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Abstract
Large-scale cancer genomics, proteomics and RNA-sequencing efforts are currently mapping in
fine detail the genetic and biochemical alterations that occur in cancer. However, it is becoming
clear that it is difficult to integrate and interpret these data and to translate them into treatments.
This difficulty is compounded by the recognition that cancer cells evolve, and that initiation,
progression and metastasis are influenced by a wide variety of factors. To help tackle this
challenge, the US National Cancer Institute Physical Sciences-Oncology Centers initiative is
bringing together physicists, cancer biologists, chemists, mathematicians and engineers. How are
we beginning to address cancer from the perspective of the physical sciences?

There is a rich history of the physical sciences contributing to cancer research and treatment.
Max Delbrück, a physicist, was one of the pioneers of molecular genetics. In collaboration
with the biologist Salvador Luria, he showed that phage resistance in a population of
bacteria is caused by random mutations. The equations they developed to model this process
are still used to predict how cancers gradually become resistant to chemotherapy. Francis
Crick and Maurice Wilkins, two physicists, the biologist James Watson and the chemist
Rosalind Franklin discovered the structure of DNA, and thus laid the foundation for cancer
genomics and much of contemporary biology. Indeed, concepts from other fields as wide-
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ranging as agriculture (the seed-and-soil hypothesis1), developmental biology (Folkman’s
antiangiogenesis strategy2) and mathematics (Nowell’s clonal evolution model3 and the
multistep theory of tumorigenesis4,5) are at the core of cancer biology.

Treatments have also been influenced by the physical sciences. Chemotherapy began in
chemistry laboratories, in which chemists sought to develop new dye molecules. Radiation
oncology, which is a cornerstone of cancer therapy, originated from basic physical
chemistry research. Physics and mathematics are central to designing the accelerators that
are used to generate radiation and the algorithms that are used to determine where the
radiation should be delivered and how much radiation should be used. Most recently, the
availability of fairly inexpensive high-throughput sequencing is making it possible to
contemplate highly personalized cancer therapies, in which patients are treated with drug
regimens that are specifically tailored to their disease. In addition to laying the foundation
for new, personalized treatments, these large-scale sequencing efforts have also helped
scientists to delineate the enormous complexity of the disease and the degree to which
signalling, drug resistance and genomic alterations vary from patient to patient and even
within one patient.

This new vista of cancer in all its heterogeneity and complexity suggests additional ways in
which the physical sciences can assist cancer researchers and clinicians. For decades,
physical scientists have been grappling with systems that are composed of many interacting
parts and that exhibit considerable local variation, much like tumours in individual patients.
Entire scientific fields, such as the study of superconductivity and the fractional quantum
hall effect, are devoted to understanding the unexpected things that can happen when large
numbers of simple pieces interact. It is very difficult, or it may even be impossible, to
predict the aggregate behaviour of these systems even if all the laws that are relevant to each
constituent are known. Ultimately, physical scientists were forced to invent a completely
new set of theoretical and computational tools, such as the Monte-Carlo method, to explore
and to simulate systems with many coupled degrees of freedom.

Cancer is perhaps such a system. It has now become clear that cancer is not a strictly
deterministic disease that progresses through a simple, fixed succession of specific
mutations in two or three genes. Rather, there are many molecularly distinct routes to
clinically identical cancers, and the final development of malignancy is influenced by a
multitude of factors, encompassing the immune system, ageing, nutrition and
microenvironmental details within particular tissues. Like other emergent phenomena,
cancer cannot be readily understood by merely characterizing all its components.
Developing a fundamental understanding of cancer that recognizes and embraces the great
heterogeneity of tumours and their emergent properties may benefit from integrated teams of
physicists, cancer biologists, mathematicians and engineers.

In this Review, we provide examples from four broad areas to illustrate the idea of the
physical sciences contributing to cancer biology. These four areas have well-established
clinical relevance, and in each of these areas there is also evidence, owing to decades of
preceding research, that physics, mathematics, chemistry and engineering are able to
contribute, sometimes decisively, to breakthroughs in cancer research. These areas are
cancer mechanics, cancer evolution, information coding and decoding, and transport and
delivery in cancer.

