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Phanerozoic levels of atmospheric oxygen relate to the burial his-
tories of organic carbon and pyrite sulfur. The sulfur cycle remains
poorly constrained, however, leading to concomitant uncertainties
in O2 budgets. Here we present experiments linking the magnitude
of fractionations of the multiple sulfur isotopes to the rate of mi-
crobial sulfate reduction. The data demonstrate that such fractio-
nations are controlled by the availability of electron donor (organic
matter), rather than by the concentration of electron acceptor (sul-
fate), an environmental constraint that varies among sedimentary
burial environments. By coupling these results with a sediment bio-
geochemical model of pyrite burial, we find a strong relationship
between observed sulfur isotope fractionations over the last 200
Ma and the areal extent of shallow seafloor environments. We in-
terpret this as a global dependency of the rate of microbial sulfate
reduction on the availability of organic-rich sea-floor settings. How-
ever, fractionation during the early/mid-Paleozoic fails to correlate
with shelf area. We suggest that this decoupling reflects a shal-
lower paleoredox boundary, primarily confined to the water col-
umn in the early Phanerozoic. The transition between these two
states begins during the Carboniferous and concludes approximately
around the Triassic–Jurassic boundary, indicating a prolonged re-
sponse to a Carboniferous rise in O2. Together, these results lay
the foundation for decoupling changes in sulfate reduction rates
from the global average record of pyrite burial, highlighting how
the local nature of sedimentary processes affects global records.
This distinction greatly refines our understanding of the S cycle
and its relationship to the history of atmospheric oxygen.

Phanerozoic oxygen | sulfate-reducing bacteria

The marine sedimentary sulfur isotope record encodes infor-
mation on the chemical and biological composition of Earth’s

ancient oceans and atmosphere (1, 2). However, our interpre-
tation of the isotopic composition of S-bearing minerals is only as
robust as our understanding of the mechanisms that impart a
fractionation. Fortunately, decades of research identify microbial
sulfate reduction (MSR) as the key catalyst of the marine S cycle,
both setting the S cycle in motion and dominating the mass-
dependent fractionation preserved within the geological record
(1, 3, 4). Despite the large range of S-isotope variability observed
in biological studies (4–6), attempts to calibrate the fractiona-
tions associated with MSR are less mechanistically definitive (7, 8)
than analogous processes influencing the carbon cycle (9, 10).
What is required is a means to predict S isotope signatures as
a function of the physiological response to environmental con-
ditions (e.g., reduction–oxidation potential).
Microbial sulfate reduction couples the oxidation of organic

matter or molecular hydrogen to the production of sulfide, set-
ting in motion a cascade of reactions that come to define the
biogeochemical S cycle. In modern marine sediments, sulfide is
most commonly shuttled back toward sulfate through oxidation
reactions (biotic and abiotic) or scavenged by iron and buried as
pyrite (11). It is the balance of oxidation reactions and pyrite
burial that influences geological isotope records, which in turn
carry historical information on the oxidation state of Earth’s

biosphere. Such records generally are thought to indicate that
oxidant availability has increased with each passing geologic eon
(12). Although playing prominent roles in sedimentary redox cycles
(13), oxidation reactions carry only modest S isotopic fraction-
ations (14, 15).* In typical modern marine sediments, the oxida-
tive region of aerobic organic carbon remineralization is separated
from the zone of sulfate reduction (where MSR takes place) by an
intermediate layer in which both sulfide oxidation and sulfur
disproportionation occur (16, 17). Despite sulfur recycling across
that boundary layer, the sulfur that is eventually buried as pyrite
predominately reflects the isotopic fractionation associated with
MSR (18).
Numerous studies show a correlation between microbial sulfate

