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From the perspectives of disease transmission and sterility main-
tenance, the world’s blood supplies are generally safe. However,
in multiple clinical settings, red blood cell (RBC) transfusions are
associated with adverse cardiovascular events and multiorgan in-
jury. Because ∼85 million units of blood are administered world-
wide each year, transfusion-related morbidity and mortality is
a major public health concern. Blood undergoes multiple biochem-
ical changes during storage, but the relevance of these changes to
unfavorable outcomes is unclear. Banked blood shows reduced
levels of S-nitrosohemoglobin (SNO-Hb), which in turn impairs
the ability of stored RBCs to effect hypoxic vasodilation. We there-
fore reasoned that transfusion of SNO-Hb–deficient blood may
exacerbate, rather than correct, impairments in tissue oxygena-
tion, and that restoration of SNO-Hb levels would improve trans-
fusion efficacy. Notably in mice, administration of banked RBCs
decreased skeletal muscle pO2, but infusion of renitrosylated cells
maintained tissue oxygenation. In rats, hemorrhage-induced reduc-
tions in muscle pO2 were corrected by SNO-Hb–repleted RBCs, but
not by control, stored RBCs. In anemic awake sheep, stored renitro-
sylated, but not control RBCs, produced sustained improvements in
O2 delivery; in anesthetized sheep, decrements in hemodynamic sta-
tus, renal blood flow, and kidney function incurred following trans-
fusion of banked blood were also prevented by renitrosylation.
Collectively, our findings lend support to the idea that transfusions
may be causally linked to ischemic events and suggest a simple ap-
proach to prevention (i.e., SNO-Hb repletion). If these data are rep-
licated in clinical trials, renitrosylation therapy could have significant
therapeutic impact on the care of millions of patients.
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With ∼85 million units of human blood collected each year
for therapeutic purposes [World Health Organization

Fact Sheet #279 (www.who.int/worldblooddonorday/media/who_
blood_safety_factsheet_2011.pdf)], infusion of red blood cells
(RBCs) is among the most common procedures in medicine. RBC
transfusion is premised on a direct correlation between the O2
carrying capacity of blood (increased by transfusion) and the de-
livery of O2 to tissues, and thus assumes that transfusion will im-
prove tissue oxygenation. However, it is unclear how often
transfusion meets this goal. Although blood transfusion can be
life-saving, evidence continues to accumulate that administration
of stored RBCs may not always be beneficial and, in some settings,
may actually cause harm (1–6), findings of particular concern
because even mild anemia is prognostic of adverse outcomes
(7, 8).
The range of adverse transfusion sequelae (myocardial in-

farction, renal injury, multiorgan failure, and death) (9–12),
suggest that banked blood may acutely exacerbate rather than
correct tissue hypoxia. Although it has long been suggested that
storage impairs the ability of RBCs to deliver O2 (13–15), it has
not been obvious why this should occur upon infusing a small
fraction of overall RBC volume. Reconceptualization of the

respiratory cycle as a three-gas system (NO/O2/CO2) (16), which
includes a role for bioactive NO derived from RBCs in hypoxia-
regulated vasodilation (i.e., O2 delivery) (17), provides a basis for
understanding why increasing bulk O2 content alone can fail to
improve tissue perfusion (18). In addition to releasing NO bio-
activity, RBCs may also stimulate NO production from the en-
dothelium by releasing ATP (19). Endothelial NO is thought to
influence settling points in tissues (basal tone), but RBC-derived
NO may effect demand-coupled changes in blood flow, which are
endothelium independent (20–22). Inasmuch as RBCs tend to
traverse the microcirculation “in series,” impaired capillary
transit of single cells (as might result from impaired vasodilation)
may impede microcirculatory flow at large.
Tissue perfusion is matched with metabolic demand through

a physiological response, termed hypoxic vasodilation, in which
local blood flow is coupled to desaturation of hemoglobin (Hb)
(22–24). Hb within RBCs is thus a principal sensor and trans-
ducer of this response (20, 21, 25, 26). Specifically, it is proposed
that the conformational changes incurred upon binding and re-
lease of O2 from the hemes are intimately linked to binding and
release of NO from cysteine residues in Hb, and that the released
NO is liberated from RBCs in the form of bioactive S-nitro-
sothiols (SNOs). There is further appreciation that NO derived
from nitrite may participate in RBC vasodilation through its
conversion into SNOs (16, 17, 27, 28). [Note, however, that NO
itself cannot escape sequestration by excess hemes of Hb (24).]
Thus, RBCs may dilate blood vessels through a SNO-based
mechanism as blood transits from arteries to veins (20, 29, 30).
By extension, blood flow (and O2 delivery) would be negatively
impacted by conditions that reduce circulating levels of SNO-Hb.
Hb conformation is regulated not only by O2, but also by CO2

