a dysregu-

lated RAS/MAPK pathway.

To identify genetic causes of Noonan syndrome, we re-

cruited 180 individuals with Noonan syndrome or a

related phenotype; they were negative for all coding exons

in PTPN11, KRAS, HRAS, and SOS1; exons 6 and 11–16 in

BRAF; exons 7, 14, and 17 in RAF1; exons 2 and 3 in

MAP2K1 and MAP2K2; and exon 1 in SHOC2. Further ge-

netic analysis has been conducted according to their first

diagnoses.17,23–29 This study was approved by the ethics

committee of Tohoku University School of Medicine. We

obtained informed consent from all subjects involved in

the study. We sequenced the exomes of 14 individuals

whose clinical manifestations had been confirmed to be

consistent with Noonan syndrome by trained dysmor-

phologists. Targeted enrichment was performed with the

Agilent SureSelect Human All Exon v.1 Kit for four individ-

uals and with the SureSelect Human All Exon 50Mb kit for

ten individuals. Exon-enriched DNA libraries from these

14 individuals were sequenced on the Illumina Hiseq

2000 for 91 bp (v.1 kit) or 101 bp (50Mb kit). The
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Burrows-Wheeler Aligner (BWA) was used to align the

sequence reads to the human genome (UCSC Genome

Browser hg19);30 all BWA parameters were kept at the

default settings. After the removal of duplicates from the

alignments, realignment around known indels, recalibra-

tion, and SNP and indel calling were performed with the

Genome Analysis Toolkit (v.1.5).31 ANNOVAR was used

for annotation against the RefSeq database and dbSNP.32

We identified approximately 10,000 nonsynonymous,

nonsense, and splice-site variations and coding indels per

individual (Table S1). Filtering steps using variant data-

bases (dbSNP132 and the 1000 Genome Project database)

and in-house exome data were carried out, resulting in

the identification of 122–282 variants per individual.

By visual inspection of the generated data, four heterozy-

gous RIT1 (MIM 609591; RefSeq accession number

NM_006912.5) variants (c.246T>G [p.Phe82Leu],

c.265T>C [p.Tyr89His], c.270G>T [p.Met90Ile], and

c.284G>C [p.Gly95Ala]) were found in four individuals.

Sanger sequencing validated the heterozygous state of

the four variants. We did not find any other strong candi-

date genes in the results of exome sequencing.

RIT1 shares approximately 50% sequence identity with

RAS, has an additional N-terminal extension, and does not

possess a C-terminal CAAX motif, a specific motif for post-

translational modification.33,34 RIT1 is located in chromo-

somal region 1q22 and consists of six exons. We analyzed

an additional 166 individuals diagnosed with Noonan

syndrome or a related disorder but without mutations in

known genes.17,23–29 Sanger sequencing of all coding exons

in RIT1 in the 166 individuals showed that 13 in 166

individuals had changes. Combining with the 4 in 14 indi-

viduals from exome sequencing, a total of nine missense,

nonsynonymous mutations were identified in 17 of 180

(9%) individuals who were suspected to have Noonan syn-

drome or a related disorder (Table 1 and Figures 1A–1L).

The identified germline RIT1 mutations encode alterations

located in the G1 domain (c.104G>C [p.Ser35Thr]); the

switch I region, involving the G2 domain (c.170C>G

[p.Ala57Gly]); and the switch II region, corresponding

to RAS (c.242A>G [p.Glu81Gly], c.244T>G [p.Phe82Val],

c.246T>G [p.Phe82Leu], c.247A>C [p.Thr83Pro],

c.265T>C [p.Tyr89His], c.270G>T [p.Met90Ile], and

c.284G>C [p.Gly95Ala]) (Figure S2). Amino acids where

alterations are located are conserved among species

(Figure S3). TheRIT1mutations encodealterations clustered

in the switch II region. In contrast, HRAS germline muta-

tions identified inCostello syndrome are clustered at codon

12 and 13 in the region encoding the G1 domain17

(Figure 1M). Mutations in parents were not identified in

seven families. These mutations are apparently de novo,

but biologic confirmation of parentage was not performed.

One mutation, c.104G>C, was inherited from a mother

with a Noonan syndrome phenotype (Table 1). None of

these mutations were identified in 480 controls.

