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Cells, even those having identical genotype, exhibit variability in
their response to external stimuli. This variability arises from
differences in the abundance, localization, and state of cellular
components. Such nongenetic differences are likely heritable
between successive generations and can also be influenced by
processes such as cell cycle, age, or interplay between different
pathways. To address the contribution of nongenetic heritability
and cell cycle in cell-to-cell variability we developed a high-
throughput and fully automated microfluidic platform that allows
for concurrent measurement of gene expression, cell-cycle periods,
age, and lineage information under a large number of temporally
changing medium conditions and using multiple strains. We apply
this technology to examine the role of nongenetic inheritance in
cell heterogeneity of yeast pheromone signaling. Our data dem-
onstrate that the capacity to respond to pheromone is passed
across generations and that the strength of the response correla-
tions between related cells is affected by perturbations in the
signaling pathway. We observe that a ste50Δ mutant strain exhib-
its highly heterogeneous response to pheromone originating from
a unique asymmetry between mother and daughter response. On
the other hand, fus3Δ cells were found to exhibit an unusually
high correlation between mother and daughter cells that arose
from a combination of extended cell-cycle periods of fus3Δ moth-
ers, and decreased cell-cycle modulation of the pheromone path-
way. Our results contribute to the understanding of the origins of
cell heterogeneity and demonstrate the importance of automated
platforms that generate single-cell data on several parameters.
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Cells must detect biochemical cues and respond appropriately
to changing environmental conditions. However, under

identical chemical stimuli not all cells respond the same. Het-
erogeneity in “cellular decision making” exists across all levels of
life, from bacteria (1, 2) to simple eukaryotes (3–5) to mam-
malian cells (6, 7), and may be important in cellular adaptation
to quickly changing microenvironments (8), in differentiation
programs during development (6), and in sensitivity to drugs (9,
10). In addition to the intrinsic stochastic nature of gene expres-
sion (1, 3), each cell has an inherent capacity to respond, which is
determined by the state and abundance of cellular components.
This extrinsic variability may be passed across multiple gen-
erations, producing a nongenetic but heritable source of variation.
Additional sources that contribute to extrinsic variability include
asynchrony and interplay between different signaling pathways
(11, 12), cell-cycle effects (3, 13), asymmetry in cellular divisions
(14), and cellular aging (13).
Investigating these effects requires tracking the genealogy of

multiple generations of cells, followed by stimulation and quan-
titative single-cell measurement of response, including growth
kinetics and gene expression. Although improved image analysis,
microscopy, and fluorescent reporter strategies have enabled

elegant cell lineaging experiments under static or in vivo con-
ditions (15, 16); conventional microwell or agar pad formats
provide only crude capabilities for the modulation of medium
conditions and are thus not ideal for the study of dynamic pro-
cesses such as signaling. Microfluidic systems provide an attrac-
tive platform for such experiments and offer advantages of precise
temporal control over medium conditions, the physical confine-
ment of cells to facilitate tracking (17–19) and assignment of
lineage relationships (20, 21), and scalability to obtain statistically
meaningful measures of population variability in multiple con-
ditions and genotypes (18, 22). Despite the demonstrated utility
of microfluidic formats for cell-lineage analysis (18, 20, 21), the
realization of automated and high-throughput reconstruction of
full lineage trees has not been previously achieved. This task is
particularly difficult for asymmetrically dividing cells, such as bud-
ding yeast, where the small size of the budding daughter cells makes
segmentation and assignment challenging. The reliance on manual
or quasi-automated reconstruction of cell lineage relationships has
presented amajor bottleneck that has reduced analysis to only a few
lineage trees and conditions or limited investigation to partial lin-
eage trees. For this reason there is a paucity of data looking at the
role of nongenetic inheritance in signaling heterogeneity.
To address this need we implemented a fully automated

microfluidic live-cell imaging system capable of measuring single-
cell responses of multiple yeast strains to a range of dynamically
changing medium conditions, while at the same time tracking
cell-lineage relationships at a throughput of 25,000 cells per run
and for up to eight generations. We applied this system to ex-
amine how nongenetic heritability and cell-cycle effects con-
tribute to cellular heterogeneity in signaling response, using the
pheromone pathway of the yeast Saccharomyces cerevisiae as a
model system.
The pheromone pathway is an archetypical model of mitogen-