and pH. Notably, banked RBCs are stored in an acidic isotonic
solution (∼pH 6.5), which accelerates SNO-Hb decay (31). We
and others previously reported that storage of blood leads to
marked losses in SNO-Hb within 1 d (32, 33), which are paral-
leled by losses in the ability of RBCs to effect hypoxic vasodi-
lation (32). Blood is >80% depleted in SNO-Hb by 7 d and
remains low thereafter [whereas, nitrite levels do not decline
during storage (34)]. We further showed that the defect in RBC-
mediated vasodilation could be corrected by selectively repleting
SNO-Hb (32, 35), but this has only been demonstrated with very
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small amounts of blood (1 mL). Restoration of the hypoxic
vasodilatory capacity of banked blood raises the possibility that
such an intervention might improve tissue oxygenation following
transfusion (36). We therefore tested this postulate in four dis-
tinct and complementary transfusion paradigms.

Results
Study 1: Top-Up Transfusion in Mice. After 1 d of storage, rodent
blood is depleted of SNO-Hb by more than 70% (37, 38). As an
initial test of the effects of renitrosylation, we measured tissue
oxygenation (using pO2 electrodes inserted into skeletal muscle)
following transfusion of stored untreated or renitrosylated blood.
Renitrosylation of blood in these initial experiments used an
established NO methodology (Materials and Methods) that in-
creases SNO-Hb concentrations without increasing nitrite (32,
35, 39). Normovolemic mice received the human equivalent of
one unit (200 μL) of RBCs [∼10% of estimated blood volume
(40)] that had been stored for 1 or 7 d. Representative and group
oxygenation responses of the mouse thigh muscle bed are pre-
sented in Fig. 1. Basal muscle pO2 under anesthesia was 32.0 ±
7.3 mm Hg (n = 17). Administration of stored, SNO-depleted
RBCs produced progressive declines in muscle pO2. At the end
of monitoring, pO2 was 19.9 ± 6.9 mm Hg for 1-d-old blood and
20.2 ± 10.4 for 7-d-old blood (both P < 0.05 vs. baseline). In

contrast, RBCs stored for 1 or 7 d, and then renitrosylated im-
mediately before transfusion, produced no significant change in
pO2 (28.3 ± 11.3 and 26.1 ± 4.1 mm Hg for RBC days 1 and 7,
respectively; P > 0.05). As an additional control, we sought to
infuse RBCs procured from “Cysβ93-deficient” mice that should
be refractory to SNO-Hb formation (41). However, our on-going
characterizations of these strains have revealed that these mice
exhibit normal levels of SNO-Hb (Discussion and Fig. S1).

Study 2: Hemorrhage and Transfusion in Rats. Controlled hemor-
rhage provides a relevant model of tissue ischemia in which to
test the effect of stored blood. In anesthetized rats, 25–30% of
the estimated blood volume was removed to reach the target
mean arterial pressure (MAP) of 55 mm Hg. Changes in rat
skeletal muscle oxygenation in response to blood loss and
transfusion are presented in Fig. 2. Hemorrhage produced sig-
nificant declines in muscle pO2 across all treatment groups (P <
0.05 compared with starting levels). Animals received untreated
RBCs stored for 1 or 7 d or renitrosylated RBCs stored for 7 d.
Although transfusion of both untreated and renitrosylated RBCs
restored MAP, only renitrosylated (SNO-Hb repleted) blood was
accompanied by improvements in thigh muscle pO2 (from a na-
dir of 6.3 ± 4.1 to 13.8 ± 8.5 mm Hg 60 min after transfusion;
Fig. 2B). In the groups that received untreated RBCs stored for 1
or 7 d, muscle pO2 remained at or near the hemorrhage-induced
lows, and thus were significantly lower than the baseline values
(8.9 ± 7.9 mm Hg compared with a starting level of 17.7 ± 4.4
mm Hg for day 1 blood, and 2.0 ± 2.3 mm Hg vs. 16.1 ± 1.5 mm
Hg for day 7 blood, both P < 0.05). These differences in tissue
oxygenation response were reflected in metabolic parameters
measured in snap-frozen hind-limb muscle biopsies procured 60
min after transfusion (Table 1). Notably, muscle lactate and
lactate/pyruvate ratio increased after infusion of SNO-depleted
RBCs, but not after infusion of SNO-repleted RBCs, and crea-
tine phosphate content was preserved after infusion of SNO-
repleted RBCs, but not after infusion of SNO-depleted RBCs.

