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To understand how sensory-driven neural activity gives rise to
perception, it is essential to characterize how various relay stations
in the brain encode stimulus presence. Neurons in the ventral
posterior lateral (VPL) nucleus of the somatosensory thalamus
and in primary somatosensory cortex (S1) respond to vibrotactile
stimulation with relatively slow modulations (∼100 ms) of their
firing rate. In addition, faster modulations (∼10 ms) time-locked to
the stimulus waveform are observed in both areas, but their contri-
bution to stimulus detection is unknown. Furthermore, it is unclear
whether VPL and S1 neurons encode stimulus presence with similar
accuracy and via the same response features. To address these ques-
tions, we recorded single neurons while trained monkeys judged
the presence or absence of a vibrotactile stimulus of variable am-
plitude, and their activity was analyzed with a unique decoding
method that is sensitive to the time scale of the firing rate fluctu-
ations. We found that the maximum detection accuracy of single
neurons is similar in VPL and S1. However, VPL relies more heavily
on fast rate modulations than S1, and as a consequence, the neural
code in S1 is more tolerant: its performance degrades less when
the readout method or the time scale of integration is suboptimal.
Therefore, S1 neurons implement a more robust code, one less
sensitive to the temporal integration window used to infer stim-
ulus presence downstream. The differences between VPL and S1
responses signaling the appearance of a stimulus suggest a trans-
formation of the neural code from thalamus to cortex.
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Detecting a stimulus involves the activation of multiple areas
extending from the sensory receptors to subcortical and

cortical structures (1–4), and as the signal is relayed from one
layer to the next, its representation in spatiotemporal patterns of
activity may change (1). Previous studies have shown that, when
a tactile vibratory stimulus is presented, neurons in the ventral
posterior lateral (VPL) nucleus in the somatosensory thalamus
and primary somatosensory cortex (S1, areas 3b and 1) respond
by modulating their firing rates computed over a time scale of
hundreds of milliseconds (5–9). Because these slow firing rate
modulations occurring within relatively long time windows de-
pend on amplitude and vibration frequency, they encode these
key stimulus features. In addition, to varying degrees, evoked
spikes in both areas also tend to be synchronized to the wave-
form of the applied mechanical stimulus, which, for frequencies
<40 Hz, varies on a time scale of tens of milliseconds. This en-
trainment, which corresponds to fast firing rate modulations, also
depends on stimulus amplitude (9), and so it too carries infor-
mation about stimulus presence. However, it is unknown whether
both the slow (∼100 ms) and fast (∼10 ms) modulations in firing
rate contribute to perceptual performance during stimulus de-
tection. Moreover, it is not clear whether the two time scales are
equally important in VPL and S1, nor whether the capacity to
signal stimulus presence changes from one area to the next.
To investigate these issues, we recorded activity from single

neurons in the VPL nucleus and S1 cortex in monkeys trained to
report the presence of a 20-Hz vibrotactile stimulus of variable

amplitude. The responses were then analyzed from the point of
view of an ideal observer that, based on an evoked spike train,
determines whether a stimulus was presented or not in a trial;
crucially, however, the observer’s performance is optimized
according to a specific time scale of integration. We found that, in
general, fast rate modulations are more prominent in VPL than in
S1 neurons, and vice versa, slow modulations are stronger in S1
than in VPL, but despite these differences, on average, the de-
tection accuracy of single neurons was statistically the same in
both areas. Importantly, however, the neural code in S1 was more
resilient than in VPL, in the sense that S1 neurons were less sen-
sitive to the readout method and time scale of integration used to
infer stimulus presence. Therefore, information is transformed—
but not lost—between thalamus and S1, such that fast rate mod-
ulations closely tied to the physical stimulus are progressively dis-
carded in favor of a slower, more tolerant rate code.

Results
Two monkeys (Macaca mulatta) were trained to perform a
vibrotactile detection task (6). In each trial, the animal had to
report whether the tip of a mechanical stimulator vibrated or not
by pressing one of two push buttons with the left, free hand. The
vibrotactile stimulus, a sinusoidal wave of 20-Hz frequency and
0.5-s duration, was delivered to the glabrous skin of one fingertip
of the restrained, right hand. Half of the trials contained a
stimulus (stimulus-present trials) and the other half did not
(stimulus-absent trials). The two trial types were randomly
interleaved (Fig. 1A). Stimulus amplitudes in stimulus-present
trials varied between subthreshold and suprathreshold. Thus, the
task produced four behavioral outcomes: hits or misses in stimu-
lus-present trials and correct rejections or false alarms in stimulus-
absent trials (Fig. 1B). While the monkey performed the de-
tection task, activity was recorded simultaneously from single
neurons in the VPL nucleus and S1 (areas 1 and 3b; Fig. 1C) that
shared the same cutaneous receptive field. In the following sec-
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tions, we analyze how the responses of these neurons encode the
presence of a stimulus and how the neural codes vary between the
two areas.

Basic Response Properties of VPL and S1 Neurons. We recorded 74
VPL and 76 S1 responsive neurons with quickly (QA) or slowly
adapting (SA) properties (10). In all figures, results shown in
orange and blue correspond to data from VPL and S1, re-
spectively. We confirmed that VPL neurons had higher sponta-
neous firing rates than S1 neurons (VPL: 17.5 ± 1.2 spikes/s,
median ± SE; S1: 10 ± 1.04 spikes/s; P = 0.00024; Fig. 2E) and
that in the two areas, two quantities increase as functions of
stimulus amplitude: the mean firing rate computed during the
full stimulation period and the synchronization of the spikes to
the stimulus waveform (6–9) (Fig. 2 A–D). These dependencies
were quantified via linear regression analyses (Materials and
Methods). In both areas, the slopes of the linear fits, which in-
dicate the sensitivity to stimulus amplitude, were significantly
positive for the majority of the neurons (F-test, P < 0.05; Fig. 2 B
and D). For modulations in the mean rate, S1 neurons had sig-
nificantly higher slopes than VPL neurons (VPL: 0.96 ± 0.08
Hz/μm, mean ± SE; S1: 1.41 ± 0.08 Hz/μm; P = 0.0011; Fig. 2F),
whereas for synchronization, there was a trend toward higher
slopes in VPL, but it was not significant (VPL: 1.17 × 10−4 ± 0.09 ×
10−4 AU/μm; S1: 0.92 × 10−4 ± 0.10 × 10−4 AU/μm; P = 0.12).

