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There is growing interest in the complex topology of human brain
functional networks, oftenmeasured using resting-state functional
MRI (fMRI). Here, we used a meta-analysis of the large primary
literature that used fMRI or PET to measure task-related activation
(>1,600 studies; 1985–2010). We estimated the similarity (Jaccard
index) of the activation patterns across experimental tasks be-
tween each pair of 638 brain regions. This continuous coactivation
matrixwas used to build aweighted graph to characterize network
topology. The coactivation network was modular, with occipital,
central, and default-mode modules predominantly coactivated by
specific cognitive domains (perception, action, and emotion, re-
spectively). It also included a rich club of hub nodes, located in
parietal and prefrontal cortex and often connected over long dis-
tances, which were coactivated by a diverse range of experimental
tasks. Investigating the topological role of edges between a deac-
tivated and an activated node, we found that such competitive
interactions were most frequent between nodes in different mod-
ules or between an activated rich-club node and a deactivated pe-
ripheral node. Many aspects of the coactivation network were
convergent with a connectivity network derived from resting state
fMRI data (n = 27, healthy volunteers); although the connectivity
network was more parsimoniously connected and differed in the
anatomical locations of some hubs. We conclude that the commu-
nity structure of human brain networks is relevant to cognitive
function. Deactivations may play a role in flexible reconfiguration
of the network according to cognitive demand, varying the inte-
grationbetweenmodules, andbetween the periphery and a central
rich club.
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Our understanding of human brain network organization has
advanced considerably in the last decade (1). Graph theory

has been increasingly used to describe the topological properties
of anatomical and functional networks, typically based on esti-
mates of structural or functional brain connectivity from MRI
data (2). Several studies have confirmed that human brain net-
works have complex topological properties (3)—including small
worldness; high-degree hub nodes; and a community structure
that can be decomposed as a set of modules (4), or as a small rich
club and a large periphery (5).
It remains an open question how the complex topological

properties of human brain networks are related to their capacity
for information processing or for adapting to changing cognitive
demands. It has been shown that higher intelligence quotient is
correlated with shorter topological path length of structural and
functional networks, which would facilitate globally efficient,
integrative processing (6, 7). Other studies have shown network
changes under contrasting experimental conditions (8–10).
However, the reliance on resting-state functional MRI (fMRI) as
the experimental basis for most work on functional networks has
limited the extent to which the topology of brain graphs has been
related to cognitive tasks, or to other aspects of brain function,

such as local deactivations, which are well-established findings in
task-related fMRI studies (11).
Meta-analysis is a powerful way of combining data from func-

tional neuroimaging studies that have located task-related brain
activations and deactivations. For example, it has been shown
meta-analytically that deactivations elicited by a wide range of
tasks are frequently located in the “default-mode network” (12,
13). Meta-analyses of task-related fMRI data have also estimated
the frequency with which two brain regions are consistently acti-
vated across different tasks. This provides an alternative measure
of functional connectivity between regions, without describing
a possible direction of the influence (unlike causal or effective
connectivity) (14). Such meta-analytic measures of task-related
coactivation have been explored using “seed-based” analysis
(identifying which other regions are coactivated with an arbitrary
region or “seed”) (15, 16) and by independent component anal-
ysis (ICA) (identifying a set of components or systems of regions
that are consistently coactivated with each other) (17). Thus, it
has been shown that brain coactivation components can be meta-
analytically linked to specific cognitive domains (18) and that they
are anatomically similar to the systems identified by ICA of
resting-state fMRI data (17).
Here, we combined a meta-analysis of cognitive task-related