A physicist’s view of cancer mechanobiology
Since Egyptian times6, physicians have noted that tumours are typically harder than the
tissue that surrounds them. This observation gave rise to the word oncology (from the
Ancient Greek ‘onkos’, which means ‘a mass’) and continues to be widely used to detect
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cancers. However, the connections between tissue mechanics, cancer progression and patient
outcomes are only now being established7–9. Much of what we know about the role of
mechanics in biological function (and dysfunction) comes from studies of organ
development10 and the investigation of clinical specimens with new tools such as magnetic
resonance elastography11 and highly sensitive tissue indenters12. Tensile forces within
developing organs are master regulators of cell sorting and packing, thereby specifying
overall tissue architecture. For example, differential cell cortex tension is a key factor in
progenitor cell sorting and thus germ-layer organization13. Tensile forces arise from cell–
cell and cell–matrix adhesion, surface tension, and intracellular molecular machines and
cytoskeletal elements. From the interplay of cell mechanics and geometrical constraints,
constructed by the gene expression of cytoskeletal elements and adhesion complexes,
emerge the approximately 250 distinct cell shapes and sizes found in the human body.

Once a tissue has formed, it remains sensitive to alterations to the shape and mechanics of
all its constituents. Cells change their shape when the subtle balance of forces that define
their shape is modified — this is analogous to how a small stumble can immediately alter,
and can quickly end, a game of tug-of-war. When changes of cell shape and mechanics
spread in a tissue, as is the case in cancer, the organization and shape of the entire tissue is
necessarily altered. Communications between and among cells are mediated through cell
surface receptors and a network of signal transduction reactions. Mechanical forces actively
alter large-scale spatial organization of signalling molecules14, providing a mechanism for
physical forces to directly regulate chemical signal transduction processes. These, in turn,
can activate or repress genes, modifying cell and extracellular matrix mechanics, and so on.

The physics of soap bubbles is a simple starting point for thinking about how cells may
change their shape during tumour progression. Single soap bubbles are spherical, the one
shape that minimizes their surface area and thus their elastic energy. For bubbles, the
principle of energy minimization is equivalent to surface area minimization15. This makes it
possible to precisely calculate the shapes of collections of soap bubbles. Developmental
biologists have recently discovered intriguing similarities between soap bubble
configurations and growing and migrating cells. For example, surface mechanics seem to
mediate pattern formation in the developing Drosophila melanogaster retina16 (FIG. 1).
Despite the enormous obvious differences between soap bubbles and living cells, simple
calculations and simulations invoking only cell–cell adhesion, cell contractility and energy
minimization reproduce the intricate six-cell ommatidium cell clusters that are found in the
D. melanogaster retina17,18. The key equation used in this approach (FIG. 1a) is worthy of
discussion. The first term comes straight out of a physics textbook — from elasticity theory.
The second and third terms relate to the levels and effective stickiness of N-cadherins and E-
cadherins. These two terms blend at least five broad areas of science: genomics, cancer
biology, thermodynamics, soft condensed matter physics, and structural and membrane
biology. Taken together, this then yields the characteristic six-cell clusters of the D.
melanogaster retina17,18. This example illustrates the power of bringing together the
physical sciences and biology. It is tempting to speculate, but by no means proved, that
similar integrated approaches will help to reveal why particular changes to cell and tissue
architecture are so useful for detecting, identifying and staging cancer (FIG. 1b).

Moving beyond the fairly simple D. melanogaster retina to more complicated tissues with
vasculature and dozens of different cell types will require qualitatively different approaches,
some of which still need to be invented. The major issues are that cell–cell and cell–matrix
interfaces are neither uniform nor static, and that there might be multiscale
mechanochemical feedback within tissues, potentially yielding extremely complicated
dynamics. For example, unlike soap bubbles with their homogeneous interfaces, cells and
tissues have complex cell–cell and cell–matrix interfaces that change with time. Each cell
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inside a tissue monitors its surrounding tensile forces and chemicals. Different
mechanochemical inputs to the cell change the genes that it expresses, altering its
cytoskeleton and changing its stiffness. Thus, the global mechanochemical state of a tissue
may modulate the mechanical properties of each of its constituent cells, and these in turn can
initiate mechanochemical state changes that can ripple through the tissue (FIG. 2). This is
perhaps the most difficult challenge in understanding the interplay of cell mechanics,
signalling, genetics and tissue function: how do cause and effect interact in a tissue, when
small changes may be synergistically amplified?