activated protein kinase (MAPK) signaling, a superfamily of
extracellular signal-regulated kinases that is evolutionarily con-
served across higher eukaryotes including humans (23), and
governs numerous biological processes including differentiation,
oncogenesis, proliferation, and growth. In haploid yeast the
pheromone MAPK pathway is used for detection and conjuga-
tion with the opposite mating types, either a-type or α-type,
producing a chemotropic- and concentration-dependent response
that is initiated by the binding of pheromone ligand, either α-factor
or a-factor, to a membrane-localized G protein-coupled receptor.
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Activation results in an MAPK phosphorylation cascade that
culminates in growth arrest and activation of the transcription
factor Ste12, which initiates a transcriptional mating program
involving hundreds of genes (24).
The mating pathway of S. cerevisiae is a particularly interesting

system for the study of nongenetic heritability in signaling due to
the inherent asymmetry in cellular divisions. Cells divide through
a budding process, which produces a daughter cell that is smaller
than the mother cell. Due to the coupling of cell volume and cell
cycle, daughter cells must grow to a critical size before division
(25). This results in a mother–daughter asymmetry in cell-cycle
kinetics, with daughter cells having a longer G1 phase than
mothers. In addition, several genes, including those involved in
the separation of cell walls and in the switching of the mating
type, are known to be expressed only in daughters and are reg-
ulated by daughter-specific genetic programs (26, 27). Finally,
although daughters retain a full replicative potential, mothers
have a finite life span and progressively undergo replicative aging
and accumulate damaged proteins and extrachromosomal DNA
material (28, 29).
In this paper, we analyze cell-to-cell variability of transcrip-

tional response to pheromone and measure response correlations
between related cells in wild type and seven deletion strains. We
reveal two obvious phenotypes, fus3Δ with the highest heritability
and ste50Δ with the highest heterogeneity, and we show that they
are linked to the alterations of the cell cycle and age asymmetry.

Results and Discussion
Microfluidic Platform for High-Throughput Cell Lineaging. To assess
the interplay of cell cycle, age, and lineage history with signaling
response we modified a previously described microfluidic device
(18), and optimized this platform for long-term time-lapse im-
aging with a high numerical aperture objective (63×, NA 1.4),
(see www.phas.ubc.ca/~chansen/autoCAD%20designs.rar for
the device design). This microfluidic format implements parallel
imaging experiments in 128 separate chambers (434 × 165 ×
2 μm; w × l × h) arranged in 8 columns, each of which may be
loaded with a different yeast strain, and 16 rows, through which
independent sequences of medium conditions may be applied
in a programmable fashion (Fig. 1A). Within each chamber,
growing cells are immobilized within an agarose gel and con-
strained by the chamber height to grow in a monolayer. Growth
rate and cell morphology in the microfluidic device was stable
throughout the experiment and similar to the exponential growth
in tubes when measured in the same media and temperature
(doubling time on chip = 110 min, doubling time off chip =
125 min, Figs. S1 and S2).
Yeast strains were constructed with three fluorescent markers

designed to facilitate automated cell lineaging and assess pher-
omone-signaling response: mCherry under the control of a pro-
moter containing pheromone-responsive elements (PRE) (18,
22) was used as a transcriptional reporter of pheromone signaling
pathway activation; YFP fused to the budneck protein Cdc10 was
used to facilitate automated assignment of mother–daughter
relationships (21); and CFP under the control of a constitutive
promoter of actin was used for accurate segmentation of cells
during image processing. To ensure repeatable image quality
and robust analysis, we developed image acquisition and analysis
software specifically optimized for our microfluidic imaging for-
mat and fluorescent marker strategy (available at www.phas.ubc.
ca/~chansen/Lineage%20tracking%20software.rar). We have
tested that cell growth is neither affected by the integration of
fluorescent markers into the genome of the strains (Fig. S1A), nor
by periodic imaging in fluorescent channels (Fig. S3) and that the
response of cells does not depend on the position in the micro-
fluidic array (Fig. S4).
Using this microfluidic platform every 13-h-long experiment