reduction rate (mSRR; SI Text) and the expressed magnitudes of
the MSR S isotopic fractionations (19–22). The mSRR depends
on a suite of physiological controls (i.e., metabolic enzymes) (23)
having variable efficiencies in response to environmental conditions
(e.g., nutrient availability, redox potential, etc.; refs. 8 and 24). Such
reactions can be presumed to be first-order with respect to a limiting
reactant (SI Text and refs. 25 and 26). In the case ofMSR, either the
electron acceptor (sulfate; ref. 7) or the electron donor (generally,
organic carbon (OC); refs. 19, 20, 27, and 28) plays this role. It has
been hypothesized that since the Archean–Proterozoic boundary
sulfate (oxidant) limitation has not occurred in the water column,
but rather has been restricted to significantly below the sediment–
water interface. This is consistent with estimates through the Pro-
terozoic and Phanerozoic Eons (29) that suggest seawater sulfate
concentrations in excess of the physiologically inferred minimum
threshold for MSR (30). It follows that the quantity and quality of
OC delivery to the zone of sulfate reduction most often dictates
sulfate reduction rates where sulfate is abundant, and consequently
play the larger role in determining the sulfur isotope record.
The most direct experimental means of studying the metabolic

rate of a bacterial population is to maintain the culture in a che-
mostat (chemical environment in static). In a chemostat, the input
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concentration of the limiting substrate (e.g., micronutrient, elec-
tron donor, or electron acceptor) dictates the biomass yield (i.e.,
new biomass per mass substrate used), whereas turnover time of
the reactor [dilution rate (D), time−1] dictates growth rate (SI Text
and ref. 25). It follows that the mSRR (specifically, the rate of
reduction per unit biomass) scales with the availability of the
limiting nutrient, and thus with D (19, 25). Limited previous ex-
perimental work with open and semiopen experimental systems
hints that mSRR inversely correlates with fractionation of the
major S isotopes (34S/32S) (19, 31, 32)—a prediction that is
reinforced by measurement of the same relationship in modern
marine sediments (17, 22). However, the limited range of mSRRs
previously explored does not adequately capture the vast range of
rates inferred from marine sediments (33–35). In this work we
present an empirical calibration of a ∼50-fold change in mSRR,
nearly doubling the previous experimental ranges. We also target
theminor isotope, 33S, in addition to targeting 34S fractionations; this
supplies another dimension for interpreting the geologic record. We
then apply this calibration to Phanerozoic isotope records to reveal
how secular changes in S isotopic fractionation reflect a temporal
history of paleoredox conditions. This enables us to reassess the
burial of pyrite and associated changes in environmental con-
ditions across the Phanerozoic Eon.

Results and Discussion
We conducted a suite of continuous-culture experiments with the
model sulfate reducing bacterial strain Desulfovibrio vulgaris Hil-
denborough (DvH). Strain DvH is among the most well-studied
sulfate reducers and is genetically tractable (36, 37). Although
DvH is nominally a nonmarine strain, the concentration of sul-
fate in the chemostat was always near modern marine levels (28
mM) and well above known sulfate affinity constants (38). The
sole electron donor (lactate) was always the limiting nutrient in
these experiments and was provided at a stoichiometric 1:2 or
1:20 ratio with sulfate (Materials and Methods and SI Text).
These experiments show that MSR isotope fractionation is

strongly inversely dependent on electron donor concentration
(Fig. 1). In detail, mSRR follows a first-order nonlinear relation-
ship toD (Fig. 1): as we decreaseD, lactate availability and mSRR
decline, whereas 34eMSR increases. [The values of 34eMSR and
33λMSR refer to the isotopic differences between the sulfate and
sulfide from chemostat experiments (SI Text), whereas 34eGEO
and 33λGEO refer to those differences calculated from sulfate and
pyrite sedimentary records as time-binned averages (Dataset S1,
Table S1, and Eqs. S4–S7). Further definitions are presented in SI