regional coactivation with a graph theoretical analysis of the to-
pological properties of weighted functional coactivation net-
works. The strength of functional coactivation was estimated by
the Jaccard index (range [0,1]), a measure of similarity between
the patterns of activation of two regions reported across a large
number of experimental contrasts in the primary literature of
1,641 task-related fMRI or PET studies published between 1985
and 2010, and collated in the BrainMap database (19, 20). From
these data, we estimated the Jaccard index between each pair of
638 regional nodes covering the whole brain, collated these pair-
wise association measures in a continuous association matrix, and
then built a weighted graph to investigate topological and spatial
network properties in relation to the various cognitive tasks
studied in the primary experiments. This method also allowed us
to analyze the network position or topological role of cognitively
deactivated nodes. We additionally compared the results to
a functional connectivity network constructed from correlations
between regional fMRI times series, measured at the same 638
nodal locations as in the coactivation analysis, from 27 healthy
volunteers scanned in the resting state.
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Results
Global and Nodal Properties of Coactivation and Connectivity
Networks. The coactivation network was topologically complex in
several ways. The nodal degree distribution was fat-tailed with
high-degree hub nodes located in: thalamus; putamen; insula;
prefrontal, premotor, and precentral cortex; inferior parietal
cortex; and ventral occipital cortex (Fig. 1A andC). Physically, this
topology was embedded parsimoniously, in terms of the connec-
tion distance between coactivated nodes (Fig. 1D). Most con-
nections or edges were short distance (median length of 57 mm;
significantly shorter than random networks; P < 10−3, permuta-
tion test). Relatively few edges were long distance, and these were
often interhemispheric projections between bilaterally homotopic
regions [14% of longest connections (defined as top 10 percentile)
were homotopic; significantly more than random; P < 10−3, per-
mutation test]. Although the network cost was overall low, as
measured by the distance of connections, the network topology
still managed to balance integration and segregation between all
brain regions: the clustering of the network thresholded at sparse
levels was much higher than random, while retaining a similar
path length, i.e., it was small world (21) (Fig. S1).
In all these respects, the organization of the coactivation

network was convergent with properties of a comparable func-
tional connectivity network generated from resting-state fMRI
data. As known from prior studies (22, 23), and reproduced here,
resting-state fMRI networks are small world, with fat-tailed
degree distributions and parsimonious distance distributions (Fig.
1 C and D, and Fig. S1).

The correspondence between coactivation and connectivity
networks was confirmed more quantitatively. The measure of
functional coactivation (Jaccard index) was positively correlated
with the functional connectivity measure (Z-normalized Pearson’s
correlation): strongly connected regions in the resting-state data
tended to be strongly coactivated in the meta-analysis (r = 0.49;
Fig. 1B). Both networks had fat-tailed degree distributions. The
nodal degrees were significantly correlated between the two
networks (Spearman’s ρ = 0.27 for degree; ρ = 0.3 for weighted
degree). These results indicate that nodes that were high-degree
hubs in one network tended also to be hubs in the other, al-
though the correspondence was not perfect. There were also
differences in the length of connections, with the coactivation
network having more long-range edges (Fig. 1D), particularly
when considering the most strongly coactivated pairs of nodes
(Fig. S2).

Modularity of Coactivation and Connectivity Networks.By a classical
Newman decomposition (24), the coactivation network was
found to be modular (Q = 0.47). It comprised four large mod-
ules, labeled anatomically: occipital, central (including sensori-
motor areas), frontoparietal, and default mode (including
medial frontal cortex, precuneus and posterior cingulate cortex,
lateral parietal and temporal cortex, amygdala, and hippocam-
pus) (25). The connectivity network derived from resting-state
data were also modular (Q = 0.49), with four modules that
approximated anatomically to the modules of the coactivation
network (Fig. 1A and Fig. S3). The correspondence between
coactivation and connectivity network modular decompositions

Fig. 1. The functional coactivation network based on meta-analysis of task-related fMRI studies has similar modularity and other properties to a functional
connectivity network based on resting-state fMRI data. (A) Coactivation and connectivity networks plotted in anatomical space. The edges are defined by the
minimum spanning tree for illustrative purposes. The size of the nodes is proportional to their weighted degree (strength), and their color corresponds to
module membership. (B) Relationship between the coactivation metric (Jaccard index) and the connectivity metric (resting-state fMRI time series correlations)
for every pair of regions. (C) Degree and (D) distance distributions of the coactivation network and a resting-state fMRI connectivity network.
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was high, with a Rand index of 0.78 (significantly greater than
the correspondence between modules of the connectivity net-
work and randomly reassigned modules of the coactivation
network; P < 10−4, permutation test).
For the coactivation network, it was possible to assign func-

tional as well as anatomical labels to the modules. To do this, we
considered the five high-level behavioral domains used by the
BrainMap database to describe each contrast in the primary
literature (26): action, cognition, emotion, perception, and
interoception. We then labeled each edge according to the do-
main most frequently causing coactivation of the corresponding
pair of regions (Fig. S4). In the occipital module, the highest
proportion of intramodular edges corresponded to coactivation
by perception (39%) and the other domains coactivated less
than 20% each; similarly, in the default-mode module, 37% of
edges were coactivated by emotion and the other domains each
accounted for less than 21%; whereas, in the central module,
62% of intramodular edges were coactivated by action. Thus, it
seems reasonable to say that the central module is relatively
specialized for action, the occipital module for perception, and
the default-mode module for emotion. Action and cognition
tasks accounted for approximately the same proportion of
intramodular edges in the frontoparietal module (34% and
38%, respectively), and therefore we described it as specialized
for executive functions.