is capable of generating 128 time-lapse imaging series, each

represented by a sequence of images taken in two fields of view,
each having three fluorescent images and three bright-field
images. Our microscopy system allowed for imaging at a maxi-
mum frequency of ∼0.85 Hz, corresponding to ∼60,000 images
per run and a temporal resolution of 20 min when imaging the
entire array. Higher temporal resolution, with images taken every
12 min, was found to be optimal for lineage-tracking experiments;
and this was achieved by collecting data on only nine rows of the
device, leaving the remaining seven rows for controls or end-point
analysis. When starting from low initial seeding densities we were
able to routinely perform lineage-tracking experiments for up to
eight generations, which is comparable to previously published
work (20, 21) but at much higher experimental throughput. Using
72 chambers, a typical run generates data for ∼25,000 cells, and
identifies over 9,000 mother–daughter pairs. The performance of
the image-analysis software was manually verified on randomly
selected cells in every time point of a 13-h-long experiment. The
accuracy of segmentation and tracking algorithm exceeded 98%,
whereas lineage assignment was correct in 83% of all assessed
cases, deteriorating toward the end of the experiment (Fig. S5, SI
Materials and Methods). An example of the lineage tracking
analysis of a time-lapse series collected from one field of view is
demonstrated in Movie S1. A representative image of segmen-
tation and tracking together with a corresponding lineage tree of
a fraction of tracked cells are shown in Figs. 1 B and C. The
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Fig. 1. Microfluidic platform and automated lineage-tracking technology:
(A) Picture of the microfluidic device used in this study. A Canadian penny is
included for scale. Bottom shows an optical micrograph of one cell imaging
chamber. The flow channels (blue) and control channels (red) have been
filled with dye for visualization. The scale bar is 200 μm. (B) An example of
image analysis of the indicated chamber area at the bottom of A. Image
shows segmentation boundaries of cells (blue lines) that are labeled (red
numbers) and tracked through all time frames. Lineage relationships, con-
necting each cell with its mother are depicted by green lines. For the pur-
pose of visualization all of the progeny of a single cell (cell 1) are highlighted
by black lines. The scale bar is 10 μm. (C) Lineage tree of cell 1 from B and
transcriptional response of all cells within the tree during a 1-h pulse of
100-nM α-factor. Each horizontal line corresponds to one cell. Each square in
the line represents one 12-min time point. Vertical lines connect each
mother cell with its progeny. The intensity of red color correlates with
transcriptional response. The gray rectangle represents a period of
pheromone induction. Time points during which cells were not recog-
nized by lineage tracking algorithm are indicated in blue.
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lineage tree diagram displays both the level of PRE-dependent
mCherry expression, indicated by the color of each branch, and
the genealogical relationship of each cell in the population. In
addition, this analysis also provides precise measurements of age
and cell-cycle periods for each cell in the population.

Nongenetic Heritability and Heterogeneity of MAPK-Signaling Capacity.
Because signaling response is governed by protein network
structure (24), we hypothesized that perturbed networks should
exhibit variable effects of nongenetic heritability. To test this
we assessed the impact of nongenetic variability in pheromone
response of S. cerevisiae both in wild-type cells and across a col-
lection of seven strains having deletions in nonessential com-
ponents of pheromone response pathway: msg5Δ, kss1Δ, fus3Δ,
ste50Δ, far1Δ, ptp2Δ, andmpt5Δ. Strains were first loaded into the
microfluidic device and grown for several generations in rich
media to record lineage relationships. Cells were then stimulated
with 100 nM α-factor for 1 h, followed by time-course analysis of
response. Using reconstructed lineage relationships of all cells,
we then quantified the correlation of response between mother–
daughter pairs, as well as the mean response and total population
heterogeneity (Fig. 2 A and B). On average 1,100 mother–
daughter pairs were measured per strain.
For all strains tested, the response of mother–daughter pairs,