What Response Features Are Relevant for Stimulus Detection? Pre-
vious studies have shown that VPL (9) and S1 (6) neuronal re-
sponses may account for behavioral performance in the detection
task. Both fast and slow modulations in the firing rate are seen,
the former evidenced by high periodicity at the stimulus frequency
(20 Hz) and the latter by changes in the mean rate computed over
the full stimulation period. However, their relative contributions
to psychophysical performance are unknown. Does the detection

of a vibrotactile stimulus rely exclusively on response modulations
that vary relatively slowly (∼100 ms) or do fast modulations (∼10
ms) contribute to it also? Importantly, the relevant timescale
might be different for S1 and VPL; the two areas could exploit
different temporal features to encode the presence of a vibro-
tactile stimulus in different ways, in effect transforming the neural
code. A related question is whether the two areas encode stimulus
presence with the same accuracy.
To distinguish between these possibilities as information flows

from VPL to S1, we developed the Poisson spike train classifier
(PSTC) to quantify how accurately the presence of a stimulus can
be inferred at a given timescale of integration. The PSTC is
a decoding method with a free parameter, w, that determines the
timescale under consideration. The PSTC takes as input the
neural responses recorded during task performance; some trials
are used for training and the rest for testing the classifier. Once
trained, the PSTC classifies each test spike train as correspond-
ing to a stimulus-present or a stimulus-absent trial. Within the
PSTC algorithm, firing rate template functions for stimulus-
present and stimulus-absent classes are generated internally after
convolving all spike trains with a Gaussian filter of width w
(Materials and Methods). Narrow filters resolve fine temporal
modulations (Fig. 2 A and C, colored traces), whereas broad
filters blur them, reflecting instead the spike count over longer
timescales (Fig. 2 A and C, black traces). Because all this is done
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Fig. 1. Behavioral task and recording sites. (A) Detection task. Trials began
when the stimulator probe tip indented the skin of one fingertip of the
monkey’s restrained right hand [probe down (PD)]; the monkey reacted by
placing its left, free hand on an immovable key [key down (KD)]. After
a variable prestimulus period (1.5–3 s), a vibratory stimulus of variable am-
plitude (1–34 μm, 20 Hz, 0.5-s duration) was presented on one-half of the
trials; no stimulus was presented on the other half of the trials. Following
the stimulus presentation period or a period where no stimulus was de-
livered, the monkey waited for 3 s until the probe was retracted [probe up
(PU)]; the animal removed its free hand from the key [key up (KU)] and
pressed one of two push buttons (PBs) to report whether the stimulus was
present or absent. Lateral and medial buttons were used for reporting
stimulus presence and stimulus absence, respectively. Stimulus-present and
stimulus-absent trials were randomly interleaved in a run. (B) Behavioral
responses in the detection task. CR, correct rejections; FA, false alarms. (C)
Recording sites in the VPL nucleus (orange) and areas 1 and 3b of S1 (blue).
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Fig. 2. Response properties of VPL and S1 neurons. In all panels, results for
VPL and S1 are shown in orange and blue, respectively. (A) Spike density
function of a VPL neuron that responded to the sinusoidal stimulus (gray
bar). The width of the Gaussian filter used to smooth the cell’s spike trains
was 5 (orange) or 20 ms (black). (B) Firing rate (mean ± SD) as a function of
stimulus amplitude for the VPL neuron in A. Points correspond to the av-
erage firing rate evoked during the stimulation period. Black lines are linear
fits. Slope (s) values are indicated. (C) Spike density function for an S1
neuron that responded to the sinusoidal stimulus (gray bar). The width of
the Gaussian filter used to smooth the cell’s spike trains was 5 (blue) or 20 ms
(black). (D) Firing rate (mean ± SD) as a function of stimulus amplitude for
the S1 neuron in C. Points correspond to the average firing rate evoked
during the stimulation period. Black lines are linear fits. Slope (s) values are
indicated. (E) Cumulative distributions of baseline firing rates for VPL and S1
populations. The median baseline rate was significantly higher in VPL than in
S1 (VPL: 17.5 ± 1.2 spikes/s, n = 74; S1: 10 ± 1.04 spikes/s, n = 76; P = 0.00024).
(F) Cumulative distributions of slope values for VPL and S1 neurons. Slopes
were obtained from plots like those in B and D. The median slope was sig-
nificantly higher in S1 than in VPL [VPL: 0.96 ± 0.08 spikes/(s μm), n = 74; S1:
1.41 ± 0.08 spikes/(s μm), n = 76; P = 0.0011].
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for a given value of w, the fraction of correct classifications for
the neuron under study can be plotted as a function of w. This
plot, the PSTC performance curve, reveals how informative the
neuron is about stimulus presence and what is the timescale at
which it is most informative. The PSTC is simply a convenient
and efficient way to characterize how stimulus amplitude is re-
presented in spike trains in our experiments; it is not meant as
a model for how circuits downstream from S1 may reach a de-
cision about stimulus presence or absence.
To provide some intuition about the PSTC performance curve

and how it characterizes the neural data, we first use it to analyze
the responses of three simulated neurons that capture the main
properties of the real, recorded neurons. The first simulated
neuron responded to the stimulus by increasing its firing rate
uniformly through the stimulation period, and its spikes had no
temporal structure whatsoever (Fig. 3A, Upper). The second
simulated neuron responded to the stimulus by synchronizing its
spikes to the 20-Hz stimulus waveform, but its average firing rate
over the stimulation period was the same as its baseline rate (Fig.
3B, Upper). Finally, the third simulated neuron combined both
effects: it fired more spikes in stimulus-present trials and these
were synchronized to the stimulus waveform (Fig. 3C, Upper).
The PSTC was trained to classify the responses of these three

ideal neurons as either stimulus-present or stimulus-absent, and
its performance was indicative of both the slow and fast modu-

lations in firing rate. For the first simulated neuron, the fraction
of correct classifications increased steadily as a function of filter
width, saturating after w = 20 ms (Fig. 3A, Lower, circles). The
saturation value was equal to the fraction correct elicited by
a simpler classifier (Materials and Methods) that only keeps track
of the spike count accrued during the stimulation interval in each
trial (Fig. 3A, Lower, pink horizontal line). Because the firing
rate remains constant throughout the stimulation period, the
spike count of this simulated neuron provides the maximum
amount of information, and therefore, as long as the integration
time is not too short (>20 ms), the PSTC determines the pres-
ence of a stimulus as accurately as possible. In contrast, for the
second simulated neuron, the fraction of correct classifications
was close to chance both for the PSTC at long w (>30 ms) and
for the spike-count classifier (Fig. 3B, Lower). This drop in per-
formance occurs because the number of spikes fired during
stimulus-present and stimulus-absent trials were nearly the same.
In this case the optimal filter width was short, w= 7 ms, and with
it the PSTC was able to classify correctly more than 95% of the
test trials. Therefore, with the appropriate timescale of integration,
the PSTC was highly sensitive to the fast fluctuations in firing
probability that were time locked to the vibratory stimulus. Fi-
nally, for the third simulated neuron, the PSTC performance
curve reflected both the fast modulations (evidenced by a peak
in performance at w = 5 ms) and the slower, overall increase in
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Fig. 3. Classification performance based on fast and slow firing modulations. (A–C) (Upper) Rasters of three simulated neurons. The first (A) simply increases
its overall firing rate during the stimulation period; the second (B) maintains the same overall firing rate but synchronizes its spikes to the individual
stimulation pulses; and the third (C) shows a mixture of the two effects. In each raster plot, the yellow line divides stimulus-present and stimulus-absent trials,
and the red trace indicates the underlying firing rate of the idealized neuron in stimulus-present trials. Stimulus amplitude was considered constant across all
stimulus-present trials. Spikes were produced by feeding the underlying firing rate value to a Poisson process in each 1-ms time step. (Lower) Mean fraction of
correct classifications achieved by the PSTC as a function of the Gaussian filter width used to smooth the spikes. Pink horizontal lines in the lower panels in
A–C indicate the mean fraction of correct classifications based on the total number of spikes counted during the stimulation window. Small black dots in-
dicate filter widths that achieved maximum classification performance. (D–F) As in A–C, but for three recorded neurons: two from S1 (D and F) and one from
the VPL nucleus (E). Vertical lines indicate stimulus onset and offset; blue marks indicate correct responses (hits and correct rejections); and red marks indicate
incorrect responses (misses and false alarms). Stimulus amplitudes are indicated beside each raster plot. Lower panels in D–F show results obtained with the
PSTC for the three recorded neurons. Same notation as in lower panels in A–C.
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firing rate (evidenced by performance well above chance for w >
30 ms) induced by the stimulus (Fig. 3C, Lower). Therefore, the
PSTC extracts information about stimulus presence from fast or
slow modulations in firing activity. When the modulations are
fast, the fraction of correct classifications can be very high, but
integrating over a short timescale (w < 15 ms) is crucial because
broad filters produce a dramatic drop in performance (Fig. 3B,
Lower). By contrast, when the modulations are slow, accurate
performance is achieved with a wider range of filters (Fig. 3A,
Lower); any filter that is not too narrow (w > 20 ms) will work.
When the neural responses include both fast and slow compo-
nents, the optimal filter is again narrow, but a near-maximal
fraction of correct classifications is obtained with any filter width
(Fig. 3C, Lower); the timescale of integration becomes less critical
in this case.
Given these insights, we used the PSTC analysis to ask (i) how