Study 3: Intraoperative Transfusion of Anemic Sheep. Large animals
allow for assessments of hemodynamic responses to transfusion
over prolonged periods of time. Two days after bloodletting
(target Hb of ∼9 g/dL), adult sheep (n = 7 per group) were
anesthetized and instrumented with peripheral and central
catheters. Hemodynamic monitoring and organ blood flow
determinations were made as each animal received two units of
leukocyte-depleted packed ovine RBCs that had been stored for
14 d. After transfusions, there were initial declines in systemic
vascular resistance (SVR) in both the control (untreated blood)
and treatment (renitrosylated blood) groups (Fig. 3A). However,
although vasodilatation persisted in the group that received
renitrosylated blood, it reversed in the group that received un-
treated RBCs. By the end of the monitoring period, SVR had
returned to the pretransfusion level in the control group and was
significantly higher than in sheep that received SNO-Hb–reple-
ted blood (P < 0.05). These higher SVR values correlated with
higher MAP readings in the control animals versus animals re-
ceiving renitrosylated blood (Fig. S2). Stroke volume (Fig. 3B)
rose in the renitrosylated group, whereas following an initial rise,
it returned to baseline in sheep given untreated RBCs. Pulmo-
nary arterial pressure (Fig. 3C) increased above baseline early
after transfusion, but by the end of monitoring the within-group
(compared with baseline) and between-group values were not
significantly different. Similarly, pulmonary vascular resistance
did not differ within or between groups (Fig. S2). Arterial pO2
was not different between groups. However, venous O2 satura-
tion (SvO2) declined in the group that received renitrosylated
blood (indicating improved O2 extraction by tissues) and in-
creased in the control group (Fig. 3D). This SvO2 response was
reflected in group differences in O2 extraction: by the end of the
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Fig. 1. Mouse transfusion and muscle pO2. (A) Representative time courses
of skeletal muscle pO2 changes following receipt of 200 μL of untreated (○)
or renitrosylated (●) allogenic blood stored for 1 or 7 d. (B) Mean pO2 values
(±SD) at baseline (n = 17) and 50–60 min after transfusion with 1- or 7-d-old
untreated or renitrosylated blood (n = 3 for each condition). An asterisk
denotes a significant reduction in pO2 values in the untreated cohorts
compared with baseline.
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monitoring period the median values (plus first and third quartile
deviations) were 15.4% (12.2%, 20.7%) in the treated group but
only 7.7% (6.8%, 10.7%) in the control group (P < 0.05).
Organ blood flow was assessed using the microsphere tech-

nique. Flow to internal organs (liver, adrenals, spleen) (Table
S1) had trended upward at the end of transfusion and had
returned to baseline by 4 h posttransfusion. The kidney showed
the most notable treatment-dependent response. Pretransfusion
renal blood flow was 2.9 ± 1.3 and 0.41 ± 0.29 mL·min−1·g−1 in
the cortex and medulla, respectively. In animals that received
renitrosylated blood (n = 7), flow to the kidney cortex rose at the
end of transfusion (Fig. 4A). At 4 h posttransfusion, cortical flow
remained significantly higher than baseline (142 ± 32%); blood
flow was also higher than in the untreated control group (n = 6),
whose renal blood flow had declined to anemic baseline values
(78 ± 42%; P < 0.05). A similar response was seen in the kidney
medulla where at 4 h posttransfusion, control blood flow was
122 ± 77% of the pretransfusion level compared with 229 ±
112% for renitrosylated blood (P < 0.05). These differences in
blood flow had functional corollaries (Fig. 4B). By the end of the

monitoring period, estimated glomerular filtration rate (eGFR)
in the controls had declined from 121 ± 43 to 74 ± 45 (P = 0.004;
arbitrary units). In contrast eGFR did not change in animals
receiving renitrosylated blood (112 ± 29 at the start and 101 ± 37
at the end of monitoring; P = 0.653).