To assess the functional consequences of RIT1 mu-

tations identified in affected individuals, we introduced a
013



Table 1. Mutations in RIT1, Family Status, and Heart Defects of Mutation-Positive Individuals

Subject Exon Nucleotide Changea Amino Acid Changeb Father Mother HCMc PSc Other Heart Defectsc

NS414 2 c.104G>C p.Ser35Thr WT p.Ser35Thr þ – MVP, MR

KCC27 2 c.104G>C p.Ser35Thr NA NA þ þ –

NS43 4 c.170C>G p.Ala57Gly NA NA þ – MR, TR

NS185 4 c.170C>G p.Ala57Gly NA NA þ þ ASD, PDA

NS216 4 c.170C>G p.Ala57Gly NA NA þ – –

NS402 4 c.170C>G p.Ala57Gly WT WT þ þ –

NS168 5 c.242A>G p.Glu81Gly NA NA – þ VSD

NS410 5 c.244T>G p.Phe82Val WT WT þ – –

NS358 5 c.246T>G p.Phe82Leu WT WT – þ ASD

NS465 5 c.246T>G p.Phe82Leu NA NA – þ VSD

NS276 5 c.247A>C p.Thr83Pro WT WT þ þ PVC

KCC8 5 c.265T>C p.Tyr89His NA NA þ þ –

KCC38 5 c.270G>T p.Met90Ile WT WT þ þ ASD, VSD, PDA

NS234 5 c.284G>C p.Gly95Ala WT WT – – ASD

NS265 5 c.284G>C p.Gly95Ala WT WT þ þ –

Og22 5 c.284G>C p.Gly95Ala NA NA – – –

Og45 5 c.284G>C p.Gly95Ala NA NA þ þ ASD

PCR primers used for sequencing are shown in Table S3. Nucleotide changes are not located in CpG dinucleotides, suggesting that they exhibit baseline mutation
rates with a phenotypic filtering effect and that only these mutations lead to this phenotype. Abbreviations are as follows: WT, wild-type; HCM, hypertrophic
cardiomyopathy; PS, pulmonic stenosis; MVP, mitral valve prolapse; MR, mitral regurgitation; TR, tricuspid regurgitation; ASD, atrial septal defect; PDA, patent
ductus arteriosus; VSD, ventricular septal defect; PVC, premature ventricular contraction; and NA, not available.
aRefSeq NM_006912.5.
bRefSeq NP_008843.1.
cHCM and heart anomalies were diagnosed by echocardiography.
single-base substitution (p.Ser35Thr, p.Ala57Gly,

p.Glu81Gly, p.Phe82Leu, or p.Gly95Ala) identified in indi-

viduals with Noonan syndrome into a pCAGGS expression

vector36 harboring RIT1 cDNA. As an experimental con-

trol, cDNAs harboring RIT1 c.89G>T (p.Gly30Val),

c.104G>C (p.Ser35Asn), and c.236A>T (p.Gln79Leu) and

Braf c.1910T>A (p.Val637Glu) (RefSeq NM_139294),

which corresponds to oncogenic p.Val600Glu in humans,

were also generated. RIT1 p.Gly30Val and p.Gln79Leu

correspond to oncogenic RAS alterations p.Gly12Val and

p.Gln61Leu, respectively. We introduced pFR-luc, pFA2-

Elk1, phRLnull-luc, and wild-type (WT) or mutant expres-

sion constructs of RIT1 into NIH 3T3 cells to examine the

transcriptional activation by ELK1,18,33 a transcription fac-

tor that is activated by MAPK. The results revealed that

compared with the WT cDNA, all RIT1 mutations ex-

hibited significant activation. RIT1 p.Gln79Leu, followed

by p.Gly95Ala, p.Ala57Gly, p.Phe82Leu, and p.Glu81Gly,

showed the highest ELK1 transactivation, as also shown

in a past study37 (Figure 2A). The c.104G>C (p.Ser35Thr)

substitution was identified in two affected individuals.

RIT1 p.Ser35Asn, which corresponds to dominant-nega-

tive alteration p.Ser17Asn in RAS, has been used as a domi-

nant-negative substitution in cell experiments.38 To

examine the functional consequence of p.Ser35Thr, identi-
The Am
fied in affected individuals, we compared the ELK1 transac-

tivation in cells expressing p.Ser35Thr and those express-

ing p.Ser35Asn. Enhanced ELK1 transactivation was

observed in cells expressing p.Ser35Thr, but not in cells

expressing p.Ser35Asn (Figure 2B). These results suggest

that RIT1 mutations identified in affected individuals

were gain-of-function mutations.