do real, single somatosensory neurons encode stimulus presence;
(ii) what is their relevant timescale of integration; (iii) how ac-
curately do they encode stimulus presence; and (iv) how do the
results differ between VPL and S1?

Neural Detection in VPL and S1 Through Fast and Slow Modulations in
Firing. The PSTC performance curves of single VPL and S1 neu-
rons were similar to those of the idealized neurons. Some VPL
neurons were strongly synchronized to the stimulus waveform and
varied their overall mean firing rate weakly during stimulation, so
their best performance required a short filter width (Fig. 3E). The
reverse situation was more common in S1: there, neurons often
modulated the number of spikes emitted during stimulation, and
these were loosely aligned with the stimulus waveform (Fig. 3D);
hence, the detection performance of the PSTC was optimal with
a wide range of filter widths (Fig. 3D, Lower, small dots), and the
maximum fraction of correct classifications was similar to that
obtained with the spike count classifier. Neurons with mixed
properties, with fast and slow modulations, were found in both
areas (Fig. 3F). To quantify the prevalence of these cell types, we
generated PSTC performance curves for all of the recorded VPL
and S1 neurons and analyzed the optimal widths and performance
levels across the two populations.
Fig. 4A shows the mean PSTC performance curves obtained by

averaging the results over the VPL and S1 populations. Both
curves peaked at w ∼ 6 ms, with maximum performance around
79% correct. For long filter widths (w > 25 ms), the fraction of
correct classifications was lower than the maximum but still well
above chance (which corresponds to a fraction correct of 0.5). In
this range, and including the spike count classifier (wcnt), per-
formance was always higher for S1, so the relative size of the
peak was larger for VPL than for S1. Hence, fast modulations
were more dominant in VPL and slow modulations more dom-
inant in S1.
For each neuron, the optimal width was the value of w for

which the PSTC achieved the highest fraction of correct classi-
fications. On average, optimal widths were short in both areas
but tended to be shorter for VPL than for S1 neurons, although
the difference was not significant (Fig. 4B; P = 0.1). More tell-
ingly, however, the range of optimal filter widths, Δw, was sig-
nificantly narrower in VPL than in S1 (Fig. 4C; P = 0.009). Δw
stands for the difference between the maximum and minimum
filter widths that, for each neuron, were statistically equivalent to
its optimal. A large Δw indicates that a neuron has a wide range
of filter widths over which its detection performance is statisti-
cally equal to the highest (Fig. 3D), whereas a small Δw corre-
sponds to a neuron for which performance is a strongly peaked
function of filter width (Fig. 3E). In S1, more than 30% of the
neurons had a range Δw > 50 ms, whereas in VPL the number
was just above 10% (Fig. 4C). Therefore, in both areas, the
highest performance was achieved when the neural detection was
based on narrow filters, exploiting the fast periodic modulations,

but the drop in performance as a function of filter width was
more pronounced in VPL than in S1. The responses of S1 neu-
rons contained more slow modulations and were less sensitive to
the exact filter width used for determining stimulus presence.
The conclusions were similar when the distributions of perfor-

mance levels were compared. On average, the maximum fraction
correct Cmax, i.e., the fraction of correct PSTC classifications
obtained with the optimal filter width, was the same in VPL and
S1 (Fig. 4D; P = 0.62). However, for S1, the difference between
Cmax and the performance obtained with the spike count classi-
fier Ccnt (for each cell) was significantly smaller than for VPL
(Fig. 4E, P = 0.0001). Therefore, S1 neurons were more tolerant
with respect to the timescale of integration.
In summary, when the classification was based on narrow fil-

ters (i.e., fast modulations), VPL and S1 neurons attained similar
performance levels overall, and detection performance was ac-
curate. However, if only slow modulations were taken into ac-
count, or if the timescale of integration was not the optimal one
for each neuron, then S1 neurons were better detectors than
VPL neurons because their fraction correct deviated significantly
less from the maximum.
Earlier we found that, for each neuron, both the mean firing

rate during the stimulation period and the synchronization of its
spikes to the stimulus waveform change as functions of stimulus
amplitude (Fig. 2 B and D) (9). These two quantities correspond
to slow and fast modulations in firing probability, respectively,
and it is important to note that their differences across the VPL
and S1 populations are consistent with the results of the PSTC
analysis: when judged by the distributions of slopes obtained
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Fig. 4. Performance of the PSTC based on VPL and S1 responses. In all
panels, results for VPL and S1 are shown in orange and blue, respectively. (A)
Fraction of correct classifications (±SE), averaged across neurons, as a func-
tion of the filter width used by the PSTC. For comparison, wcnt indicates
performance based only on the spike count during the full stimulation pe-
riod (Ccnt). (B) Cumulative distributions of optimal w values. Optimal widths
tended to be smaller for VPL than for S1 neurons, although the difference
was not significant (VPL: 13.86 ± 2.67 ms, n = 74; S1: 20.82 ± 3.22 ms, n = 76;
P = 0.1). (C) Cumulative distributions of Δw values. The range of optimal
filter widths was significantly smaller in VPL than in S1 (VPL: 18.54 ± 3.44 ms,
n = 74; S1: 32.73 ± 4.12 ms, n = 76; P = 0.009). (D) Cumulative distributions of
Cmax values. The maximum fraction of correct classifications was the same
in the two areas (VPL: 0.80 ± 0.01, n = 74; S1: 0.79 ± 0.01, n = 76; P = 0.62).
(E) Cumulative distributions of Cmax – Ccnt values. The difference in perfor-
mance was significantly larger in VPL than in S1 (VPL: 0.077 ± 0.009, n = 74;
S1: 0.038 ± 0.004, n = 76; P = 0.0001).
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from linear regression, the mean rates are more informative in
S1 (Fig. 2F), and the synchronization is equally informative in
both areas, although there is a tendency for stronger synchro-
nization in VPL. Thus, similar conclusions are reached through
very different methods.
The following section describes additional analyses showing

that the neural code in S1 remained more robust than that in
VPL under a variety of conditions. We tested different stimulus
lengths, amounts of uncertainty, and classification methods.