Study 4: Awake Transfusion of Anemic Sheep. Awake sheep were
transfused with two units of 14-d-old ovine RBCs, 3 d after
blood-letting. Transfusion increased mean Hb concentrations to
similar levels in control and treated groups: from 9.1 ± 1.7 to
10.4 ± 1.5 g/dL and 9.5 ± 1.0 to 10.3 ± 1.0 g/dL in the untreated
and treated groups, respectively. MetHb levels were essentially
unchanged by transfusion (e.g., going from 0.70% ± 0.40 to
0.80% ± 0.46 in the treated group). Hemodynamic assessments
made over 16 h indicated that all animals were physiologically
stable during the posttransfusion monitoring period and clinical
chemistries identified no group differences.
Blood O2 content was used to monitor changes in O2 utilization.

Before transfusion, baseline arterial and venous (A-V) blood O2
content (expressed as mL O2/100 mL blood) were similar for the
two groups (13.5 ± 1.2 and 9.0 ± 1.8 for the untreated; 13.0 ± 1.5
and 8.9 ± 2.1 for the treated; both n = 5). Transfusion produced
the expected rise in arterial blood O2 content in both groups.
However, although venous O2 content rose in the untreated
group, venous O2 content either stayed constant or declined in the
group receiving renitrosylated blood. Thus, A-V O2 differences
were significantly lower than baseline (P < 0.05) in sheep receiving
control transfusions (Fig. 5A) and significantly higher than base-
line following transfusion of renitrosylated blood (P < 0.05).
To augment the A-V O2 measurements, we directly recorded

tissue pO2 with a needle probe placed in the hock muscle. Pre-
transfusion muscle pO2 values were similar between the two
groups at 22.0 ± 8.1 and 22.5 ± 7.3 mm Hg. A median value was
calculated at 3-h intervals to avoid overreliance on single tissue
pO2 measurements. Group differences in O2 delivery after
transfusion were reflected as change from baseline (Fig. 5B). For
the untreated cohort (n = 4), none of the differences in post-
transfusion pO2 values were significantly different from baseline.
However, in the group receiving renitrosylated-banked blood
(n = 5), pO2 values were significantly higher than baseline (four
of the six blocks; P < 0.05).

Discussion
The present results build on the earlier discovery (32, 33) that
storage diminishes the SNO-Hb–linked vasodilatory activity of
blood that subserves hypoxic vasodilation (22). Experiments us-
ing four different transfusion paradigms across three different
species demonstrated that banked blood deficient in SNO-Hb
failed to correct anemia-induced reductions in blood flow and O2
utilization. Furthermore, in some settings, transfusion exacer-
bated anemia-induced deficits in tissue pO2. Any one paradigm
has its limitations, but taken together the data offer compelling
support to the clinical evidence that standard transfusion regi-
mens may do little to improve end-organ O2 delivery. In stark
contrast, repletion of SNO-Hb at the time of transfusion resulted
in sustained improvements in tissue pO2 and related parameters
of O2 sufficiency, including blood flow and lactate levels.
Our findings provide evidence that adverse transfusion out-

comes may reflect underlying defects in RBC function (e.g., im-
paired NO-based vasodilation) and are suggestive of a causal
relationship between declines in microvascular O2 delivery and
impairments in organ function. Renitrosylation could offer a
unique approach to improve tissue oxygenation and a compelling
strategy to directly address the adverse cardiovascular morbidity
associated with transfusion (6). By extension, tissue O2 sufficiency
may be a more relevant biomarker for therapeutic testing and
posttransfusion outcomes than the current standard of circulat-
ing RBC survival time (42). Case in point are the results from

Table 1. Rat thigh muscle metabolic parameters

Control Hemorrhage SNO-Hb–depleted SNO-Hb–repleted

ATP 5.6 ± 0.7 4.8 ± 0.4 4.9 ± 0.9 4.9 ± 0.7
ADP 0.4 ± 0.1 0.4 ± 0.1 0.4 ± 0.1 0.6 ± 0.2*
CrP 17 ± 3 24 ± 6* 20 ± 7 25 ± 2*
Cr 11 ± 3 10 ± 3 15 ± 3 12 ± 2
Pyr 0.06 ± 0.02 0.07 ± 0.02 0.05 ± 0.01 0.05 ± 0.01
L 2.5 ± 0.8 3.3 ± 1.5 4.3 ± 2.6* 2.6 ± 1.4
L/Pyr 39 ± 8 47 ± 22 87 ± 65* 51 ± 33
CrP+Cr 30 ± 5 35 ± 8 37 ± 7* 38 ± 2*