One insight from the physical sciences and neurobiology is that complicated chemical,
physical or biological systems are best approached by tightly integrating manipulation
(where possible), measurement and simulation. Simulations allow powerful experiments to
be designed, and precision manipulation and measurement allow models to be decisively
tested and gradually refined. Implicit in such an approach is that experiments are carried out
in a way that allows error estimates to be assigned to each measurement. For example, in
particle physics, new particles are announced in terms of their sigmas: the probability of
scientists being wrong. Overall, the triad of manipulation, measurement and simulation
allows physical scientists and engineers to simulate the Earth’s global climate with
increasing reliability, investigate the time evolution of the universe, and design and flight-
test aircraft purely in silico. This approach is also showing impressive results in systems and
synthetic biology19.

Another insight that is relevant to cancer mechanics is the utility of measuring system
dynamics, which stems from the fundamental link between the forces that drive a system
from one state to another and the dynamics with which that change takes place. A good
example is an electron moving through space. A single picture of this process, however
detailed, contains little information beyond revealing the presence of the electron. By
contrast, a movie of this process allows the forces that control the motion of the electron to
be accurately inferred; this is how electrodynamics, the theory of charge, light, radio waves
and electricity, was developed. Essentially, all known physical laws were discovered by
watching how things move, whether they are planets or atoms. In a cancer mechanics
context, the ideal experiment would be to watch the cell boundaries within a living tumour
and its surrounding tissue move with great accuracy and over long time periods. Such a
movie could then be inverted to reveal the alterations of the normal cellular ‘tug-of-war’ that
take place in a tissue during carcinogenesis and subsequent metastasis. However, this
inversion will require the generation of new and complex mathematical models.

A final consideration is the value of simultaneously determining correlations among many
parameters. For example, perturbing a cell and then quantifying the degree to which the
fluctuations in the concentration of, or the location of, two or more proteins are correlated
can reveal important information about signalling network topology, feedback loops and the
role of noise in gene expression19,20. The cancer research literature still features reports of
single genes or proteins that are asserted to cause cancer. The flood of results from the
cancer genomics and cancer systems biology efforts makes one wonder, however, about the
actual utility of relating any one isolated gene or protein to the disease. A new generation of
measurement technologies that are able to simultaneously measure many cellular and tissue
parameters, thereby relating them and thus allowing cause and effect to be distinguished,
would be of great use. Imagine, for example, being able to mechanically manipulate cells
within a tissue and then following the activity of all 50-plus proteins of the RAS effector
pathways within single cells and thus seeing how the network is influenced by local
mechanics and how it might work around a mechanically induced or a drug-induced
reduction of kinase activity.
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So far, we have been emphasizing the role of mechanics in development and disease, and we
have also tried to provide a glimpse of related ideas that may be useful for cancer research.
This is only one small part of a much larger puzzle. An equally important way to approach
cancer is by studying how it evolves, as this reveals the physiological, mechanical, genetic
and biochemical forces that guide the disease and its progression.

Evolution and evolutionary theory of cancer
Tumours result from evolutionary processes within tissues3,21–25. From an evolutionary
standpoint, tumours can be regarded as collections of cells that accumulate genetic and
epigenetic alterations, which are then subjected to the selection pressures operating on the
cells that harbour them. These alterations have heritable effects on the fitness of cells and
may thus lead to rapid increases or decreases of mutant clones within the tumour26,27.
Beneficial alterations can generate adaptations, such as an increased growth rate, motility
and ability to invade into surrounding tissue, as well as the induction of angiogenesis and
evasion of the immune system. The fitness of a tumour cell thus results both from the
accumulation of alterations and from the interaction with cells and other components of its
microenvironment. Changes that are beneficial to the cell are normally detrimental to the
organism and thus neoplastic processes are an example of conflicting selection acting on
different hierarchical levels28: evolution and natural selection generally lead to increased
proliferation, survival and evolvability on the cellular level and results in progression,
invasion and resistance. Selection at the level of organisms and genes has led to the
evolution of oncogenes and tumour suppressors in the genome23,29.