Neural Detection Based on the First Evoked Spikes. Thus far, the
analysis considered the full stimulus, which consisted of 10 si-
nusoidal pulses within 500 ms. However, it is possible that the
monkeys did not use all 10 pulses to detect the stimulus. If, for
instance, the first pulse provides a strong enough signal, the
subsequent periodic modulations in firing could be ignored and
thus be irrelevant for the detection process. To assess this pos-
sibility, we repeated the PSTC analysis using only the first 70 ms
after stimulus onset. Assuming a neuronal latency of ∼20 ms (9),
this constrained the analysis to the spikes evoked by a single
50-ms stimulation pulse. Except for the shortened time window,
the classifier was trained and tested exactly as before.
The fraction of correct classifications was generally lower in

this case than with the full stimulus, but the main differences
between VPL and S1 were still evident (Fig. S1). These results
are summarized in Fig. 5 A–D, which depicts the means for the
optimal width, Δw, Cmax, and Cmax – Ccnt, based on the 70-ms
stimulus (open bars), and compares them with the means
obtained in the standard condition (full stimulus, filled bars).
When a short stimulus was used, there was no obvious peak in
the mean PSTC performance curves (Fig. S1A), and the optimal
filter widths were the same in both areas (Fig. 5A, open bars; Fig.
S1B). Nevertheless, the range of filter widths that produced
maximum performance (Δw) was slightly narrower for VPL than
for S1 (Fig. 5B, open bars, P = 0.037; Fig. S1C), suggesting that
S1 was again more tolerant of deviations from the optimal filter
width. Also, on average, S1 neurons had a slightly higher fraction
of correct detections than VPL neurons at all filter widths,
although the difference was not significant (Fig. 5C, open bars;
Fig. S1 A and D). Finally, the difference between Cmax and Ccnt
was significantly larger in VPL than in S1 (Fig. 5D, open bars,
P = 0.0011; Fig. S1E). In essence, then, these results were anal-
ogous to those obtained with the full 10-pulse stimulus (compare
pairs of filled and open bars in Fig. 5 A–D).

Effect of Temporal Uncertainty. In the analyses described above, in
any given trial, the stimulus is either present or absent, but if it is
present, its onset time is always the same (t = 0 ms). However,
when the monkey performs the task, the prestimulus interval
varies across trials (Fig. 1A), making the time of stimulus onset
uncertain for the monkey. To investigate the impact of such
temporal uncertainty, we modified the neural classification pro-
cedure such that the test spike trains included not only the rel-
evant stimulation period but also additional time before it. Thus,
the PSTC had to search for the time of stimulus onset (Materials
and Methods). When the PSTC analyses were repeated with such
temporal uncertainty, the performance levels declined across the
board, but the differences between S1 and VPL remained (Fig. 5
E–H, open bars). In particular, optimal filter widths were larger
for S1 than for VPL neurons (Fig. 5E, open bars, P = 0.04), and
so were the Δw values (Fig. 5F, open bars, P = 0.037). The per-
formance achieved with the optimal filters remained similar in the
two areas (Fig. 5G, open bars), but the difference between Cmax
and Ccnt was still smaller for S1 than for VPL (Fig. 5H, open bars,
P = 0.0007). Thus, temporal uncertainty makes the stimulus de-
tection process more difficult overall, but does not change the
relative efficacies of the neural codes for stimulus presence in S1
and VPL (compare pairs of filled and open bars in Fig. 5 E–H).

Neural Performance Based on a Simpler Detection Algorithm. Up to
this point, all analyses have been based on the PSTC, a decoding
method that is optimal under relatively mild assumptions (Poisson
statistics and stationarity within stimulus-present and stimulus-
absent conditions). It is possible, however, that sensory systems
implement a less accurate algorithm for detecting stimuli, for in-
stance, to trade off accuracy for speed. The space of such possible
algorithms is large, but to obtain a rudimentary understanding of
how the results might change if stimulus detection were based on a
suboptimal procedure, we designed a simpler classification scheme
based on a plausible neural operation: firing rate threshold
crossing (6) (Materials and Methods). This simpler classifier, the
threshold-crossing spike train classifier (TCSTC), was also eval-
uated with a range of filter widths. The contrast between the
PSTC and TCSTC methods provided further indication that, in
general, fast modulations in firing do contain useful information
that improves stimulus detection.
Before presenting the results of the TCSTC analysis, we first

give a brief description of the method and an intuitive example
illustrating how it differs from the PSTC. In the TCSTC, the
spikes in each trial are convolved with a Gaussian filter of width w,
and the maximum firing rate of the resulting spike density
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widths (Δw), maximum fraction of correct classifications (Cmax), and the
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cance levels for each comparison (black: P < 0.05, cyan: P < 0.01, red: P <
0.001). Orange and blue bars are for VPL and S1 data, respectively. Filled bars
correspond to the standard condition, in which spike trains elicited during
the full stimulation period (500 ms) were analyzed by the PSTC and the
stimulus onset was known to the classifier (no temporal uncertainty). (A–D)
Results in the standard condition and when only the spikes in the first 70 ms
of stimulation were used by the PSTC (open bars). (E–H) Results in the
standard condition and when the stimulus onset time was unknown to the
PSTC (temporal uncertainty, open bars). (I–L) Results in the standard condi-
tion and when performance was assessed by a suboptimal classifier, the
TCSTC (open bars). To avoid clutter, significant differences between VPL and
S1 neurons in the standard condition (filled bars) are indicated only in A–D.
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function is calculated. This maximum rate (rmax) is then com-
pared with a threshold θ: if rmax > θ, the trial is classified as
stimulus-present, and if rmax < θ, the trial is classified as stimulus-
absent. This procedure is sensitive to spike timing, but in a lim-
ited way. To see this, consider the following hypothetical sce-
nario. Suppose that a neuron responded to the vibratory stimulus
by emitting just a single burst of three spikes within 20 ms. In that
case, the optimal w for both classifiers would be short (∼10 ms),
and the performance of the TCSTC would be comparable to that
of the PSTC, because the maximum rate in each trial would be
a reliable indicator of the presence of a burst (and thus of a
stimulus). However, now suppose that the neuron responded
instead by firing two such bursts separated by 50 ms. The PSTC
would still use a filter width of ∼10 ms and would perform much
better, because it would use essentially twice as much information
as with a single burst. In contrast, because the TCSTC computes
a single maximum rate, it might use one of two strategies: (i) it
could still use a 10-ms filter width, which would, in essence, pro-
duce almost the same result as with only one burst, or (ii) it could
use a much longer w of about 50 ms to try to generate an rmax
based on both bursts. Either way, the performance of the TCSTC
would be suboptimal because it has difficulty resolving multiple
short-duration events (∼10 ms) and integrating them over rela-
tively long times (∼50 ms) with a single time constant.
With this in mind, consider the results of the TCSTC analysis:

no significant differences were found among areas, neither for the
optimal width, which on average was relatively large (>40 ms), nor
for the range of optimal widths (Fig. 5 I and J, open bars); the
maximum performance achieved (Cmax) was lower than with the
PSTC, as expected, and approximately the same for the VPL and
S1 populations (Fig. 5K). Also, for the VPL neurons, the maxi-
mum performance with the TCSTC was just slightly higher than
that with the spike count classifier, Ccnt, whereas for the S1 pop-
ulation there was essentially no difference (Fig. 5L). The TCSTC
was able to extract a small amount of information from the syn-
chronous responses in VPL but not in S1.
Therefore, the TCSTC is clearly suboptimal because, as stated

above, this decoding method simply cannot combine very effec-
tively multiple short-duration events (spikes or spike bursts) that
can only be resolved via a small filter width if they are spread
over a much longer stimulation period. Nevertheless, the results
are interesting for two reasons. First, the classifier was still use-
ful: although the maximum performance was clearly below that
achieved with the optimal method (Fig. 5K), it remained signif-
icantly above chance for all of the neurons. Second, the contrast
between the PSTC and TCSTC is another indication that fast
modulations in firing do contain useful information that im-
proves stimulus detection, and at least judging by the difference
between Cmax and Ccnt, these were still slightly more prominent
in VPL than in S1 (Fig. 5L).