Rich Clubs of Coactivation and Connectivity Networks. Rich-club
analysis provides another perspective on the community struc-
ture of complex networks, describing networks that have an elite
minority of highly interconnected hub nodes (the rich club) and
a majority of less well-connected nodes (the poor periphery).
The coactivation network had a rich club (Fig. S5A), comprising

21 nodes located topologically in frontoparietal and central
modules; or anatomically in prefrontal, premotor, precentral,
and inferior parietal cortex, thalamus, and insula (Figs. 2A and
3A). The connections between rich-club nodes had significantly
greater betweenness centrality than the connections between
other nodes (P < 10−4, permutation tests; Fig. 2B). In other
words, more of the shortest paths between any pair of nodes
passed through a connection between two rich-club nodes than
through a feeder connection (between a peripheral node and
a rich-club node) or a peripheral connection (between two pe-
ripheral nodes). Rich-club nodes were also important in medi-
ating connections between modules, as indicated by their higher
mean participation coefficient compared with the periphery (P <
0.008, permutation test). This central component of the network
was costly for the system: the connections between rich-club
regions, and the “feeder” connections between a peripheral and
a rich-club node, were longer distance than the connections
between peripheral nodes (P < 0.005, permutation tests).
Likewise, the functional connectivity network derived from

resting-state fMRI had a rich-club configuration (Fig. S5B). We
first defined the rich club as the subset of the top 21 most highly
connected nodes in the functional connectivity network. This size
of club was chosen to facilitate comparison with the 21-node rich
club of the coactivation network; for completeness, we also ex-
plored the rich-club organization of a larger subset of nodes in
the fMRI connectivity network, but this did not substantively
affect the results (SI Results and Fig. S6). The rich club (n = 21)
was located in the central and occipital modules (Fig. 2C). Their
edges also occupied a central position in the network (edge
betweenness centrality greater than peripheral connections;
P < 10−3, permutation test; Fig. 2D); they were also important
for intermodular connections (higher participation coefficient

Fig. 2. The rich club of the functional coactivation net-
work and of the functional connectivity network. (A and C)
Anatomical location of rich-club nodes and connections for
the (A) coactivation and (C) connectivity networks. Color of
nodes corresponds to their module as in Fig. 1. Note that, in
both networks, the rich club formed one connected com-
ponent. (B and D) Betweenness centrality of edges, partic-
ipation coefficient of nodes, and connection distance of
edges defined according to their relationship to the rich
club in (B) the coactivation and (D) the connectivity net-
work. In both networks, the rich club is highly central, im-
portant for intermodular connections, and the edges
connecting rich-club nodes to each other or to peripheral
nodes are longer distance than the edges between pe-
ripheral (nonrich) nodes. Median and interquartile range
are shown.
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in rich-club nodes than peripheral; P < 10−4, permutation test),
and they were more costly in the sense that the connection dis-
tance between rich-club nodes, and the distance of feeder con-
nections, was greater than the distance of peripheral connections
(both P < 10−4, permutation tests).
For the coactivation network, we investigated the functional

role of the rich club by analyzing the task-related contrasts that
had generated edges between rich-club nodes. Rich-club nodes
were most frequently coactivated by action (59%) or cognition
tasks (30%), much less frequently by the other domains (Fig.
S7A). It was also notable that the edges between rich-club nodes
represented coactivation of pairs of regions by a more diverse
range of task-related contrasts, whereas feeder or peripheral
edges typically represented coactivations by experimental con-
trasts from a more restricted range of similar behavioral
domains. The cognitive diversity of coactivation was quantified
in the range [0,1], such that edges coactivated by only one be-
havioral domain scored 0 and edges diversely coactivated with
equal frequency by all domains scored 1. We found that diversity
was higher for rich-club connections (0.74) than for feeder
(0.72) or peripheral connections (0.7; P < 10−3 for both com-
parisons, permutation tests; Fig. S7B).