Viewing neoplasms as a result of evolutionary forces operating on tissues within
multicellular organisms provides physicists, mathematicians and population geneticists with
an opportunity to use their tools to describe the evolution and ecology of cancer cells with
mathematical constructs. Such theoretical modelling, together with the principles of
evolutionary biology, has been successfully used to study the mechanisms and dynamics of
tumour initiation4,5,30,31 and progression32,33, as well as the response to treatment and the
emergence of resistance34–36. For example, an interest in understanding and preventing the
evolution of resistance against anticancer therapy has inspired the development of several
mathematical approaches. Coldman and co-authors pioneered the field by introducing
stochastic models of resistance to chemotherapy to guide the selection of treatment
schedules35,37. The thought process introduced by these investigators was later applied to
study the risk of pre-existing resistance38–41, resistance emerging during treatment39,40,42

and the optimal scheduling of treatment administration under various circumstances43–47.
Related efforts have led to such seminal results as the discovery of tumour suppressor
genes30,48 and the multistage theory of carcinogenesis4,49.

The recognition of cancer as a disease that is caused by the accumulation of several somatic
alterations has motivated recent large-scale efforts to annotate the cancer genome and
epigenome for many human cancers50–52. When combined with computational approaches
that can distinguish significant, recurrent events from the background noise in high-
resolution data sets, these cancer genome and epigenome surveys yield molecular portraits
that are specific for each cancer type and consistent across multiple sample sets in that they
uncover a subset of events in many samples of the same cancer type53,54. These emerging,
large cross-sectional data sets are the basis for investigations by computational biologists,
physicists, mathematicians and evolutionary biologists to address a multitude of questions
about the generation and persistence of genetic and epigenetic alterations in cancer. Here,
we summarize two recent advances in a mechanistic understanding of these alterations —
one addressing the propensity of genetic alterations to arise at particular loci in the genomes
of evolving cancer cells, and the other concerning the deduction of the temporal order in
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which genomic alterations arise during tumorigenesis using evolutionary mathematical
approaches.

Which factors determine the mutagenic potential of the genome?
An unstable genome is a hallmark of many cancers55. The mechanisms of the generation of
genomic variation, however, have not yet been entirely elucidated. It is unclear, for example,
whether some mutagenic features that drive somatic alterations in cancer are encoded in the
genome sequence or whether they can operate in a tissue-specific manner. Therefore, a
genome-wide analysis of the properties associated with DNA breakpoints that are related to
somatic alterations in cancer is of fundamental interest for many areas in biology, including
cancer genomics, genome informatics and evolution.

Many exogenous and endogenous factors, as well as molecular mechanisms, can cause
double-strand breaks and erroneous DNA repair, leading to genomic alterations in cancer
genomes56–58. Under certain circumstances, DNA can adopt non-B conformations, which
can similarly contribute to DNA damage59–61. Guanine-rich sequences
(G3+N1–7G3+N1–7G3+N1–7G3+) can adopt four-stranded structures called G-quadruplexes
(G4s)62–64. As these sequences occur frequently in the human genome, they could
potentially contribute to DNA damage in multiple areas of the genome. Indeed, G4
structures have the potential to obstruct the movement of DNA polymerase65, thereby
increasing the risk of DNA breakage or of non-allelic homologous recombination. A recent
genome-wide analysis of DNA breakpoints that are associated with somatic copy number
alterations (SCNAs) from 2,792 cancer samples classified into 26 cancer subtypes led to the
identification of SCNA hotspots66. Despite a subset of these hotspots being present in the
genomes of apparently healthy individuals, this investigation uncovered that G4 structures
could be causally implicated in genomic instability and the generation of DNA breakpoints
in cancer. The genomic alterations that were associated with DNA breaks had a strand-
specific pattern that was consistent with a causal role of G4 structures in their generation.
An analysis of methylation data from several different tissue and cancer types subsequently
led to the finding that abnormal hypomethylation in genomic regions that are enriched in G4
sequences is likely to be a key mutagenic factor that is associated with tumorigenesis. These
findings are consistent with observations that G4 structures are implicated in germline
deletion67–68 and recombination69 events. These studies suggested a mechanistic model for
the generation of tissue-specific mutational landscapes in cancer, showcasing the ability of
computational approaches, together with modern cancer data sets, to provide mechanistic
insights into the evolution of cancer genomes.

The temporal order in which genomic alterations arise during tumorigenesis
These emerging, cross-sectional cancer data sets have also recently been linked to a novel
evolutionary approach for predicting the temporal order of somatic events that arise during
tumorigenesis. Knowledge of this temporal order helps to guide the generation of the correct
genomic context in animal models of human cancer, and aids in prioritizing the validation of
potential drug targets, as changes that occur early in malignant transformation may result in
the rewiring of the signalling circuitry or may confer a state of addiction to the new signal.
A novel evolutionary approach, called retracing the evolutionary steps in cancer (RESIC)70,
determines the sequence of genetic events using cross-sectional genomic data from a large
number of tumours.