Text.] These open-system experiments (Fig. S1 and SI Text) allow
for the direct calculation of fractionation factors from the isotopic
composition of output sulfate and sulfide (39), without having to
apply Rayleigh distillation models addressing closed system
(batch) dynamics (40). We demonstrated conservation of elemen-
tal and isotopic mass balance throughout the entire experiment
(Dataset S1) via the direct measurement of SO4

2−, H2S/HS−,
S2O3

2−, and S3O6
2−, the latter two of which were always below

detection (2.5 μM) but have been previously detected in semiopen
system experiments (31).
Our data complement and significantly extend previous open-

system experiments (8, 19, 27, 41, 42). Over a ∼50-fold change in
mSRR (Fig. 1 and Figs. S2 and S3), 34eMSR ranged from 10.9 to
54.9‰ (Fig. 1A), whereas 33λMSR varied from 0.5079 to 0.5144
(Fig. 1B). In addition to aiding in our understanding of envi-
ronmental/geological records (discussed below), these data al-
low for an empirically derived fractionation limit for DvH under
conditions of electron donor limitation. We apply a nonlinear
regression model (43) based on a pseudo-first-order rate ex-
pression, appropriate for a reaction in which rate depends on the
concentration of a single reactant (Eqs. S8 and S9) (26, 44). The
results of the model illustrate the capacity of MSR to exceed the
classic 47‰ limit for 34eMSR (Fig. 2 and ref. 45), here suggesting
an upper limit of 56.5 ± 2.6‰. The same nonlinear regression
model (Eq. S9) predicts a minor isotope limit (in 33λ) at 0.5143 ±
0.0004. Given that our experiments were performed with an
axenic population of sulfate reducers, we can definitively rule out
contributions from intermediate S-oxidizing or dispro-
portionating organisms (46). However, although the magni-
tudes of these fractionations exceed the canonical MSR limits
(34e = 47‰), they do not reach the low-temperature equilibrium
predictions between sulfate and sulfide in 34e (at 20 °C, 34e =
71.3‰; ref. 40).

Decoupling the Isotopic Effects of Sulfate Reduction Rates from Pyrite
Burial Records. In modern marine sediments, OC availability is
strongly tied to sedimentation rate (47–49). Faster sedimentation
(such as in river deltas or on continental shelves) generally leads
to more efficient delivery of OC below the depth of oxygen pen-
etration, into the zone of sulfate reduction. (Extreme sedimenta-
tion rates deviate from this prediction and can lead to OC dilu-
tion.) The absolute flux of OC also scales directly with primary
production. The balance of these processes dictates where sulfate
reduction occurs with respect to the sediment–water interface, as
well as how much sulfate ultimately is reduced (50). Because

A B

Fig. 1. Multiple sulfur isotope fractionation as a function of dilution rate
in chemostat experiments. In these experiments, growth and sulfate re-
duction rates scale inversely with organic carbon (lactate) delivery rate,
expressed here as dilution rate (D, hours−1). This rate dictates the magnitude
of major (A) and minor (B) isotope fractionation between sulfate and sul-
fide. Error bars in A are smaller than the symbols (2σ = 0.3‰), and vertical
error bars in B are 2σ SDs. Other studies cited refer to Chambers et al. (19)
and Sim et al. (27).

A B

Fig. 2. Demonstration of new fractionation limits under electron-donor
limitation. A nonlinear regression model (Eqs. S8 and S9) was used to cal-
culate the empirical fractionation limit in (A) 34eMSR (r2 = 0.9151) and (B)
33λMSR (r2 = 0.8905), as a function of mSRR (see also Fig. S2). Bold lines in-
dicate the best-fit estimates with 95% confidence intervals as the thin
dashed lines (34eMSR: 51–62‰; 33λMSR: 0.5135–5151). Inset values are the
calculated fitting parameters (along with kMSR_e = 0.054 ± 0.012 and kMSR_λ =
0.0395 ± 0.0158) with SEs used in calculations for 95% confidence interval.
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some fraction of the resulting sulfide will be buried as pyrite—
with concomitant release of oxidant to the ocean-atmosphere
system—it is critical to determine how the mSRR-dependent
isotope fractionation (34eMSR and 33λMSR) influences the S-isotopic
records of pyrite relative to coeval sulfate (34eGEO and 33λGEO).
Analogous to the influence of lactate on mSRR in our experi-