Muscle metabolic markers under control (n = 7), hemorrhage (n = 9), and
transfusion conditions (n = 10 for both). Values followed by an asterisk (*)
indicate a significant difference from control values (P < 0.05). ADP, adeno-
sine diphosphate; ATP, adenosine triphosphate; Cr, creatine; CrP, creatine
phosphate; L, lactate; L/Pry, lactate/pyruvate ratio; Pyr, pyruvate.
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Fig. 2. Rat hemorrhage/transfusion and muscle pO2. (A) Representative
time courses of skeletal muscle pO2 changes from baseline to hemorrhage
and then in response to allogeneic transfusion with untreated RBCs stored
for 1 or 7 d (□ and ○, respectively) or renitrosylated RBCs stored for 7 d
(treated; ●). Monitoring was conducted for 60 min after transfusion. (B)
Mean muscle pO2 values (±SD) at baseline (B), after hemorrhage (H), and 60
min after transfusion with untreated or renitrosylated RBCs (n = 5–7 per
group). An asterisk denotes a significant difference in pO2 values compared
with baseline within each group.
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anesthetized anemic sheep where transfusion of renitrosylated
RBCs, but not untreated blood, increased kidney blood flow
and maintained GFR. Intraoperative blood transfusion is
a well-recognized risk factor for acute kidney injury (AKI) (43–
45), and the incidence of transfusion-associated AKI is amplified
by preoperative anemia (44). Thus, occurrence rates of AKI may
be a useful measure of the O2 delivery capability of banked blood.
Adverse clinical responses to blood transfusion have been

associated with or exacerbated by storage duration. Banked
RBCs indeed undergo multiple biochemical changes during
storage [loss of molecular modulators of O2 binding, impaired
RBC shape/flexibility, increased RBC adhesiveness, and hemo-
lysis (46)], so it is notable that we were able to reverse impair-
ments of oxygenation and organ dysfunction by SNO-Hb repletion,
without correcting these other defects. Moreover, at least one

clinical study has linked transfusion of 3-d-old RBCs to mortality (2),
a time point that is well before most storage-related biochemical
changes occur (47), except for declines in SNO-Hb (32, 33). Our
present studies and previous findings (47) show that infusion of even
1-d-old blood can decrease tissue oxygenation consistent with this
rapid loss in NO bioactivity.
Mechanisms of RBC vasodilation merit comment. We origi-

nally described an NO-based mechanism by which RBCs can
relax blood vessels under hypoxia (30, 35). In this model, thiols
of Hb deploy NO bioactivity: relaxations by human RBCs are (i)
inhibited by prior depletion of SNO-Hb, (ii) potentiated by thi-
ols, and (iii) dependent on cGMP (i.e., mediated by SNOs), and
yet unaffected by the absence of endothelium or endothelial
nitric oxide synthase (37). Furthermore, declines in SNO-Hb in
hypoxic RBCs were commensurate with measured release of
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bioactive SNOs (29). SNO-Hb is thus in equilibrium with the
small molecular weight SNOs that mediate vasodilation (16, 17,
20, 30). It was subsequently shown that ATP released from RBCs
can also relax blood vessels (48, 49), albeit through an endo-
thelium-dependent mechanism. A role for nitrite in relaxation
by RBCs has also gained credence. However, nitrite is a nuance
of the SNO-based mechanism (16, 24) [not a rejection of it as
originally put forth by Cosby et al. (50)] because nitrite acts as
a precursor to SNO-Hb formation (16, 17, 27, 28, 51). Indeed,
initial claims that free NO derived from nitrite could escape the
hemes in Hb to elicit vasodilation independently of SNOs (50)
have not been reproduced (even by the authors themselves) (52–
54), and were likely an in vitro artifact of reagents added to the
bioassay system (16, 24, 52, 53). These same proponents of
a SNO-independent role for nitrite have claimed that hypoxic
vasodilation was unaltered in Cysβ93-deficient mice refractory to
SNO-Hb formation (41). However, these mice are not true
Cys93 knockouts: an extra human Cysγ93 gene was built into the
mouse and a mouse fetal Cys93 is also present in the circulating
RBCs. Indeed, SNO-Hb levels are in fact unchanged in these
mice (strains kindly provided by T. M. Townes, University of
Alabama, Birmingham, Birmingham, AL) (Fig. S1). Moreover,
hypoxic vasodilation (blood flow and tissue pO2) was not actually
tested in these animals, nor did these authors test NO-based
relaxations by Cys-mutant RBCs (55). Rather, the authors
assayed ATP-mediated (i.e., endothelium dependent) relaxa-
tions that have no bearing on SNO-based vasodilation. Most
notably, Hb levels were elevated in the Cysβ93 mutant mice,