RESIC is based on the principles of population genetics71 (BOX 1). RESIC predicts the
distribution of patients across possible mutational states that are defined by specific
genotypes; this distribution is then compared with the numbers of clinical samples that
contain the corresponding genotypes. This mapping is used to optimize the evolutionary
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parameters by minimizing the difference between the predicted and the observed frequencies
in the data set. The output of RESIC is given as a percentage of the flux through the network
through each particular evolutionary path, thus specifying the temporal sequence of somatic
alterations in cancer samples.

Box 1

Retracing the evolutionary steps in cancer (RESIC)

Consider a population of N cells at risk of accumulating the genetic changes that lead to
cancer. Cells proliferate according to a stochastic process: at each time step, a cell is
chosen that is proportional to fitness to produce a possibly mutated daughter cell.
Subsequently, another cell is chosen at random to die, and is replaced by the newly
produced cell to maintain homeostasis. A mutated cell can take over the population (that
is, reach fixation) or go extinct owing to stochastic fluctuations (see the figure). If the
population size is smaller than the inverse of the mutation rate, then at any time, there are
at most two types of cells in the population: type i and type j. Cells of type i differ from
cells of type j by only one genetic alteration. Their respective fitness values (that is,
growth rates) are denoted by ri and rj. The rate at which the population transitions from
state i to state j is given by mi,j = Niui ρ(ri,rj), where ρ(ri,rj) = [1–1/(rj/ri)]/[1–1/(rj/ri)Ni], if
ri ≠ rj, and ρ(ri,rj) = 1/Ni, if ri = rj. Depending on the order of appearance of alterations,
the population follows different evolutionary paths towards the fully mutated state (part
a).

Cancers are considered to originate from a single population of cells per person. Using
this model, we study the evolutionary dynamics of individuals accumulating the
mutations leading to cancer (part b). We consider the dynamics of patients in steady
state: there is a constant influx into the unmutated state, representing diagnosis of
disease, and a constant outflux from the fully mutated state, accounting for diagnosis and
deaths of patients or their cure. The evolutionary dynamics of a population is described
by X = XM + F, where the vector X(t) consists of the frequencies Xi(t), the matrix M
contains the transition probabilities mi,j, and F = (f,0, …–f) represents the influx into the
initial node and outflux from the fully mutated node. At steady state, the population is
distributed across all possible states; this steady state distribution can be compared with
the numbers of clinical samples that have the corresponding genotypes, where the total
number of patients in a data set is equal to the sum of patients in all states (part b). This
mapping is used to optimize a subset of parameters in the mathematical model (that is,
the fitness values of cell types) by minimizing the difference between the prediction and
the observed frequencies in the data set. Other parameters, such as cellular population
size, mutation rate and influx rate, are estimated from experimental results and tested for
robustness over several orders of magnitude. The output of RESIC is given as the
percentage of flux through the network via each particular path, and can be used, together
with cross-sectional cancer genome profiling studies, to identify the temporal sequence of
events arising during tumorigenesis (part c).
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The established sequence of genetic events arising during the multistep process of colorectal
carcinogenesis72, neurofibromin (NF1)-driven primary glioblastoma73 and secondary acute
myeloid leukaemia74 provided an opportunity to validate the ability of RESIC to recover the
orders of events from cross-sectional data sets70. This methodology was also applied to a
large, integrated genomics data set of primary glioblastoma samples53. First, areas of
significant gene copy number alterations were identified using Genomic Identification of
Significant Targets in Cancer (GISTIC)75, and then alterations that were significantly
positively correlated with each other were selected for further analysis; correlations between
alterations are a prerequisite for the methodology, as the determination of an order of
oncogenic events is only meaningful for those events that co-occur sufficiently often. This
approach determined that homozygous deletions of the CDKN2A locus (which encodes
INK4A and ARF) frequently co-occur with epidermal growth factor receptor (EGFR) and
PTEN alterations (P value < 10–8) in primary glioblastoma. When studying this mutational
network, RESIC predicts that the most common early alterations are EGFR low-level
amplification and CDKN2A deletion, which have a similar likelihood of occurring.
Although there is no single most frequent path through the network, the frequency of paths
concluding with high-level amplification of EGFR is highest; the second most frequent final
event is homozygous CDKN2A deletion70. These data suggest that glial progenitor cells can
tolerate full EGFR activation only after the inactivation of CDKN2A or PTEN. This result
agrees with the fact that EGFR overexpression is insufficient for tumorigenesis in mouse
models of glioblastoma76,77, providing support for the temporal order of events predicted by
RESIC.