mental system, the availability of greater quantities of more highly
labile OC to the sulfate reduction zone in modern sediments
translates to an increase in sulfate reduction rates, with a corre-
sponding decrease in the magnitude of 34eMSR (24, 35, 51). Con-
versely, decreases in sulfate reduction rates down a sediment
column owing to the modeled loss of OC quality and quantity are
consistent with observations that 34eMSR increases (47, 52). To-
gether these ideas describe the concept of net sedimentary sul-
fate reduction rate (sedSRR; moles of S per square meter per
year). The sedSRR, because it integrates the depth-dependent
rate through the entire zone of sulfate reduction, must encom-
pass a depth-weighted average of the variable 34eMSR as well as
be tightly linked to the initial OC delivery to the sediment–water
interface. Data from the modern sea floor (18, 22, 53) confirm
the expected inverse relation between bulk in situ sedSRR and
the magnitude of the net sedimentary S isotope fractionation
(34eGEO).
The concept of sedSRR also contains another important dis-

tinction from mSRR. In most environments, measures of micro-
bial population density are lacking, as are measures of the metabol-
ically available OC compounds. Our experimental system quantifies
these parameters and enables direct calculation of mSRR. How-
ever, in the environment, the useful metrics are the bulk sedSRR
and the global sulfate reduction rate (gSRR, moles of S per year).
The sedSRR is converted to gSRR through an areal normaliza-
tion and a reoxidation coefficient (1, 17); further details are pre-
sented in Table S2. It is gSRR that is necessary for determining
long-term oxidant budgets and global pyrite burial.
We propose that it is possible to decouple the isotopic effects

caused by variable sedSRR from the ultimate sedimentary record
of S isotopes. For example, under iron-replete conditions, net
pyrite burial may increase as a result of more sulfide production
and/or an increased sulfide scavenging efficiency by iron (i.e., less
oxidation), but at a constant sedSRR. Alternatively, pyrite burial
could increase in response to a higher sedSRR, if it were driven
by a higher flux of metabolizable OC to the sedimentary zone of
sulfate reduction. This comparison can also be extended to in-
clude the roles for weathering and changes in the abundance
of shallow-water environments (shelf area). We posit that it is
possible to differentiate between these scenarios and determine
the ultimate control (tectonics vs. OC) on pyrite burial at the
global scale: The first case would maintain a constant 34eGEO and

33λGEO, whereas varying sedSRR would be recorded by a change
in the fractionation patterns.

Interpreting Phanerozoic Records. Phanerozoic compilations pro-
vide a context for evaluating the potential variability in sedSRR
through time. Records of 34eGEO and 33λGEO from Phanerozoic
sedimentary basins provide a time-series approximation of the
mean isotopic difference between coeval sulfates and sulfides
(Fig. 3 and Table S1) (13, 54). In parallel, we use recent esti-
mates for the areal extent of continental shelf and abyssal ocean
across Phanerozoic time (Table S1) (55, 56). Assuming that the
physical processes dictating OC delivery to sediments today hold
throughout the Phanerozoic, shelf environments are generally
expected to be OC-rich and support higher sulfate reduction rates
than deep-water settings (17, 22). This is reinforced by modern
observations, where in shallow water sediments (<1,000 m deep),
the area-weighted average sedSRR is 96 μmol SO4