Neural Detection Performance Relative to Behavioral Performance. In
the previous sections we demonstrated that fast modulations in
spiking activity contribute information that is useful for stimulus
detection and that their contribution is more important in VPL
than in S1. To relate these modulations to the monkey’s sensi-
tivity to stimulus amplitude, we constructed neurometric curves
based on PSTC performance at each stimulus amplitude and
compared them with the monkey’s psychometric curves based on
behavioral responses. To distinguish the potential contributions
of fast and slow firing rate modulations to performance, two
neurometric curves were generated for each neuron: one based
on a narrow filter (w = 5 ms; Fig. 6A) and another based on a
wide filter (w = wcnt; Fig. 6B). All such curves show the proba-
bility of reporting that yes, a stimulus was presented, as a func-
tion of stimulus amplitude.
The two mean neurometric curves averaged across VPL and

S1 populations were generally steeper than the mean psycho-

metric curves (Fig. 6 A and B). This result was confirmed quan-
titatively by calculating the just noticeable difference (JND) of
each curve, which is a measure of its width (Materials and Meth-
ods). The JNDs from individual neurometric curves based on fast
modulations (w = 5 ms) were similar for VPL and S1 neurons
(Fig. 6C; P = 0.15), indicating that the sensitivity to stimulus
amplitude derived from fast modulations did not differ across
areas. In contrast, when based on slow firing rate modulations, the
neurometric JNDs were significantly smaller for S1 than for VPL
neurons (Fig. 6D; P = 0.0001). So, again, S1 neurons are better
detectors—they have a higher sensitivity to stimulus amplitude—
when spike counts are used to infer the presence of a stimulus.
To compare these results directly with the monkey’s psycho-

physical performance, for each neuron we calculated a JND
ratio, with the neuron’s JND (from the neurometric curve) in the
denominator and the monkey’s JND (from the psychometric
curve in the corresponding recording session) in the numerator.
In this way, a ratio larger than 1 indicates better neuronal per-
formance than behavioral performance. The mean VPL and S1
JND ratios based on fast modulations (w = 5 ms) were statisti-
cally the same (Fig. 6E; P = 0.15), but the JND ratios based on
slow modulations (w = wcnt) were significantly larger for S1 than
for VPL neurons (Fig. 6F; P = 0.0039). These results re-
capitulate the findings described above, but with performance

BA

DC

FE

0 7 14 21 28 35
0.00

0.25

0.50

0.75

1.00

Amplitude (  

P
ro

ba
bi

lit
y 

"Y
es

" 

w = 5 ms

monkey
S1
VPL

0 7 14 21 28 35
0.00

0.25

0.50

0.75

1.00

Amplitude (

w = wcnt

0 4 8 12 16 20
0.00

0.25

0.50

0.75

1.00

JND (

C
um

ul
at

iv
e 

pr
ob

ab
ili

ty

w = 5 ms

p = 0.15

0 4 8 12 16 20
0.00

0.25

0.50

0.75

1.00

JND (

p = 0.0001

w = wcnt

10−1 100 101
0
5

10
15
20
25

JND ratio (b/n)

N
eu

ro
ns p = 0.15

w = 5 ms

10−1 100 101
0
5

10
15
20
25

p = 0.0039

JND ratio (b/n)

w = wcnt
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either with the PSTC and a filter width of 5 ms (A) or with the spike-count
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curves based on the PSTC (w = 5 ms). The means were not significantly dif-
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dition in C. Mean JND ratios for VPL and S1 are indicated by orange and blue
arrows, respectively; they were not significantly different (VPL: 1.69 ± 0.043;
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measured in terms of the monkey’s perceptual sensitivity: VPL
and S1 neurons are approximately equivalent when only fast
modulations are taken into account, but because slow modu-
lations are stronger in S1, classification performance in S1 varies
more sharply with stimulus amplitude; as a result, the spike
counts in this area are significantly more informative about
stimulus presence.
Fig. 7 extends the analysis just discussed to the wider set of

conditions explored earlier (Fig. 5), in which different stimulus
lengths, amounts of uncertainty, and classification methods were
compared. All of the manipulations made the detection of the
stimulus more difficult relative to the original condition; the
neurometric JNDs obtained with both narrow (w = 5 ms) and
wide (w = wcnt) filters increased, both for VPL and S1 (Fig. 7,
compare pairs of filled and open bars). However, the increases
largely respected the original differences between VPL and S1.
When a narrow filter was used, the JNDs for the two areas were
similar when temporal uncertainty was included (Fig. 7C, open
bars) and when a suboptimal classifier was used (Fig. 7E, open
bars), but there was a significant difference among the two areas,
favoring S1, when a shorter stimulus length (70 ms) was con-
sidered (Fig. 7A, open bars). On the other hand, when the spike
count (w = wcnt) was used, the differences between JNDs across
areas remained significant in all cases, with S1 neurons display-
ing, on average, a higher sensitivity to stimulus amplitude, i.e.,
smaller JNDs (Fig. 7 B, D, and F, open bars). Thus, overall, our
analyses are generally quite consistent and point to the same
conclusion: the firing rates of S1 neurons carry information
about stimulus presence over a wider range of timescales than
the rates of VPL neurons.

Discussion
To understand the development of a perceptual decision asso-
ciated with the detection of a stimulus, it is fundamental to de-
termine how the signal indicating stimulus presence is encoded
and relayed from the periphery to central brain areas (11). Here,
neurons from the VPL nucleus and S1 were simultaneously
recorded while monkeys performed a vibrotactile detection task