measured 3 h after the beginning of stimulation, was found to be
significantly correlated compared with that of random cell pair-
ings (Spearman correlation; P < 0.01) (Fig. 2A). Mother–
daughter correlations in fus3Δ strains were consistently the
highest of all strains tested and had significantly enhanced cor-
relations over all other strains (P < 10−4). Strains deleted for
FAR1 and KSS1 were found to have the second highest corre-
lation, although the measured values were significantly higher
than WT in only two of three experiments for both strains. On

the other hand, rank order analysis consistently placed msg5Δ as
the least correlated of all strains. The observed differences in
mother–daughter correlations across all eight strains are not
explained by the mean response or the overall population vari-
ability in response [coefficient of variation (CV) = standard
deviation/mean] (Fig. 2B). Both fus3Δ and msg5Δ strains were
found to have significantly higher variability in basal expression
levels before stimulation and converged to similar values following
induction. In terms of mean population expression, msg5Δ and
kss1Δ were both found to be hypersensitive to pheromone whereas
fus3Δ, ste50Δ, and far1Δ showed diminished sensitivity relative to
WT (18, 22, 24). Note that the differences in mother–daughter
correlations did not track with either the mean or the variability in
cell areas (Fig. S2) and that the mean growth rate before phero-
mone induction was similar in all strains (Fig. S6).
Inspection of plots of expression variability also revealed a

distinct phenotype in ste50Δ mutant. Although the CV of all
other strains decreased relative to basal levels following stimu-
lation and converged to a common value, ste50Δ cells exhibited
a pronounced increase that resulted in CV approximately twice
that of the other strains tested. Time-course measurements of
response for individual cells showed that this large variability,
which was not apparent in mother–daughter correlation analysis,
is due to a generally attenuated pheromone response, but the
persistence of a minority population of cells that retain re-
sponsiveness similar to nonsterile mutants such as fus3Δ (Fig.
S7). This heterogeneity, which is only apparent in single-cell
studies, may account for ambiguity in the sterile phenotype of
ste50Δ cells (24).
To further explore the origin of ste50Δ heterogeneity we

generated scatterplots comparing mother and daughter PRE-
dependent expression and compared this to similar plots gen-
erated for WT cells and the other deletion strains (Fig. 2C and

BA

C
Fig. 2. Nongenetic inheritance and variability in
pheromone response of eight deletion strains. (A)
Plot showing the distribution of correlation coef-
ficients for WT random pairs (blue) and the mean
correlation coefficients of mother–daughter pairs
of all tested strains (black). Cells were first grown
over 6 h in media to allow for several divisions and
then exposed to 1 h of 100-nM α-factor. Average
mCherry fluorescence of each cell was measured 3 h
after the beginning of the pheromone induction
and used to calculate the correlation of mother–
daughter pairs and random pairs born prior in-
duction. Error bars represent SEs. (B) Mean response
(Top) and coefficient of variation (Bottom) of each
strain over time. Gray area shows period of phero-
mone stimulation. (C) Heatmaps of the mother–
daughter correlations composed of data measured
at five consecutive time points between 2 and 3 h
after stimulation.
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Fig. S8). This analysis revealed an asymmetric response, unique
to ste50Δ mutants, in which daughters showed higher response
than their mothers. This asymmetry was found to be correlated
with the replicative age of cells; the mean response of “young”
daughter cells, defined as those that have not divided before in-
duction, was significantly higher than that of mother cells (mean
daughter = 27.26, mean mother = 15.61, P value = 9.71e-08, two-
sample Kolmogorov–Smirnov test). Again, this observation high-
lights the use of lineage tracking in identifying nonrandom sources
of heterogeneity that arise through asymmetric cell division.