2–·cm–2·y−1,
whereas in deep-water sediments (>1,000 m deep) it is ∼1
μmol SO4

2–·cm–2·y−1.
It has long been appreciated that the 34eGEO record through

the Phanerozoic carries a definitive structure (13, 57, 58)—the
earliest Paleozoic has mean fractionations of ∼30‰ and tran-
sitions through the Permian and Triassic to a Meso-Cenozoic
average near ∼45‰ (Fig. 3). This temporal distinction also exists
for estimates of 33λGEO (Fig. 3) (54). Interestingly, by comparing
both isotope metrics (34eGEO and 33λGEO) with estimates of shelf
area, we are able to resolve temporal patterns (Fig. 4 and Fig. S4).
From our analysis of the compiled datasets (SI Text), we find
that as shelf area increases, both 34eGEO and 33λGEO tend to de-
crease (Fig. 4 and Fig. S4). Closer examination of these data
illustrates, however, that the statistical significance of these cor-
relations rests largely on the tightly coupled behavior in the Meso-
Cenozoic. In contrast, the Paleozoic has a less coherent relation-
ship (Fig. 4 and Fig. S4). We thus interpret the multiple S isotope
record as being divisible into two states offset by a transition. The
first state is the early Paleozoic (540–300 Ma), where 34eGEO is
lower, shelf areas are larger, and 33λGEO is highly variable; the
second state is the Meso-Cenozoic (200–0 Ma), where 34eGEO and
33λGEO are larger and associated with less shelf area. The transi-
tion spans at least the Permian and the Triassic (ca. 300–200 Ma).
Although there is relatively less sulfur isotopic variability in the

Meso-Cenozoic compared with the Paleozoic, the interval from
the Cretaceous to the present (ca. 100–0 Ma) shows increases in
34eGEO and 33λGEO of 7‰ and ∼0.0002, respectively (Fig. 3).
[The opposite trends, and by analogy the converse arguments,
apply to the Mesozoic interval from 200 to 100 Ma (Fig. 3)]. In
our conceptual framework, this may represent a constant sedSRR

Fig. 3. The Phanerozoic S isotope record. SI Text gives compilation, binning
strategy, and data handling.

Fig. 4. Relating Phanerozoic shelf-area estimates to isotopic records. Data
are binned and shaded as in Fig. 3, with the Permian–Triassic in white to
highlight this transition. The P values are for the 0–200- and 300–540-Ma
intervals. Significant covariance (P < 0.0001) between shelf area isotope
metrics only persisted in the last 200 Ma. A similar relationship exists for
33λGEO relative to shelf area (Fig. S4), though a more robust interpretation of
33S records will require a larger geologic database than is currently available.
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with a decreasing shelf area (thereby decreasing both gSRR and
pyrite burial), or it may represent a decrease in sedSRR with
concomitant decline in shelf area. We first consider the case of
constant sedSRR: Here, a ∼10% decrease in pyrite burial is re-
quired to accommodate the 7‰ increase in 34eGEO (SI Text).
Such a fluctuation in pyrite burial is reasonable. However, changes
in pyrite burial cannot affect 33λGEO, and as such, the observed
variance in 33λGEO means that a change in shelf area alone (as it
relates to gSRR) cannot explain the Meso-Cenozoic S isotope
record (i.e., sedSRR also must have changed).
As an alternative to a change only in shelf area, our experimental

data provide a means to test the second hypothesis: variable
sedSRR. The sediment data for 33λGEO vs. 34eGEO through the
Meso-Cenozoic are statistically within the relationship extracted
from our chemostat data (33λMSR vs. 34eMSR; Fig. S5). This suggests
that the dominant control on fractionation is sulfate reduction,
and that the geologic data can be interpreted in the context of
where they fall on the slope-rate relationship ofMSR (Fig. S5). The
isotopic record of the Meso-Cenozoic corresponds to an estimated
mean 8310570 % variation in sedSRR if based on our experimentally
determined 34eMSR-rate relation, or a mean 4311927 % variation in
sedSRR if based on the 33λMSR-rate relation [Fig. 5, Fig. S4, and SI
Text; 34eMSR- or