Evolutionary methods of analysis such as the ones presented here will provide the research
community with tools for the identification of tumourinitiating events using modern cancer
genome and epigenome data sets; furthermore, such frameworks of tumorigenesis will help
with the generation of hypotheses that can be tested using transgenic mouse models of
human cancer. Many opportunities exist to use evolutionary approaches to further our
knowledge of cancer initiation, cancer progression, the response to treatment and therapeutic
resistance.

Information coding and transfer in cancer
Current thinking in information coding and decoding in biological systems generally implies
a one-way information flow — from DNA to transcribed RNA to translation to protein.
Recent studies in developmental biology and epigenetics, however, have demonstrated that
this information can flow in both directions, and that this flow can be influenced by external
physical forces, even if the underlying DNA sequence remains unaltered. It is becoming
increasingly clear that this biological information system is not only made up of two-way
communication, but that feedback loops, inter-connectivity and modulation by external
environmental forces also introduce a previously unappreciated level of complexity.
Moreover, studies are revealing that new kinds of biological information exist, ranging from
genetic information that is encoded in the mechanical properties of DNA, to information in
protein sequences that control the lifetime and post-translational processing of the protein.
This complexity represents an opportunity for physicists, chemists and engineers to work
together and has led to studies at the interface of physical science, genetics and oncology.
These investigations are yielding rapid advances in our understanding of chromosome
structure and function at multiple length scales and are shedding light on gene regulation in
normal health and development, which in turn may help to explain, diagnose and treat gene
misregulation in cancer. Here, we summarize two of these advances — one concerning
fundamental physical chemistry in gene regulation that is related to the lowest levels of
chromosome structural organization, and the other concerning a novel cancer diagnostic
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technique that seems to be measuring aspects of the highest levels of chromosome
organization.

Sequence-dependent DNA mechanics, nucleosome positioning and gene regulation
An especially active research area concerns the rules governing the most fundamental level
of chromosome architecture78, in which short stretches of DNA (147 bp) are wrapped
locally in ~1.75 turns around octameric cores of his-tone proteins, creating nucleosomes79.
Nucleosomes are separated from each other by ~10–50 bp stretches of unwrapped linker
DNA; thus, only 75–90% of eukaryotic genomic DNA is wrapped in nucleosomes. DNA
that is wrapped in nucleosomes is sterically occluded from most other DNA-binding
proteins, and moreover is sharply distorted away from the DNA conformations that are
favoured by most other proteins80. Consequently, the placement of nucleosomes along the
DNA profoundly influences essential DNA interactions, such as gene regulation,
transcription, replication, recombination, chromosome breakage, retroviral and transposon
integration sites and DNA repair81–92.

It is perhaps not surprising, therefore, that recent studies have shown that nucleosome
positioning is tightly regulated, and that there is an additional layer of genetic information,
superimposed or multiplexed directly on top of other kinds of regulatory and coding
information, which functions to bias where nucleosomes can be located along the DNA. The
nature of this information lies in the sequence-dependent mechanics of DNA93. Different
DNA sequences differ greatly regarding the ease with which they can bend around a
nucleosome94,95, conferring differences of many thousand-fold or more on the affinity of
nucleosomes for one DNA sequence versus another96. The concentration of nucleosomes in
the cell is kept below 100% saturation of the genomic DNA, and thus different regions of
DNA compete for nucleosome occupancy. DNA sequences can dictate which DNA regions
will compete well for nucleosomes and have high intrinsic nucleosome occupancy, and
which will not. Like transcription factor binding sites, natural genomic nucleosome
positioning sequences are not determined purely through highest possible affinity96,
allowing degeneracy in the choice of DNA sequence used. Thus, the degeneracy introduced
by variations in the genetic code, transcription factor binding sites and the mechanical
constraints of the nucleosome DNA sequence preferences97,98 allow the preferential
locations of many nucleosomes to be specified alongside DNA coding and conformation
changes that constitute genetic information and conventional gene regulatory information.