The Topological Role of Deactivations. We first looked at the role
of deactivations (defined as fMRI signal greater during rest than
during a task condition) by examining where they appeared in
the coactivation network. In line with prior meta-analyses (12,
13), deactivations were most often located in nodes of the
default-mode module (Fig. 3B).
Although coactivation of two regions indicates that they act

“cooperatively” to perform a task, concomitant activation and
deactivation of two regions could be described as a “competitive”
interaction. To explore further the role of deactivations, we ex-
amined their relationship to those regions activated by the same
task, and mapped these “competitive” activation/deactivation
pairs to the coactivation network. Competitive interactions were
significantly more likely to appear between nodes in different
modules than nodes in the same module (odds ratio of 2.02; P <
0.001, permutation test). They were also much more likely to
mediate a connection between an activated rich-club node and
a deactivated peripheral node, than they were to mediate a con-
nection between two peripheral or two rich-club nodes, or an
activated peripheral node and a deactivated rich-club node (odds
ratios of 4.4, 5.2, and 9.8, respectively; all P < 0.01, permutation
tests, Bonferroni corrected; Fig. 3C).

Robustness Analysis.We considered the effects of various possible
confounding or methodological factors on these results (SI
Materials and Methods). Main findings were robust to variation in

the brain template used, assumptions when modeling activations
from peak coordinates, and to controlling the estimation of
coactivation for possible biases due to the uneven number of
primary studies across behavioral domains (Table S1).

Discussion
This analysis of the human brain functional coactivation network
revealed a community structure that was similar (but not iden-
tical) to that of the functional connectivity network derived from
resting-state fMRI. Moreover, the meta-analytic network pro-
vided insight into the cognitive specialization (or generalization)
of the modules and the rich club of human brain functional
networks, as well as suggesting a network role for cognitive
deactivations.
Relatively specialist roles in cognitive processing could be

assigned to most modules. The occipital module was mostly
coactivated by tasks involving perception, the central module by
action, the default-mode module by emotion, and the fronto-
parietal module by executive tasks demanding action or cogni-
tion. These results are broadly in agreement with those obtained
by previous studies using ICA (17, 18). For example, each of the
four modules defined by our analysis corresponds closely to one
or more of the 10 independent components reported by Smith
et al. (17) on a nearly identical sample of the BrainMap database
(Fig. S8). (The methodological and substantive commonalities
and differences between ICA and graph analysis of the func-
tional coactivation and connectivity networks are detailed more
extensively in SI Discussion.) Thus, the modularity results are not
surprising discoveries, but they provide support for the cognitive
relevance of the graphical analysis of the coactivation network
and, by extension, of the fMRI connectivity network.
The use of graph analysis also provided us with opportunities

to go beyond the description of these basic building blocks of the
functional brain network as explored with modularity analysis or
ICA. For example, in addition to the highly segregated modules,
we discovered the existence of a rich club that represented a key
integrative element of both coactivation and connectivity net-
works [as has been suggested previously by analysis of anatomical
networks (5, 27, 28)]. We were also able to demonstrate that
local activation or deactivation of brain regions in response to
task/rest contrasts could be related to the topology of the net-
works, with many competitive edges linking an activated node of
the rich club to a deactivated node in the periphery. In short, the
community structure of human brain functional networks can be
rendered as a set of functionally specialized and topologically
peripheral modules ranged around a functionally generalized
and topologically central rich club (Fig. 3A).
Because topological modules in brain networks are often an-

atomically colocalized, i.e., topologically neighboring nodes tend

Fig. 3. Topological representation of the func-
tional coactivation network. (A) Force-based layout
of the minimum spanning tree is used to locate
nodes in relation to their topological (rather than
anatomical) proximity to each other. Different
modules are coded by color, and rich-club nodes are
represented by squares, with the size of all nodes
proportional to their weighted degree (strength).
(B) Nodes in anatomical space, colored according to
proportion of times they present activations and
deactivations. (C) Nodes arranged in the same lay-
out as A, and colored as in B (see Movie S1 for
a dynamic perspective on this). Note that the rich
club concentrates most of the activations, whereas
the periphery and particularly the default-mode
network concentrates the deactivations. Edges
represent the top 1 percentile of most consistently
reported activation and deactivations (no directions
shown for clarity purposes). Edges can be seen
spanning across different modules.
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to be anatomical neighbors, this result is consistent with theo-
retical expectations that specialized functions should be con-
centrated in anatomical space (29). It is also consistent with
a prediction of workspace theory (30), and prior meta-analytic
results (31), that integrative and general intelligence functions
depend on efficient communication between a large number of
anatomically dispersed processing nodes. The rich club has
a cognitively valuable (executive) role, but it is also costly as
demonstrated by the longer distance connections between rich-
club nodes, and between rich and peripheral nodes, than be-
tween a pair of peripheral nodes. This combination of high
functional capacity and high cost echoes analogous results on the
rich club of the human brain anatomical network measured using
diffusion tensor imaging (32) and on the rich club of the nervous
system of the nematode worm Caenorhabditis elegans described
at a cellular level by electron microscopy (33).
However, it is important in considering these results not to