33λMSR-derived mSRR is converted to sedSRR
by using the Plio-Pleistocene as a reference and assuming that
the scaling relationship is constant over time (SI Text)].
We postulate that synergistic changes in sedSRR and shelf area

work together to explain the Meso-Cenozoic S isotope record.
The pattern of change in sedSRR between 200 Ma and 0 Ma is
also significantly correlated to the variability in shelf area over
that same interval (Fig. 5 and Fig. S4). This implies that sedSRR
and shelf area are at least partially inseparable variables, although
the underlying coupling between them is not immediately clear.
Importantly, an increase in sedSRR is not simply an increase in
themolar flux of sulfate reduction, proportional to increased shelf
area. An increase in sedSRR requires a change in the local mSRR
integrated in a local sediment column. This must signal a response
to availability of the limiting reactant—in this case, OC—either
via its quantity or quality delivered to the sedimentary zone of
sulfate reduction. We hypothesize that changes in the absolute
flux of nutrients (59) to shelf environments is influencing the lo-
cation and intensity of primary productivity, changing the delivery
of OC to the sediments, and influencing the sedSRR. In this way,

sedSRR joins the many other sedimentary biogeochemical pro-
cesses known to respond to varying nutrient regimes (60). Further
refining the structure of the Meso-Cenozoic record may provide
critical insight into what processes are playing a prominent role in
setting sedSRR, and we consider the consequences of this pre-
diction below. However, we first consider the different patterns
apparent in the Paleozoic records.
Our mechanistic understanding of the S isotope record of the

last 200 Ma does not explain the 33λGEO–
34eGEO relationship of

the Paleozoic. Compared with the mid-Cenozoic, the early-mid
Paleozoic (540–300Ma) records a similar variance in 34eGEO values
(∼6‰ around an era mean of ∼30‰), but three times the var-
iability in 33λGEO (a continuous decrease of ∼0.0008; Fig. 3). This
results in a significant departure of the Paleozoic from the 33S to
34S slope-rate relationship that defines the last 200 Ma (Fig. 4 and
Fig. S5). The lower overall 34eGEO during the Paleozoic (∼30‰),
if paired with the lowest Paleozoic 33λGEO from that same interval
(Pennsylvanian; Fig. S4), may indeed relate to an elevated
sedSRR and greater areal extent of shallower sea floor (Fig. 4).
However, the failure of the Paleozoic data to plot on the 33λMSR
vs. 34eMSR line (Fig. S5) not only undermines any confidence in
applying our experimental calibration to this earlier interval (SI
Text), it also is consistent with the observed weak relationship
between the 34eGEO and 33λGEO data to shelf area (Fig. 4). This
suggests that the general decoupling of 34eGEO from 33λGEO
within the Paleozoic is not readily attributable only to changes in
sedSRR. The breakdown of the observed relationships that ap-
plied in the Meso-Cenozoic suggests that, for the Paleozoic,
a conceptual model that ascribes changes in 34eGEO and 33λGEO to
a codependent relationship between sedSRR and shelf area is
insufficient. Because fluctuations in 33λGEO for the Paleozoic are
largely independent of changes in 34eGEO, there must be addi-
tional forcings.
Modeling studies illustrate how such an isotopic decoupling