(6, 9). We used a unique decoding method to determine (i) the
features in the evoked spike trains that covary with the vibro-
tactile stimuli; (ii) the timescale that is optimal for decoding
stimulus presence from single neurons in both areas; (iii) how
accurate such decoding can be; and (iv) how neuronal detection
performance relates to the subject’s perceptual decision report.
The results show that fast, stimulus-linked variations in firing
probability occurring within tens of milliseconds do provide
significant information about stimulus presence, not only in VPL,
where they are more evident, but also in S1. However, the op-
timal timescale of integration varies widely among neurons in
both areas, and notably, stimulus presence is also strongly en-
coded through slower modulations in firing rate in S1 cells.
Therefore, S1 neurons are better detectors than VPL neurons in
the sense that their timescale of integration does not need to be
set as precisely to produce accurate performance. These findings
suggest a potential rationale for the progressive changes in re-
sponse properties observed from thalamus to cortex: in com-
parison with the VPL, inferring stimulus presence from S1 may
require less fine tuning of the neural circuits downstream [e.g.,
secondary somatosensory cortex (S2)].
Here, the behaviorally relevant stimulus feature was ampli-

tude, but a similar transformation in the neural code has been
documented, also with mechanical vibrations, when the relevant
dimension is stimulus frequency (8). In that case, a large change
occurs between S1 and S2 and relates to performance in a dif-
ferent psychophysical task: frequency discrimination. In S1, the
neurons that modulate their mean firing rates (computed over a
stimulation period of several hundred milliseconds) as functions
of stimulus frequency almost always display a positive monotonic
dependence, such that the mean firing rates are typically higher
for higher stimulus frequencies. In contrast, in S2 and areas
downstream (8, 12–14), neurons with negative monotonic de-
pendencies (42%) are about as common as those with positive
monotonic dependencies (58%). In addition to the appearance
of such negative monotonic tuning, i.e., of neurons that fire most
intensely for low stimulus frequencies, the information about
vibration frequency conveyed by the periodicity of the evoked
spike trains decreases by a factor of 10 from S1 to S2 (8); this is
because S2 neurons show extremely weak phase-locking to the
stimulus waveform in comparison with S1. Notably, a nearly
identical progression in the coding of stimulus frequency is ob-
served along the caudal-to-rostral axis in the auditory cortex
(A1) of marmoset monkeys in the same frequency range (5–50
Hz), but in the case of sounds (15). This dual temporal/rate
representation of acoustic flutter stimuli in A1 results from a
progressive transformation that begins in the auditory thalamus
[in the medial geniculate body (MGB)], because in the previous
relay station, the inferior colliculus, most neurons synchronize
their spikes but do not vary their overall firing rate as a function
of sound frequency (16, 17). Thus, in both modalities, the more
central area displays weaker phase-locking to the stimulus
waveform and more robust slow modulations in firing rate than
the more peripheral area.
The transformation of a neural code may be strongly influ-

enced by how the encoded sensory stimulus is used to direct
behavior (8, 18), and the results of two studies using vibrotactile
stimuli are consistent with this idea. Work by Mackevicius and
colleagues showed that the timing of spikes in primary mecha-
noreceptive afferents is crucial for discriminating complex vi-
bratory stimuli (19). In their analyses, they used a decoding
method that, although conceptually very different from the
PSTC, also takes into consideration the fine temporal structure
of spike trains. They found, first, that primary afferents convey
more information about the frequency composition of vibro-
tactile stimuli when the temporal resolution of the decoder is
high (on the order of 1–10 ms), and second, that the perfor-
mance of human subjects in making dissimilarity judgments was
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Fig. 7. Neurometric detection under alternative conditions. The format is
identical to that of Fig. 5. In all panels, bars and vertical lines indicate mean
values ± SEM, respectively, of the quantities indicated on the y axes, i.e.,
neurometric JND obtained with a filter width of 5 ms (w = 5 ms) or with the
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respond to mean JNDs obtained in the standard condition, in which spike
trains elicited during the full stimulation period (500 ms) were analyzed by
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uncertainty). (A and B) Results in the standard condition and when only the
spikes in the first 70 ms of stimulation were used by the PSTC (open bars). (C
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dard condition and when classification performance was assessed by a sub-
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Vázquez et al. PNAS | Published online June 24, 2013 | E2641

N
EU

RO
SC

IE
N
CE

PN
A
S
PL

U
S



better predicted by the afferent responses when their temporal
structure was taken into account. In contrast, Muniak et al. in-
vestigated how the primary afferent responses related specifically
to the subjective sensation of stimulus intensity reported by hu-
man subjects (20). They found that stimulus intensity ratings
were fully accounted for by the summed mean firing rates of all
of the responding afferents located under or near the stimulation
probe, weighted by afferent type. These studies suggest that fine
temporal information may be discarded early on when stimulus
amplitude is the behaviorally relevant quantity, as it is for de-
tection, but not when stimulus frequency is important.
More generally, several studies point toward a transformation

from a faithful representation in the primary afferents, which
follow the temporal fluctuations of vibrotactile stimuli extremely
tightly, to a more abstract representation in downstream cortices,
which is ultimately correlated with the perceptual report. Re-
cordings of neural responses evoked by sinusoidal stimuli in
primary afferents (4), cuneate nucleus (2), VPL (9), and S1 (8,
21) show periodic responses that are phase-locked to the sinu-
soidal wave, whereas in S2 and frontal lobe cortices the fraction
of neurons presenting phase-locked responses decreases until it
is minimal or nonexistent (1, 8, 12, 14, 22, 23). Such progression
may reflect a general property of cortical circuits regardless of
sensory modality, because similar findings have also been re-
ported in the auditory system, at least for the first relay stations
(17). Additionally, the information encoded within early areas
does not entirely determine behavioral output in the detection
task; on the contrary, the perceptual decision about whether
a stimulus is present or absent seems to build up across brain
areas (6, 12, 24).
According to our results, detection performance should be

somewhat worse when based on a very short stimulus (i.e.,
a single sinusoidal pulse) compared with performance based on
the full, 10-pulse, 500-ms stimulus (Figs. 5C and 7 A and B).
With the 70-ms stimulus, all differences based on fast modu-
lations were much smaller, likely because the location of the
spikes within such a small window is much less consistent across
trials; i.e., the periodic structure that is evident with a 10-pulse
stimulus is largely absent within a single stimulation pulse. The
result raises the issue of what is the actual amount of stimulation
time that is relevant for behavior. When the task involves the
comparison between two stimulus frequencies (i.e., discrimina-
tion), the effective integration window for neurons in S1 is ∼250 ms
(7). However, shorter integration times may suffice to produce
fast and accurate detection. Previous findings in humans and rats
(25, 26) suggest that monkeys may be capable of detecting a
stimulus that consists of a single sinusoidal pulse. If so, it will be
interesting to test whether their accuracy drops relative to that
with 10-pulse stimuli, as predicted from the neurometric curves
obtained here. A comparable drop would suggest that when the
stimulus is long (500 ms), all of it is used to determine its presence,
whereas a smaller or negligible drop would suggest that only a
short segment (e.g., 70 ms) is used, regardless of whether more
information is available or not. An intermediate scenario in which
the first 200–300 ms are relevant is plausible because, in general,
the time dedicated to sampling a stimulus should be limited to
optimally balance speed and accuracy (27).
Two neural features that impact how VPL and S1 neurons

encode stimulus presence are the spontaneous firing rate and the
slope of the mean firing rate as a function of stimulus amplitude,
and we found that both differ significantly across areas. VPL
neurons have significantly higher spontaneous firing rates in
comparison with S1 by a factor of 1.75 (Fig. 2E). Similar findings
have been documented in rats and cats (28, 29). The difference
can be attributed both to differential inputs and to local circuit
properties (30, 31). For example, it is likely that modulatory
signals, such as cholinergic inputs from the brainstem, which are
highly active when the animal is awake, contribute to maintain-

ing a high firing rate in VPL (32, 33). In contrast, it is known that
cortical neurons receive the majority (∼85%) of their inputs
from other cortical neurons (31), such that both recurrent exci-
tation and inhibition are strong (34), and allowing for periods of
low spiking activity (31). Also, inhibitory conductances within
intracortical circuits are more active when a subject is awake (35)
and could play an important role in maintaining S1 low spon-
taneous rates and thus in shaping the stimulus-evoked responses.
Our results suggest that fast modulations (∼10 ms) in the firing