RIT1 is expressed ubiquitously in embryonic and adult

tissues.33,34 Rit1-null mice have been shown to grow to

adulthood without any apparent abnormalities;39 hence,

physiological roles of RIT1 in development remain un-

known. To examine the developmental effect of identified

mutations, we introducedmRNA of theWTand three RIT1

mutations (c.236A>T [p.Gln79Leu], c.242A>G

[p.Glu81Gly], and c.284G>C [p.Gly95Ala]) into 1-cell-

stage zebrafish embryos and observed the phenotype at

11 hr postfertilization (hpf). An oval-shaped egg sack, a

typical manifestation of the gastrulation defect, was

observed in embryos expressing RIT1 alterations (Fig-

ure 3A). This characteristic shape change was also observed

in zebrafish expressing gain-of-function mutations of

human NRAS40. Next, we observed the phenotype at later

stages (48–52 hpf) (Figure 3B and Figure S4). The introduc-

tion of the WT mRNA did not interfere with the normal

development, resulting in generally normal morphology
erican Journal of Human Genetics 93, 173–180, July 11, 2013 175
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Figure 1. Photographs of Six Individuals
in whom RIT1 Mutations Were Identified
(A–D) KCC38 at 3 years of age. Broad fore-
head, sparse eyebrows, ptosis, hypertelor-
ism, and hyperpigmentation were
observed (A and B). Prominent finger
pads were observed (C and D).
(E–H) NS358 at 4 years of age. Hypertelor-
ism, epicanthus, sparse eyebrows, and
low-set ears were observed.
(I) NS414 at 3 years of age.
(J) NS465 at 1 year of age.
(K) NS276 at 5 months.
(L) NS265 at 5 years of age.
(M) Structure and identified germline alter-
ations in RIT1 and HRAS. HRAS alterations
identified in individuals with Costello syn-
dromewere described before20 or shown in
The RAS/MAPK Syndromes Homepage (see
Web Resources). HRAS alterations identi-
fied in individuals with congenital myop-
athy with excess of muscle spindles35 are
indicated in purple.
We obtained specific consent for photo-
graphs from six individuals.
in 125/132 (94.7%) embryos; however, 7/132 (5.3%) em-

bryos had limited mild craniofacial and heart abnormal-

ities (Table 2). In contrast, a combined manifestation of

craniofacial abnormalities, pericardial edema, and an elon-

gated yolk sac was observed in 66.1%, 52.4%, and 40.5%

of embryos expressing p.Gln79Leu, p.Glu81Gly, and

p.Gly95Ala, respectively. Development was severely

retarded in approximately 7% of embryos expressing

RIT1 alterations; these embryos displayed the formation

of a disorganized round body shape with a dysmorphic

head and body trunk. In the head region, a hypoplastic
176 The American Journal of Human Genetics 93, 173–180, July 11, 2013
brain, especially in the telencephalic

area, was observed and resulted in

misshapen morphology. In the

ventral part of the head, the jaw

structure was also hypoplastic, and

the eyes were translocated medially.

These morphological changes gave a

cyclopia-like appearance. The ventral

sides of the eyes were small, and colo-

boma along with a loss of pigment

was evident (Figure 3B). These pheno-

typic changes are compatible with

the gastrulation defect observed at

11 hpf (Figure 3A). Because the Fgf/

Ras/MAPK signaling cascade plays an

essential role in the convergent

and extension cell movement during

gastrulation,41 perturbation by

the RIT1 alterations could cause

abnormal cell movement in the axial

portions and thus lead to an elon-

gated shape of the egg and the hypo-

plastic ventral side of the head.
Detailed inspection of the morphology in mutant-injected

embryos revealed abnormal cardiogenesis, namely, incom-

plete looping, hypoplastic chambers, and stagnation of

blood flow in the yolk sac (Figure 3B). Although the atrium

of these hearts beat regularly, the ventricle seemed to

twitch passively by the contraction of the atrium (Movies

S1, S2, S3, S4, S5, and S6). These results indicate that acti-

vating mutations in RIT1 induce abnormal craniofacial

and heart defects in zebrafish.