can be produced, either through an increase in reoxidative fluxes
and associated processes (61) or through non-steady-state be-
havior (62). The former may seem unlikely given lower estimated
oxygen partial pressure (pO2) during the first two-thirds of the
Paleozoic (63). However, lower pO2 also implies a sulfate re-
duction zone closer to the sediment–water interface, or perhaps
within the water column. Under these conditions, the delivery
of oxidant to the sulfate reduction zone is no longer diffusion-
limited, and as a result reoxidation reactions may be fractionally
more important despite lower overall pO2. This includes both
classic sulfide oxidation [at the expense of oxygen, nitrate, man-
ganese (IV) oxides, and iron (III) oxide-hydroxides] as well as
disproportionation reactions. Both have been tentatively shown
to produce a negative slope of the 33λA–B vs. 34eA–B isotope re-
lationship (15, 61). The shallow slope of the Paleozoic 33λGEO vs.
34eGEO data suggests that this opposite isotopic directionality
partially is expressed and preserved (64). A change in the location
and flux through reoxidation reactions is also dependent on the
proximity to iron (water column vs. sediment), given that pyrite
formation is a terminal sink (i.e., reoxidation inhibitor) for aque-
ous sulfide (65). Non-steady-state behavior of the Paleozoic S
cycle is also possible and necessarily relates to seawater sulfate
concentrations; however, current estimates suggest Paleozoic sul-
fate was abundant enough to circumvent such direct, first-order
microbial control on fractionation (29). We therefore favor the
explanation that a fundamentally different zonation of the pale-
oredox boundary in the Paleozoic decoupled the controls on S
isotopes from sedimentary processes (sedSRR) and shelf area
effects. Although speculative, this idea is testable using modern
environments with strong redox gradients.
Equally as intriguing as the difference between the early Pa-

leozoic and the last 200 Ma is the isotopic transition captured
during the Permian and Triassic (Fig. 3 and Fig. S4). The gen-
erally weak correlations between 34eGEO and 33λGEO within the

Fig. 5. Calculated changes in sedimentary sulfate reduction rates over the
Meso-Cenozoic. There is a statistically significant relationship between the
calculated relative change in sulfate reduction rate and shelf area over
the last 200 Ma, with a Cretaceous maximum nearly 40–80% higher than the
Plio-Pleistocene average. Before 200 Ma, rate predictions from 34eGEO and
33λGEO are not always convergent or statistically robust (Fig. S4). The sedSRR
calculated using the 33λGEO as input is presented in Fig. S4 but should be
interpreted with care given the modestly sized dataset underpinning
Phanerozoic predictions (54).
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Paleozoic are followed by a 15‰ increase in average 34eGEO and
a 0.0005 increase in 33λGEO. This implies a major state change to
the global biogeochemical S cycle across 100 Ma spanning the
Permo-Triassic boundary. Complementary geochemical metrics
(δ13C, δ18O, and 87Sr/86Sr) also record major changes as Earth
transitioned from the later Paleozoic to late Triassic (66). A
recent statistical treatment elegantly points to the assembly and
breakup of Pangaea as the explanation for this state change (56).
Pangaea formed during the end of the Paleozoic and began to
rift during the Triassic (67). This clearly relates to shelf area (55),
but also affects primary production (OC) through the effect of
continental weathering on nutrient budgets (68). Although this
transition in the S cycle encapsulates the Permo-Triassic bound-
ary, it began tens of millions of years before the Permian–Triassic
extinction. Such a protracted time scale for the isotopic tran-
sition (from 300 to 200 Ma) may implicate the possible cause as
a change in the ratio of S to Fe from rivers (65) associated with
a Carboniferous increase in pO2 (63).

Conclusions
We propose that changes in sulfate reduction rates in marine
sediments, rather than global pyrite burial, dictated S isotope
records over the last 200 Ma. The post-Triassic geological record
suggests that sedSRR increased to a mid-Cretaceous apex and
then slowed again over the last 100 Ma (Fig. 5). What, then,
controlled sedSRR? During this interval our estimates of sedSRR
correlate strongly with estimates for shelf area (Fig. S4B). To the
degree that global shelves capture weathering fluxes and modu-
late nutrient delivery to primary producers, they may not only
dictate the quantity and quality of organic matter reaching the
zone of sulfate reduction, but they also help dictate the position
of this zone with respect to the sediment–water interface. Thus, if
the combination of OC delivery and sedimentation rate controls
sedSRR, marine sedimentary S isotope compositions may reflect
a combination of Meso-Cenozoic productivity and shelf area. For
this relationship to hold (i.e., to maintain the direct connection to
shelf area), it requires that pO2 be elevated in the Meso-Cenozoic
relative to the early/mid-Paleozoic (63), because it must relegate
the locus of sulfate reduction to be (on average) below the sedi-
ment–water interface. Encouragingly, this provides a facies-testable
hypothesis, applicable to high-resolution datasets from Phaner-
ozoic sections where multiple biogeochemical isotope proxies are
measurable and interpretable (69).
The Paleozoic 33λGEO vs. 34eGEO relationship requires signifi-