of VPL neurons are exploited by S1 to generate more robust
firing rate modulations in a slower range (∼100 ms). Another
possibility, however, is that the fast modulations are relatively
inconsequential and that the circuitry simply attempts to en-
hance the slower modulations already present in VPL indepen-
dently of the fast ones, perhaps through convergence of selected
thalamic inputs or other integration mechanisms. Although this
scenario is conceivable, we think it is somewhat unlikely for three
reasons. First, at least under some conditions, primary mecha-
noreceptors convey stimulus information almost exclusively
through spike timing (4, 19, 20), so the circuitry downstream
must be capable of converting highly structured spike patterns
into slow firing rate modulations. Second, it is known that several
convergent and synchronous thalamic inputs are necessary to
elicit a single action potential in S1 (36), so mechanisms for
detecting synchrony must be ubiquitous. Third, the changes that
we observed between VPL and S1 can, to a first approximation,
be explained by relatively simple computational operations, such
as thresholding and rectification (Fig. S2), so exploiting the fast,
synchronous responses should not be particularly difficult for
neural circuits. S1 neurons were 1.46 times more sensitive than
VPL neurons in terms of the slopes relating mean firing rate to
stimulus amplitude (Fig. 2F). This “gain factor” might also be
explained in part by other gain control mechanisms that produce
selective amplification through intracortical dynamics (37–39).
Notably, in rats, microstimulation of single neurons in the VPM
nucleus leads to no perceptual effects, whereas in cortex it does
(40). These facts, in conjunction with our results, suggest that, in
general, neural representations of stimuli in the thalamus are
different from those in cortex and that the transformation of the
neural code from thalamus to cortex has a direct impact on
stimulus perception.

Materials and Methods
Detection Task. Twomacaquemonkeys were trained to perform a vibrotactile
detection task described earlier (6, 9). Monkeys were handled according to
the institutional standards of the National Institutes of Health and Society
for Neuroscience. All protocols were approved by the Institutional Animal
Care and Use Committee of the Instituto de Fisiología Celular.

Recording Sessions and Sites. Neuronal recordings were obtained with two
arrays of seven independent, movablemicroelectrodes (2–3MΩ) (13) inserted
into S1: one microelectrode array in the cutaneous representation of the
fingers and the other medial to the hand representation, in a way that
allowed us to lower the microelectrodes into the VPL nucleus. Single neu-
rons were recorded contralateral to the stimulated hand while animals
performed the vibrotactile detection task. Each recording session began
with a mapping procedure to find the cutaneous representation of the
fingers in the VPL and S1 (areas 1 and 3b). Neurons in both structures had
small cutaneous receptive fields located in the distal segment of one digit
(fingertips 2, 3, 4, or 5) and displayed QA or SA properties. Stimuli were
delivered at the receptive field center. Locations of electrode penetrations in
both areas were confirmed using standard histological techniques.

Neurons were classified as QA or SA according to their responses when the
stimulation probe was lowered at the beginning of each trial, as described in
ref. 9. The majority of the neurons recorded were QA (65 in VPL, 71 in S1);
only a minority were SA (9 in VPL, 4 in S1).

Statistical Analyses. We analyzed the responses of 74 VPL and 76 S1 neurons
with 120–360 detection trials collected per neuron. All analyses were per-
formed via customized programs run in Matlab (MathWorks).

E2642 | www.pnas.org/cgi/doi/10.1073/pnas.1309728110 Vázquez et al.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1309728110/-/DCSupplemental/pnas.201309728SI.pdf?targetid=nameddest=SF2
www.pnas.org/cgi/doi/10.1073/pnas.1309728110


Neurons were considered responsive if the distribution of firing rates
during the stimulation period (500 ms) for the highest amplitude was sta-
tistically different from that in a period immediately before stimulus onset
[500 ms, receiver operating characteristic curve (ROC) test, α = 0.01 (41)]. The
relation between stimulus amplitude and neural activity was first quantified
using linear regression; the independent variable was stimulus amplitude
and the dependent variable was either the firing rate computed over the
full stimulation interval (500 ms) or the power at 20 Hz, as a measure of
stimulus-driven periodicity (8, 9). Differences in spontaneous rate and in
fitted slopes across areas were assessed using the Kolmogorov–Smirnov test.
For all other measured quantities, means and SEM are reported, and dif-
ferences between VPL and S1 populations were assessed using a permuta-
tion test for unpaired samples (n = 10,000 permutations).

Simulation of Ideal Neurons. We simulated the responses of ideal neurons to
determine the sensitivity of the neural detection method described below
and to gain intuition about the recorded data. Three prototypical neurons
were considered: (i) a neuron that simply increased its mean firing rate
during stimulation and was completely insensitive to the temporal structure
of the stimulus; (ii) a neuron that maintained the same overall firing rate
with and without stimulation but synchronized its spikes to the individual
stimulation pulses; and (iii) a neuron that showed a mixture of the two
effects, i.e., it fired more spikes during stimulation and these were syn-
chronized to the stimulus waveform. For each case, we first defined the
firing rate as a function of time, r(t) (Fig. 3 A–C, red traces). This function
lasted a total of 1,000 ms; in the first and last 250 ms (no stimulation), r(t)
was equal to a constant, baseline rate, whereas in the middle 500 ms (yes
stimulation), it described the stimulus-related response. The stimulus-evoked
modulations for types 2 and 3 were modeled using 20-Hz square waves
of varying amplitudes and duty cycles. Spikes were then generated by
first converting the rate function into a firing probability in each time
step of 1 ms and then using a random number generator to determine
whether one spike or no spike was fired in each time step. In this way,
Poisson spike trains with variable underlying rate r(t) were produced. For
each neuron type, 60 stimulus-present and 60 stimulus-absent trials were
simulated. In stimulus-absent trials, r(t) remained equal to the baseline
rate throughout the 1,000-ms period. A single stimulus amplitude was
considered in these simulations. For all simulations and analyses, time
was discretized in steps of 1 ms.

PSTC. Simulated or recorded neuronal responses in individual trials were used
to infer whether a stimulus was presented or not. Such decoding was done
using a PSTC with cross-validation, which we developed specifically to ana-
lyze the current data. Trials were randomly divided into two groups, one for
training the classifier (80 trials: 40 stimulus-present and 40 stimulus-absent)
and another for testing it (all remaining trials), and the fraction of correctly
classified test trials was saved. A test trial was deemed correct if the PSTC
identified it correctly as a stimulus-present or stimulus-absent trial. For each
neuron, this whole process was repeated 300 times; each one with different,
with randomly split groups of training and testing trials, to obtain the mean
fraction correct and its spread (standard error, SE). The PSTC has a free pa-
rameter, the filter width w, and the mean fraction of correct classifications
was plotted as a function of w for each recorded neuron (Fig. 3 A–C, Lower).
The optimal filter width of each neuron was defined as the value of w that
produced the highest mean fraction of correct classifications (Cmax). Classi-
fication performance was considered indistinguishable from optimal for all
those points that were less than 2 SE away from Cmax. Based on this criterion,
the range of optimal filters for each neuron, Δw, was defined as the dif-
ference between the maximum and minimum filter widths for which per-
formance was statistically indistinguishable from optimal.