rigidify the decomposition of human brain functional networks
unduly. The possible configurations of a brain functional network
will dynamically change over time, either in response to changing
external contingencies or endogenously (34, 35). Some aspects of
such processes of functional network reconfiguration can be
inferred from these data.
When a task is presented experimentally in contrast to rest in

fMRI studies, the signal increases in some brain regions (acti-
vations) while it decreases in others (deactivations). Here, we
found that activations were likely to appear in a rich-club node,
whereas the accompanying deactivation appeared in a peripheral
node, and that activation and deactivations often occurred in
different modules. There are various possible interpretations of
this observation. Rich-club activation could switch off certain
peripheral modules under certain task conditions, or an active
module could suppress activity in an inactive one (36, 37). Al-
ternatively, there may be a finite resource for coactivation, such
that all modules cannot be coactivated simultaneously; central
coactivation resource is therefore distributed economically by
competition between modules (38). Our data cannot resolve the
choice between these and other possible models for the topo-
logical role of deactivations. However, the economical model has
the advantage that it does not assume the rich club has a ho-
munculus-like agency to direct activity elsewhere in the network.
A related aspect of functional network reconfiguration was

revealed by a comparison of the meta-analytic network (derived
from measurements under some experimentally controlled con-
dition of cognitive demand) and the resting-state network (de-
rived from measurements while people lie idly in the scanner).
Although the two networks were topologically similar in many
ways, there were also some differences. For example, although
high-degree nodes in one network tended to be also hubs in the
other network, this correspondence in the anatomical location of
hubs was not perfect. Hubs of the resting-state connectivity
network were located in occipital and central modules, arguably
as expected from the observation of synchronized EEG oscil-
lations in occipital and central recordings at rest, whereas fron-
toparietal nodes particularly appeared more prominent in the
coactivation network, i.e., during cognitive effort. It was also
notable that although both networks had a rich club, the ana-
tomical locations of the rich-club nodes did not overlap between
the two networks. We hypothesize that the anatomical locations
of high-degree hubs (and rich clubs) can change dynamically in
parallel to changes in type and levels of cognitive processing,
whereas the global network topological properties of the brain
functional network are relatively conserved under different
cognitive conditions (39). During cognitive effort, nodes such as
those classically described as part of attention networks become
highly connected, whereas nodes that are more highly connected
during rest, such as regions of the default-mode network, become
less hub-like under conditions of cognitive stress. There were
spatial as well as topological differences between the networks.
The coactivation network hadmore long-range connections. This is
also compatible with an economical interpretation: integrative

network features, such as long-range connections, incur a premium
in terms of connection cost, emerging only under conditions where
they can add value behaviorally in response to a cognitively chal-
lenging environment (10, 40).