cant contribution from processes other than changing OC delivery
rates or total shelf area. As such, building a quantitative under-
standing of the Paleozoic sulfur cycle remains difficult. The dis-
agreement between Paleozoic sedimentary data and our experi-
mental calibration leaves room for other S metabolisms to
contribute significantly to the observed S fractionations (biotic
and abiotic sulfide oxidation, as well as disproportionation). In-
deed, if a major difference between the Paleozoic and Meso-
Cenozoic is the locality and magnitude of sulfide reoxidation—
the water column in the Paleozoic vs. the sediments in the

Meso-Cenozoic—then the delivery of reactive iron to the zone of
sulfate reduction (55, 70) will determine whether most iron
sulfides are syngenetic or diagenetic. This in turn influences the
net pyrite burial flux and the balance of global oxidants. Further
measurements and modeling are required to define these fluxes
over both eras. Still, we can state with some confidence that re-
cent multiple S isotope records do not require changes in pyrite
burial over the last 200 Ma. Recent sediments carry a detailed
and rich repository of small-scale microbial activities, and the
magnitude of overall S fractionations likely reflects global oxidant
budgets working in tandem with major tectonic changes.
Ultimately it is the reduction potential trapped in pyrite and

organic matter—rather than the rate of sedimentary sulfate
reduction—that influences Earth’s surface oxidant budget on billion-
year time scales. Our hypotheses suggest that pyrite burial flux
(and by extension its contribution to pO2) has not changed dra-
matically in recent times. Conversely, changes in pyrite burial
flux remain a potentially critical control on the oxidant budget
during the first half of the Phanerozoic. Continued measurements
of geological materials (marine pyrites, sulfates, and terrestrial
deposits), coupled with additional microbial experimentation
and biogeochemical modeling, promise to yield further insight into
the behavior of the S cycle over Earth’s history.

Materials and Methods
An experiment with DvH in a custom-built chemostat was run with lactate as
the sole electron donor and rate-limiting nutrient for sulfate reduction. The
dilution rate was varied over 43-fold (D ∝ mSRR), with measurements of the
following biological, geochemical, and isotopic parameters on all samples
(Dataset S1): temperature, pH, dilution rate, cell density, sulfide production
rate (the sole detectable sulfate reduction product), acetate production rate,
33α and 34α of sulfate and sulfide, and cell density. By measuring the dif-
ference between the S-isotope compositions of sulfate and sulfide, and
because S-mass balance is closed with these two pools alone (i.e., no thionates
detected), we may directly calculate the 3xαA−B and 33λA−B. Specific growth
rate is calculated by measuring the dilution rate and the rate of change in
optical density between time points (Dataset S1). The nonlinear regression
models (based on pseudo-first-order kinetics) are applied to the experimental
data,34eMSR or 33λMSR vs. mSRR, allowing us to calculate theoretical 34eMSRmax

and 33λMSRmax, along with corresponding fitting parameters, SEs, and 95%
confidence interval (Fig. 2). We compare between models by examining the
goodness of fit from each model (Fig. S3). The resultant expressions relate a
measured isotopic fractionation (Eqs. S8 and S9) to mSRR and the fitted ki-
netic constant (k) to extract fractionation limits (e.g., 34eMSRmax and

34eMSRmin).
Relative sedSRRs are calculated with Eqs. S12–S14. Phanerozoic data compi-
lations and isotope mass-balance models are detailed in SI Text.
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