fus3Δ Preserves High Response Heritability Across Several Gener-
ations. The large enhancement of mother–daughter correlation
in fus3Δ strains relative to WT prompted us to further investigate
this phenotype. Lineage analysis was used to plot the correlation
of transcriptional response between cells separated by increasing
genealogical distance for both WT and fus3Δ cells (Fig. 3A).
Correlation of signaling response in both WT and fus3Δ cells was
found to persist over multiple divisions, and the enhanced cor-
relation of fus3Δ relative to WT remained significant up to four
generations. Fig. 3A suggests that the divergence of correlation
measures between the two strains is most pronounced during the
first cell cycle, with the correlation of WT cells decaying more
rapidly. We asked whether this decay arises from noise in-
troduced during the cellular division process or from divergence
of cell-signaling capacity between divisions. To discriminate be-
tween these two sources we examined the correlation decay
during the first cell cycle by plotting the correlation of mother–
daughter response as a function of daughter age at the time of
induction (Fig. 3B). No difference in mother–daughter correla-
tions between WT and fus3Δ cells were observed when induction
occurred immediately after birth. However, as the delay between
division and stimulation increased, the correlation of fus3Δ cells
remained high, while that of WT cells progressively decayed.
Thus, the enhanced correlation of fus3Δ is due to preservation of
mother–daughter correlations through the first division.

Fus3 Plays a Role in Cell-Cycle Modulation of Pheromone Pathway. In
WT cells the interaction between cell cycle and mating response
is two-way: On the one hand, pheromone pathway activation
inhibits progression into S phase mainly through the cell cycle
inhibitor Far1 that inactivates complexes of cyclin-dependent
kinases (CDKs) with G1 cyclins (Clns) (30). On the other hand the
Cln/CDK activity in cells in S phase targets Far1 for degradation

and inhibits recruitment of MAPK scaffold protein Ste5 to the
membrane resulting in inhibition of pheromone signaling (31, 32).
We speculated that the decay of MD correlation in WT cells

may be attributed to asynchrony in the cell cycle, which in turn
modulates pheromone response, and that the deletion of FUS3
somehow alleviates this source of noise. To test this we used cell
tracking to directly compare the coupling of cell cycle and mating
response in fus3Δ cells. Growth arrest of WT and fus3Δ strain was
compared by measuring the extension of cell-cycle periods of cells
entering a transient 1-h pheromone stimulation (Fig. 4A, blue
line). WT cells exhibited a characteristic bimodal distribution of
cell-cycle periods, arising from growth arrest of all cells excluding
those that were in S phase at the time of induction (Fig. 4C). This
bimodal response was not resolved in fus3Δ cells, which instead
displayed a broadened distribution, albeit with pronounced in-
crease in the mean cell-cycle period. The absence of a definitive
nonresponsive subpopulation in the fus3Δ cells motivated us to
further examine cell-cycle kinetics in the absence of pheromone.
This revealed another striking difference: unlike WT or any other
tested strain, where mothers have a period that is a quarter to
a third shorter than newborn daughters, mother fus3Δ cells have
an extended cell-cycle period and divide almost as slowly as
newborn daughters (Fig. 4A, gray and black dotted line; Fig. S9).
We then measured the transcriptional response capacity of

cells as a function of the cell-cycle phase, estimated using the
elapsed time between the latest division and induction (Fig. 4B).
WT cells showed a pronounced modulation of pheromone re-
sponse through the cell cycle, with maximum sensitivity occurring
in the heart of G1, where pheromone signaling is least inhibited
by Cln/CDKs, and minimum sensitivity observed in S phase
where cells are committed to DNA synthesis and therefore in-
hibit the mating response (30, 31). By comparison, fus3Δ re-
sponse remained considerably stable throughout the cell cycle
and did not drop below 85% of its maximum response, indicating
reduced cell-cycle regulation of the pheromone pathway. In
correspondence with measured transcriptional response, fus3Δ
cells were also less resistant to pheromone-induced growth arrest
during S phase compared with WT (Fig. 4C).
To obtain further evidence that the coupling of cell cycle and