RIT1-mutation-positive individuals showed a distinct

facial appearance, congenital heart defects, and skeletal



Figure 2. Stimulation of ELK Transcrip-
tion in NIH 3T3 Cells Expressing RIT1
Germline Mutations
(A) The ELK1-GAL4 vector and the GAL4
luciferase trans-reporter vector were tran-
siently transfected with various RIT1 germ-
line mutations and activatingmutations in
BRAF and MAP2K1 in NIH 3T3 cells.
c.1910T>A (p.Val637Glu) in mouse Braf
corresponds to oncogenic c.1799T>A
(p.Val600Glu) in human BRAF. Relative
luciferaseactivitywas calculatedbynormal-
ization to the activity of a cotransfected
control vector, phRLnull-luc, containing
distinguishable R. reniformis luciferase.
(B) ELK1 transactivation in cells express-
ing p.Ser35Thr, identified in individuals
with Noonan syndrome, and p.Ser35Asn,
were examined. p.Ser35Asn corresponds to
dominant-negative alteration p.Ser17Asn
in RAS.

Results are expressed as the means of quadruplicate (A) and triplicate (B) samples. Error bars represent the SDs of mean values. Red bars
indicate germline RIT1mutations identified in Noonan syndrome. The following abbreviation is used:WT, wild-type. *p< 0.01 by t test.
abnormalities and were diagnosed with Noonan syn-

drome by diagnostic criteria developed by van der Burgt

(Figures 1A–1L and Table 1).4 Two individuals (NS358

and KCC38) were suspected to have CFC syndrome in

the infantile period because of curly, sparse hair, a high

cranial vault, and hypoplasia of the supraorbital ridges.

Nine individuals showed perinatal abnormality,

including polyhydramnios, nuchal translucency, and

chylothorax (Table S2). It is of note that one individual

(Og45) showing severe pleural effusion, hypertrophic

cardiomyopathy, and hepatomegaly that ended in severe

body edema and compromised circulation died 53 days

after birth. Seven individuals showed high birth weight,

probably as a result of subcutaneous edema, which is a

typical manifestation observed in individuals with

Noonan syndrome.4 Out of 17 affected individuals, 16

(94%) had heart defects (Table 1): hypertrophic cardio-

myopathy (HCM) in 12 (71%) individuals, pulmonary

stenosis in 11 (65%) individuals, and atrial septal

defects in 5 (29%) individuals. The incidence of

pulmonic stenosis and mild cognitive defects is close

to the overall incidence of these features in Noonan

syndrome cohorts. By contrast, the incidence of HCM

is far greater than in individuals with Noonan syn-

drome overall (25/118 in Noonan syndrome42 versus

12/17 in individuals with RIT1 mutations; p < 0.0001

by Fisher’s exact test). It is of note that a high fre-

quency of HCM (70%) was also reported in individuals

with RAF1 mutations.10,11,24 It is possible that RIT1

interacts with RAF1 and that gain-of-function muta-

tions in RIT1 and RAF1 exert similar effects in heart

development.

Somatic alterations in classical RAS have been identified

in approximately 30% of tumors.43 Noonan syndrome and

related disorders confer an increased risk of developing

malignant tumors.20,44 In a summary of the literature, it

has been reported that 45 of 1,151 (3.9%) individuals
The Am
with Noonan syndrome (but with an unknown mutation

status) developed malignant tumors.44 Since molecular

analysis became available, gene-specific association with

malignant tumors has been revealed. The association

with JMML, a myeloproliferative disorder characterized

by the excessive production of myelomonocytic cells,

has been reported in individuals with PTPN11, CBL, and

KRAS mutations. Recent reports showed that two individ-

uals with SOS1 mutations developed embryonal rhabdo-

myosarcoma.45,46 A somatic RIT1 variant, c.270G>A

(p.Met90Ile), has been identified in lung cancer (COSMIC

database). In the present cohort, 1 (NS168) of 17 individ-

uals with RIT1 c.242A>G (p.Glu81Gly) developed acute

lymphoblastic leukemia at the age of 5 years. The child

was treated by a standard protocol and has remained in

complete remission. Examining whether gain-of-function

mutations in RIT1 cause tumorigenesis will require further

study.