indicative of tissue hypoxia and thus affirming an essential role
for Cysβ93. Thus, the most parsimonious explanation for resto-
ration of vessel relaxations by RBCs that are depleted of SNO-
Hb [but not nitrite (34)] through storage and then repleted with
S-nitrosylating agents, involves a SNO-based mechanism.
The comparative effects of transfusion with SNO-depleted

vs. -repleted blood should be interpreted in accordance with the
physiology of anemia. In anemic patients, a rise in SvO2 fol-
lowing transfusion is often assumed to reflect improved O2 de-
livery, but our findings suggest otherwise. In our sheep studies,
the A-V O2 content gradient decreased after transfusion of un-
treated blood (reflecting a rise in SvO2), but increased with ad-
ministration of renitrosylated RBCs (Fig. 5). Thus, remarkably,
renitrosylated RBCs caused the A-V O2 content gradient to in-
crease and SvO2 to decline at constant or increasing cardiac
output, which is indicative of an increase in body O2 utilization.
The response to renitrosylated blood is thus characteristic of re-
perfusion (i.e., preservation/restoration of microcirculatory blood
flow). The declines in SVR and improvements in kidney blood
flow following transfusion of renitrosylated blood provide further
support for the idea that peripheral perfusion is being restored.
The responses we documented to administration of untreated

stored blood suggest that SNO-Hb–depleted RBCs may cause
microcirculatory injury or mitochondrial dysfunction reminiscent
of sepsis [high SvO2 (Fig. 3); elevated lactate and lactate/pyruvate
ratio (Table 1)]. This interpretation is consistent with clinical
studies in which administration of blood to septic patients fails to
improve oxygen utilization (56, 57) and may even increase mor-
bidity and mortality (58). Sepsis is characterized in part by in-
creased NO generation and dysregulation of SNO homeostasis
(59). On the surface, transfusion of renitrosylated RBCs in this
setting could have deleterious hemodynamic effects. However,
efforts to block NO production in septic shock have increased
mortality (60) and recent evidence suggests that NO may be
beneficial in shock-like situations (61). Accordingly, transfusion of
renitrosylated RBCs that can subserve vasodilation in a pO2/
pCO2-regulated manner, may well improve microcirculatory per-
fusion in critically ill subjects. Because of the high prevalence of
anemia in septic patients (62), this is a concept worth exploring.
In summary, we have used an O2-sensitive allosteric switch in

Hb to conditionally deliver NO bioactivity in hypoxic tissues and
a first-in-class renitrosylating agent that can harness this allo-
steric pathway to enhance tissue oxygenation. Our findings sup-
port the concept that renitrosylation therapy offers a means to
ameliorate a failure of tissue perfusion and oxygenation pro-
duced by transfusion of stored RBCs. In this regard, perhaps the
most remarkable aspect of our study is the insight that knowl-
edge of the SNO-Hb status of banked blood may be used to
judge the efficacy of RBC transfusion. Inasmuch as the world’s
supply of banked RBCs is deficient in SNO-Hb, efforts to restore
its levels may hold great therapeutic promise.

Materials and Methods
Animals studies were approved by the Duke University and Case Western
Reserve University Institutional Animal Care and Use Committees. All pro-
cedures complied with The Guide for the Care and Use of Laboratory Animals.
Experiments were conducted on young adult male mice (C57/BL6; ∼20 g)
and rats (Sprague-Dawley; ∼300 g) obtained from Charles River, and adult
mix-breed sheep obtained from local commercial suppliers. All potentially
painful procedures were conducted under an appropriate plane of anes-
thesia. Methods for blood procurement, storage, and renitrosylation, along
with details of the animal studies, transfusion protocols, and the data
analyses are provided in SI Materials and Methods. RBC renitrosylation oc-
curred within 30 min of transfusion. At the end of the experiments, animals
were humanely killed by approved methods listed in the American Veteri-
nary Medical Association Guidelines on Euthanasia.
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