mating is compromised in fus3Δ mutants we measured tran-
scriptional response in populations of cells synchronized for
different positions in the cell cycle. Cells, first grown under
normal medium conditions to track lineages, were synchronized
in S phase using a 2.5 h exposure to hydroxyurea (HU), followed
by a transient stimulation with pheromone at varying delays
designed to capture S, G2/M, and G1 phases of the cell cycle
(Fig. 5A, scheme). Although hydroxyurea treatment reduced
overall response compared with the nonsynchronized condition,
synchronization experiment confirmed our data from cell-cycle
tracking analysis (Fig. 5B). Time-course measurements of aver-
age fluorescence in synchronized cells show that the cell-cycle
modulation of pheromone response observed in WT cells is
completely absent in fus3Δ cells. In addition, consistent with it
being the second most correlated mutant, HU-synchronized
far1Δ cells also showed no modulation of mating response by the
cell cycle (Fig. S10). This is in agreement with a well-established
role of Far1 in cell-cycle arrest mediated through Fus3 (33). We
note that this phenotype was not observed in any other strain
including the deletion of Kss1, a kinase that is redundant with
Fus3 in the final step of signaling transmission through the
phosphorylation of Ste12, despite its relatively high mother–
daughter correlation.
The enhanced correlation of mother–daughter responses in

fus3Δ, and also in far1Δ, is therefore a result of attenuating two
major sources of noise: cell-cycle inhibition of MAPK signaling
and asymmetry in the cell-cycle kinetics of mother–daughter pairs.
Consistent with this, synchronization in G1 before pheromone
induction resulted in dramatically improved correlation between

Fig. 3. The fus3Δ exhibits high heritability due to the preserved correlation
within the first division: (A) Response correlation of WT (blue) and fus3Δ
(red) related cells as a function of their genealogical distance measured as
the number of divisions separating two cells from the common ancestor. The
correlation of unrelated cells is shown in cyan. (B) WT and fus3Δ correlation
of mothers and daughters as a function of daughter’s age at the time of
stimulation (time interval between daughter’s birth and pheromone in-
duction). Cell birth was defined at the time point when the image analysis
algorithm recognizes a new bud, before bud separation.
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mother–daughter pairs in all strains except fus3Δ and far1Δ
(compare Figs. 5C and 2A). Moreover, HU synchronization was
also found to resolve the mother–daughter asymmetry in ste50Δ
response (compare Figs. 5D and 2C). We attribute this effect to
the more symmetric division under HU synchronization; under HU
arrest, newly formed buds grow to a size comparable to mother
cells before division and the asymmetry of the response and of the
cell-cycle periods between mothers and newborn daughters during
pheromone induction is abolished (Figs. S11 and S12).

Conclusions
We have combined high-resolution microfluidic imaging, fluo-
rescent reporter strategies, and cooptimized image analysis to
implement an automated system for tracking cell-lineage rela-
tionships and responses under programmablemedium conditions.
This platform allows the simultaneous collection of single-cell
data on gene expression, lineage relationships, cell cycle, and
age, and at the same time provides the ability to achieve the ex-
perimental throughput needed for generating statistical measures
of population variability across multiple conditions and geno-
types. Using the yeast pheromone response as a model, we show
how such experimental approaches can address biological ques-
tions that are otherwise intractable (18, 20–22).
Our data on fus3Δ provides an excellent example of how

network structure impacts nongenetic heritability, and how quanti-
tative cell-cycle and lineage analysis can reveal sources of hetero-
geneity that would otherwise be missed. In specific, we show that
fus3Δ exhibits increased correlation of response between related
cells that is attributable to reduced coupling of the cell cycle with
mating response, and to altered cell-cycle kinetics that exist even
in the absence of pheromone stimulation. Previous studies have
implicated Fus3 in the suppression of the G1 to S transition
under pheromone induction, either directly or through phos-
phorylation of Far1 (33, 34). This is consistent with fus3Δ having
reduced sensitivity to pheromone and incomplete growth arrest
upon pheromone stimulation measured on the whole population
over extended period (Fig. S13) (33, 34). However, by synchro-
nizing cells “in silico” we found that Fus3 also modulates cell cycle
in the opposite direction. fus3Δ cells exhibited higher growth ar-
rest in S phase at the beginning of pheromone stimulation com-
pared with WT cells and cell-cycle periods of fus3Δ mothers were
extended even under normal growth conditions. This points to a
previously unrecognized role for Fus3 in the promotion and main-
tenance of the cell cycle. Although surprising, Fus3’s implication
in cell-cycle progression is consistent with previous observations
in that it promotes budding and recovery from pheromone arrest
(35) and that FUS3 deletion reduces long-term survival (36).
A second example of how new observations can be obtained

by single cell-lineage analysis is the case of ste50Δ where we
detected high heterogeneity within a minority cell population that
is masked in bulk analysis. Comparison of responses between
mother–daughter pairs shows that this heterogeneity is linked to
the inherently asymmetric division process in yeast. Although the
molecular mechanism of this asymmetry is not clear, the recovery