RIT1 has been isolated as a cDNA encoding highly

conserved G3 and G4 domains of RAS proteins33 or

identified as a gene encoding a protein related to

Drosophila Ric, a calmodulin-binding RAS-related

GTPase.34 RIT1 p.Gln79Leu, which corresponds to RAS

p.Gln61Leu, is implicated in transforming NIH 3T3 cells,

neurite outgrowth in neuronal cells, and the activation

of ERK and p38 MAPK in a cell-specific manner.37,38,47

In this study, enhanced ELK1 transactivation was

observed in cells expressing mutant RIT1 cDNAs. Previous

studies showed that enhanced ELK transactivation

was observed in NIH 3T3 cells expressing HRAS, KRAS,

BRAF, and RAF1 mutations identified in individuals

with Costello, CFC, and Noonan syndromes.17,18,24

Gastrulation defects observed in zebrafish embryos

expressing RIT1 alterations (p.Glu81Gly, p.Gly95Ala,

or p.Gln79Leu) were also reported in zebrafish em-

bryos expressing an activating mutation in NRAS,

BRAF, MAP2K1, or MAP2K2.40,48 Taken together, these
erican Journal of Human Genetics 93, 173–180, July 11, 2013 177



Figure 3. Morphology of Embryos In-
jected with the WT or Mutant RIT1 mRNA
In vitro transcription of each mRNA
was performed with the mMESSAGE
mMACHINE kit (Applied Biosystems)
according to the manufacturer’s instruc-
tions. Synthesized mRNAs were purified
with G-50 Micro Columns (GE Healthcare)
and subsequently adjusted to a 300 ng/ml
concentration for microinjection. Approxi-
mately 1 nl (300 pg) of RNA in water with
0.2% phenol red was injected into the cyto-
plasm of 1-cell-stage zebrafish embryos.
Injected embryos were incubated at 28�C
until observation.
(A) At 11 hpf, the shapes of the em-
bryos injected with the WT sense or anti-
sense mRNA were round, a normal
morphology as observed in the uninjected
embryos. In contrast, embryos express-
ing mutations (c.236A>T [p.Gln79Leu],
c.242A>G [p.Glu81Gly], and c.284G>C
[p.Gly95Ala]) are oval and compressed
along the dorsal-ventral axis, indicative
of a gastrulation defect. Note that cells

have a hump in the head region at the anterior end of the body axis, the earliest manifestation of a craniofacial defect.
(B) Lateral views at 48 hpf are shown. Embryos expressing mutations (c.236A>T [p.Gln79Leu], c.242A>G [p.Glu81Gly], and c.284G>C
[p.Gly95Ala]) formed swollen yolk sacs equally along the anterior posterior axis but did not show narrowing in the caudal half, which
was clearly visible in the uninjected embryos and in those injected with the WT sense or antisense mRNA. In the craniofacial area,
misshapen head and jaw structures and small eyes with hypoplasia on the ventral side were observed (middle panel); these phenotypes
are consistent with the gastrulation defect. Shapes of the hearts (highlighted by red dotted lines) are shown in the right panel at a higher
magnification. Normal looping of the heart tube and correct formation of two distinct chambers are observed in embryos injected with
the WT sense or antisense mRNA. When mutations (c.236A>T [p.Gln79Leu], c.242A>G [p.Glu81Gly], and c.284G>C [p.Gly95Ala])
were expressed, looping was incomplete, resulting in stretched straight heart tubes. Constrictions at the atrial-ventricular canal are
obscure, and the heart chambers are hypoplastic. Abbreviations are as follows: A, atrium; and V, ventricle.
results indicate that gain-of-function mutations in RIT1

cause Noonan syndrome and show a similar effect to mu-

tations in other RASopathy-related genes in human devel-

opment.

Herein, we used whole-exome sequencing to identify

germline RIT1 mutations in individuals with Noonan syn-

drome, a disorder of the RASopathies. Mutations in

PTPN11, SOS1, RAF1, KRAS, BRAF, and NRAS have been

identified in 41%, 11%, 5%, 1%, 0.8%, and 0.2% of all

cases, respectively,3 and thus the frequency of RIT1 muta-

tions in Noonan syndrome might be similar to that of

RAF1 mutations. Our findings will improve diagnostic

accuracy of Noonan syndrome and provide a clue to un-

derstanding the disorder’s pathogenesis, including thera-

peutic approaches.
Table 2. Morphologic Abnormality at 48–52 hpf of Zebrafish Embryo

No Abnormalities Heart and Facial Abnormalit

WT 125 7 (5.3%)

p.Gln79Leu 31 78 (66.1%)

p.Glu81Gly 42 55 (52.4%)

p.Gly95Ala 44 34 (40.5%)

aCraniofacial abnormalities, pericardial heart edema, and an elongated yolk sac w
bDisorganized round body shape with a dysmorphic head and body trunk as sho
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Supplemental Data

Supplemental Data include four figures, three tables, and six

movies and can be found with this article online at http://www.

cell.com/AJHG/.
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