Materials and Methods
Network Construction. To build weighted functional networks from meta-
analytic data on task-related activation, we used bipartite graphs. These
comprise two disjoint sets of nodes, which can model interactions between
nodes on one level that are determined by their individual interactions with
nodes on another level [for example, actors and the films they have starred in
(41)]. Here, we defined the coactivations between brain regions (level 1) in
relation to the cognitive tasks or contrasts (level 2) deployed experimentally
in the primary literature. All functional metadata were extracted from the
BrainMap database [brainmap.org (19, 20, 26)]. We included 6,884 task-re-
lated contrasts from 1,641 nonpharmacological neuroimaging studies in-
cluding more than five healthy adult subjects, irrespective of the tasks. Each
activation from each contrast was modeled as a 1-cm3 sphere centered
around its reported coordinates (15) in a standard stereotactic space (42, 43).
We subdivided or parcellated the gray matter of the brain (excluding the
cerebellum) into 638 similarly sized regions that respected anatomical
landmarks (44, 45). For the purposes of building the bipartite graph, the
activation loci reported for each contrast were linked to brain regions if 20%
or more of the modeled activation sphere overlapped with the regional
volume defined by the parcellation template. Main results were unchanged
when using only the locus of the peak activation rather than modeling it as
a sphere (Table S1). The bipartite graph relating cognitive contrasts to brain
regions was then transposed to a one-mode graph where regions were
linked to each other if they were frequently coactivated. We used the Jac-
card index as the metric of coactivation strength, defined for each pair of
regions as the number of contrasts activating both regions X and Y divided
by the union of contrasts activating region X and activating region Y. We
therefore focused on the frequency of coactivation of each pair of regions,
accounting for the combined frequencies of activation of each region in-
dependently. This metric was chosen to control the frequency of coac-
tivation for the variable frequency of activations in certain brain regions
elicited by popular behavioral tasks in the primary literature. Further con-
trols for a possible publication bias in the primary reporting of the activation
data are described in Table S1 (balancing the number of contrasts in each of
the five behavioral domains) and Fig. S9 [demonstrating that rich-club nodes
are not selectively reported in high-impact factor journals (46)]. The coac-
tivation matrix was probabilistically thresholded (15) such that if the Jaccard
index between a pair of regions was not significantly greater than expected
under the null hypothesis, then no edge was drawn between the corre-
sponding nodes of the coactivation network; whereas if it was significantly
greater, then an edge was drawn between the corresponding nodes and
weighted by the Jaccard index (SI Materials and Methods). Setting the
probabilistic threshold at P < 0.01 false discovery rate corrected, resulted in
a sparse graph with a connection density of 9.2% and at least one edge
connecting each node to the rest of the network. Further details on graph
construction are provided in SI Materials and Methods, Fig. S10A, and
a schematic summary in Movie S2. Several topological and spatial metrics
were calculated for the coactivation network, detailed in SI Materials and
Methods. Measures on the coactivation network were compared with the
same measures estimated on random graphs matched for number of nodes,
connection density, degree and weight distributions (47), and on graphs
constructed from random permutations of the BrainMap database (48) (SI
Materials and Methods and Fig. S11).

Characterizing Links of the Network According to Behavioral Domains. For
each edge of the coactivation network, we counted the number of contrasts
in each of five major behavioral domains (action, cognition, emotion, per-
ception, and interoception) that reported coactivation of the corresponding
pair of regions. The frequency of coactivation by each domain was nor-
malized by the total number of contrasts reported in each domain, to mit-
igate possible bias due to the uneven number of contrasts reported across
different domains in the primary literature. Each edge was categorized
functionally by the behavioral domain that was most frequently reported to
cause coactivation of the corresponding pair of nodes. We also estimated the
diversity of contrasts coactivating a pair of regions (Vedge), where values near
zero mean that the edge is only coactivated by contrasts in one domain,
whereas values near 1 describe edges that are coactivated by contrasts in
several domains (SI Materials and Methods).
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Defining Competitive Edges of the Network. We identified a subset of 110
contrasts from 67 studies that used rest or fixation as task control, and that
reported both activations (task > rest) and deactivations (rest > task) for the
same contrast. Each pair of regions activated and deactivated by a contrast
in the primary literature was linked by a competitive edge and the topo-
logical and functional roles of the competitive edges were defined in re-
lation to the topology of the corresponding nodes in the coactivation
network (SI Materials and Methods and Fig. S10B).

fMRI Data Acquisition and Analysis. fMRI data were acquired from 27 healthy
volunteers (mean age, 24 y) using a 3T Siemens Tim Trio systemwhile they lay
quietly at rest in the scanner with eyes closed. Gradient-echo echo-planar
imaging data sensitive to blood oxygenation level-dependent contrast were
recorded for 5 min, 6 s with the following parameters: relaxation time of 2 s;
echo times, 13 and 31 ms; flip angle, 80°; voxel size, 3.5 × 3.5 × 3 mm;
in-plane field of view, 22.5 cm; 36 interleaved slices. Images were slice-time
corrected, realigned, and normalized. Regional mean time series were esti-
mated for each of 638 gray matter regions, corrected by regression for head
movement parameters (rotations and translations in three dimensions and
their first derivatives) and the mean ventricular cerebrospinal fluid time
series, and bandpassed (0.01–0.1Hz). There was no evidence for residual

effects of head movement on these corrected regional mean time series (49)
(SI Materials and Methods and Fig. S12). Pearson’s correlations between
each pair of time series in each individual were estimated, and normalized
by the Fisher transform before averaging over individuals to estimate the
group mean functional connectivity matrix. We then used a global thresh-
olding rule to build a weighted network of the same connection density as
the coactivation network.

Data Availability. The functional coactivation matrix, the group functional
connectivity matrix, and the stereotactically coordinated template used for
brain parcellation, are all freely available for download from the Brain
Connectivity Toolbox (50).
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