The PSTC assumes that the responses of a given neuron are based on two
elements: a spike-generation mechanism that follows simple Poisson sta-
tistics and a time-varying rate function that depends on whether a stimulus
was presented or not. Notably, the firing rate function is assumed to be
the same from one trial to another within the same class: stimulus-present
or stimulus-absent. Thus, during training, the PSTC constructs two firing
rate functions or templates, rSP(t) and rSA(t), that characterize the cell’s
responses. For this, all of the spike trains from training trials are convolved
with a Gaussian function, or filter, of SD w, and the results are averaged
separately across stimulus-present trials [to produce rSP(t)] and across
stimulus-absent trials [to produce rSA(t)]. Here, it is important to recall that
time is divided into a finite number of 1-ms steps. Then, during testing, the
PSTC computes two quantities: one that is proportional to the probability
of observing the probe spike train given the rate function rSP(t) and another

that is proportional to the probability of observing the probe spike train given
the rate function rSA(t):

QSP ¼ ∏
j;k

crSP
�
tj
�½1− crSPðtkÞ�

and

QSA ¼ ∏
j;k

crSA
�
tj
�½1− crSAðtkÞ�;

where the index j identifies all of the time points in the probe spike train
in which there was a spike, the index k identifies all of the time points in
which there was no spike, and c is a constant (1/1,000) that converts the
firing rate (in spikes per second) into a probability of firing a spike in a 1-ms
step. These expressions are based on the binomial distribution, which un-
derlies the Poisson model. They basically assume (i) that at any given time
step a biased coin was flipped and the outcome determined whether a spike
was produced or not and (ii) that the bias was given by either rSP(t) or rSA(t).
Thus, unlike other time-sensitive measures, such as the vector strength or the
Fourier power at a given frequency, the PSTC requires no information about
the stimulus (e.g., its frequency) and does not rely on periodicity per se but
rather just on the repeatability of a response given a particular stimulus. If
QSP > QSA, then the pattern of spikes in the probe spike train is more likely to
have been produced by rSP(t) than by rSA(t), and the spike train is considered
to belong to the stimulus-present class. Conversely, if QSA > QSP, then the
spike train is assigned to the stimulus-absent class. All test trials are similarly
classified based on the same rSP(t) and rSA(t) template functions derived from
the training trials. In the current PSTC implementation, stimulus-present and
stimulus-absent trials are assumed to be equally likely.

As a part of the PSTC performance curve (fraction of correct classifications
vs. filter width w), we included one additional point: the fraction of correct
classifications achieved (Ccnt) when the classifier bases its output only on the
total number of spikes counted in the full analysis window (500 or 70 ms).
This point corresponds to the expected performance of the PSTC in the limit
when w becomes large. This spike count classifier compared the probability
of observing n spikes in a test trial given either the mean number of spikes in
stimulus-absent (training) trials, mSA, or given the mean number of spikes in
stimulus-present (training) trials,mSP, all counted during the full analysis period.
Thus, in keeping with the assumption of Poisson statistics, it compared (mSA)

n

exp(–mSA)/n! vs. (mSP)
n exp(–mSP)/n! with the largest probability determining

whether the trial was considered as stimulus-present or stimulus-absent.
In constructing the PSTC performance curves, we first considered exclusively

the time window of stimulation, so all spike trains used for training and testing
were 500ms long (or, for the short-window analysis, 70ms long). In this case the
PSTC had to infer whether there was a stimulus or not, but the time of its oc-
currence was certain. We also implemented a variant of the PSTC analysis in
which, during testing, there was uncertainty about when the stimulus might
have occurred. In this case, the training phase proceeded exactly as before—in
fact, the classifier generated the exact same rSP(t) and rSA(t) functions—but the
spike trains use for testing were lengthened by adding the 500 ms before
stimulus onset and 500 ms after its offset. Now the PSTC considered multiple
temporal locations of the spike train to be classified relative to the rSP(t) and
rSA(t) functions and made a decision according to the following rules: (i) the
likelihood of stimulus present, LSP, was the maximum value of QSP/(QSP + QSA)
across all of the possible temporal locations; (ii) the trial was classified as stim-
ulus-present if LSP > α; and (iii) the threshold α was set so that, across all tested
trials, stimulus-present and stimulus-absent classifications were equally likely.

As with any neural decoding method, the PSTC can be used to benchmark
coding capacity to the degree that it is optimal. Thus, it may not generalize to
different experimental conditions (e.g., if the stimuli to be detected varied in
both amplitude and frequency) unless it is appropriately modified.

TCSTC. Like the PSTC, the TCSTC assigns test spike trains to stimulus-present
and stimulus-absent classes. Each test spike train is convolved with a Gaussian
filter of SD w. The classifier then finds the maximum value of the resulting
firing rate function, rmax, and compares its value to a threshold ɵ: if rmax > ɵ,
the trial is classified as stimulus-present, and otherwise it is classified as
stimulus-absent. The value of ɵ is set during training; it is chosen so that the
resulting fraction of correct classifications for the training trials is maxi-
mized. Additional variants of the TCSTC were explored in which the classi-
fication was based on trial-specific statistics other than the maximum of the
firing rate function, rmax (e.g., the SD or the skewness of the distribution of
firing rate values or the rate marking a particular quantile in the distribu-
tion), and the results were essentially the same as with rmax, in the sense that
all of those classifiers could only extract a limited amount of information
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from the fast modulations. Their performance reflected primarily the overall
differences in mean firing rate across conditions.

Psychometric and neurometric curves. Psychometric and neurometric curves
both refer to the probability pY, varying as a function of stimulus amplitude,
of reporting that yes, a stimulus was presented. They characterize a mon-
key’s or a neuron’s sensitivity to stimulus amplitude. The psychometric curve
was based on behavioral responses, whereas the neurometric curve was
based on the performance of the PSTC or TCSTC. The classifiers were not
retrained to generate the neurometric curve; rather, the test trials were
simply sorted by amplitude during the testing phase of the classification
analysis described above. Two neurometric curves were computed for each
neuron: one with w = 5 ms and another based on the total spike count (w =
wcnt) inside the analysis window (500 or 70 ms).

Each curve, psychometric or neurometric, was fitted with a continuous
Boltzmann curve:

pY ðAÞ ¼ C1 þ C2=½1þ expð−A=bÞ�;

where A is the stimulus amplitude and C1, C2, and b are free parameters.
Best-fitting parameter values were obtained using the nlinfit function in

Matlab and were fixed given the behavioral or neural data in a given ses-
sion. Only curves with significant goodness of fit were considered. Neuro-
metric curves where the false alarm rate (i.e., the probability of detection at
A = 0) was ≥0.4 and the hit rate (i.e., the mean probability of detection for
A > 0) was ≤0.6 were discarded because they contained virtually no in-
formation about stimulus amplitude. For each neurometric and psycho-
metric curve, the detection JND was equal to one-half of the difference in
amplitude needed to go from a probability of detection of 0.25 to one of
0.75. The JND for a monkey or a neuron was calculated from the corre-
sponding Boltzmann curve fitted to the data. Threshold ratios were calcu-
lated by dividing the behavioral JND by the neurometric JND (b/n). Ratios <1
imply that neural sensitivity is smaller than the monkey’s, whereas ratios >1
imply the opposite.
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