CBA

Fig. 4. FUS3 deletion alters normal cell cycle progression and affects cell-cycle modulation of the pheromone signaling: (A) Distributions of WT (Top) and
fus3Δ (Bottom) cell-cycle periods of young daughters (gray) and mothers (black) under normal conditions and of all cells (combined mother and young
daughter cells) under 1 h stimulation of 100-nM αF (blue). Only cell-cycle periods that started before stimulation were measured. (B) Median response, plotted
as percentage of maximum response, and median cell-cycle period (C) of WT and fus3Δ cells as a function of their position through the cell cycle at the time of
stimulation (measured as percent of the progression through the cell-cycle period). The beginning of the cell cycle was defined as the time point when the
image algorithm recognizes a new bud, corresponding approximately to G2 phase. Estimated cell-cycle phases are depicted in the plot.
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Fig. 5. Cell-cycle modulation of pheromone signaling and response heri-
tability in HU synchronized cells. (A) Schematic showing synchronization
experiment using HU. Cells were synchronized by HU and released to media
at different intervals before stimulating them with pheromone. Each line
represents one condition that corresponds to the condition in B. HU = 2.5 h
exposure of 250-mM hydroxyurea, αF = 1 h of 100-nM αF. (B) Mean response
of WT and fus3Δ cells captured in different cell-cycle positions. (C) Response
correlations of mother–daughter pairs (black) and a distribution of correla-
tion coefficients of WT random pairs (blue) that were synchronized in G1
phase at the time of pheromone induction. (D) A heatmap of ste50Δ mother–
daughter correlations upon HU synchronization in G1 phase.
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of mother–daughter symmetry in HU-synchronized cells suggests
that, as is the case with fus3Δ, this may also be linked to cell cycle
(SI Results and Discussion).
The source of heterogeneity in monoclonal populations has

been subject to heavy investigation. Stochastic gene expression
(4) and more recently stochastic segregation of molecules at
division (14) have been used to provide quantitative models of
this phenomenon. However, there has been considerably less
emphasis on the role of cell cycle and interplay between signaling
pathways as a primary source of variability in cellular responses
(3). Here we have shown that deletions in the pathway can im-
pact cell-to-cell variability indirectly by modifying the coupling
between pathways and either increasing or decreasing pathway
sensitivity to preexisting variability between the cellular states.
At one level this study complements existing frameworks for
the modeling of signaling-network topology and response. For
example, removal of the phosphatase Msg5, which acts in a
negative feedback loop (37), was found to increase population
variability and reduce mother–daughter correlations. However,
our data also highlights how pathway interplay can dominate
cell-to-cell variability and brings into question the utility of models
that capture signaling networks in isolation. As proposed by
others, the development of more comprehensive system-level
analyses may ultimately be inescapable. This is a formidable
challenge that may need to be met if we are to achieve a truly

predictive and quantitative understanding of biological systems.
Such understanding is likely to be of high practical importance
for applications including the targeting of signaling pathways for
cancer therapy (38), directing stem cell differentiation for re-
generative medicine, and developing strategies to mitigate drug
resistance (9, 39).

Materials and Methods
The list of strains used in this study is in the Table S1. Protocols describing
fabrication and operation of the microfluidic device, strain construction,
image acquisition, and image analysis are provided in SI Materials and
Methods and Figs. S14 and S15. The design of the microfluidic device and the
custom-made lineage-tracking software together with sample images and a
manual that explains how to use the code is available at www.phas.ubc.ca/
~chansen/autoCAD%20designs.rar and www.phas.ubc.ca/~chansen/Lineage
%20tracking%20software.rar, respectively.
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