Approaches that are more commonly used in the physical sciences are contributing to this
work in two ways. Diverse new experimental studies99,100 and theoretical studies, ranging
from atomic101 to multi-scale102 and mesoscopic97,98,103, seek to measure and explain the
sequence-dependent mechanics of DNA, with the goal of being able to predict the influence
of the genomic DNA sequence on nucleosome formation and on the stability or occupancy
of other structures involving tightly bent DNA (such as, numerous sharply looped gene
regulatory complexes) from first principles.

Additionally, physical science tools have already enabled advances in predicting important
aspects of nucleo-some organization in vivo, using phenomenological definitions of the
nucleosome DNA sequence preferences that have been obtained in direct binding
experiments104. This prediction problem is complicated by the combination of the high
concentration of nucleosomes along the DNA and the physical reality that nucleosomes
cannot overlap along the DNA in any one cell at any one point in time. The problem is that
where any one nucleosome resides along the DNA not only partly depends on the DNA
sequence inside that nucleosome, but also on the positions of the neighbours of that
nucleosome; however, where those neighbours are not only depends on the DNA sequences
inside them, but also on where their neighbours reside — and so on, out to the ends of the
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chromosome. If nucleosomes occurred only rarely along the DNA, then one might be able to
ignore the problem, as the chances of two favoured nucleosome locations overlapping on the
DNA might be very low. This is the case in typical analyses of transcription factor binding
sites, for example, as the recognition sites for any given transcription factor are typically
sparsely distributed along the genome. But for nucleosomes this is definitely not the case;
some sort of ‘holistic’ theoretical approach is required, which solves the nucleosome
distribution problem for an entire chromosome all at once.

The assembly of nucleosomes in vitro from purified components104 has identified the
sequences to which nucleosomes are more likely to bind. This information specifies an
effective potential for a nucleosome to start at each basepair along the DNA. But calculating
where the nucleosomes will actually be is complicated by competition between
nucleosomes, which occupy space and cannot overlap. If one poses the hypothesis that
nucle-osomes equilibrate their locations along the DNA — a conjecture that could at best be
only approximately true — then this problem reduces to a famous problem in statistical
mechanics, namely that of a one-dimensional solution of hard rods in an external potential,
and thus can be approximately solved by Monte Carlo methods105 or exactly solved by
numerical integration106, recursion107 or dynamic programming78,97 (BOX 2). The solution
of these equations yields the probability of a nucleosome starting at each basepair, and the
probability that each basepair is covered by any of the 147 different nucleosomes that could
potentially cover it (as each nucleosome covers 147 bp). The solution bears a striking
resemblance to the locations of nucleosomes genome-wide (and a highly significant
genome-wide correlation) measured in vivo, suggesting that the assumptions made in the
theoretical analysis could be reasonable.

Box 2

Nucleosome positioning

Following the recursive approach, one defines a potential Vn for a nucleosome located at
basepair n, Vn = −kBT0 ln Pn, where kB is Boltzmann’s constant, Pn is the likelihood of a
nucleosome starting at basepair n in the absence of nucleosome–nucleosome interactions,
given by a Markov model used to specify the intrinsic DNA sequence preferences of the
nucleosome 78,104 and T0 is the reference temperature at which the Markov model is
defined. Thus, the likelihoods given by the nucleosome–DNA interaction Markov model
are treated as an apparent free energy landscape onto which nucleosomes will be placed
at equilibrium subject to the rule that they cannot overlap in space and time.

One then defines a recursion relation (see equation 1):

(1)

where μ is the nucleosome chemical potential (related to the nucleosome concentration
(c) by μ = μ0 +kBTln (c), where μ0 is a constant) and the Hn are given by equation 2:

(2)

for a nucleosome occupying (excluding another nucleosome for a length of) a basepairs.
The Hn capture the different ways a given site can be blocked by neighbouring
nucleosomes. One initiates the recursion by forbidding a nucleosome from occupying
less than length a basepairs at the right-hand end of the DNA, setting the Hn values for
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those a–1 basepairs = 1. One then solves equations 1 and 2 iteratively from large to small
n. The probability ρn of a nucleosome starting at each basepair n is then given by
equation 3:

(3)

which is solved iteratively from small to large n. Finally, the occupancy σn of a given
basepair by any of the a nucleosomes that potentially occlude it is given by equation 4:

(4)

Of course, the real problem in the cell nucleus is not simply one of nucleosome positioning;
rather, there is an ongoing dynamic competition between nucleosomes and changing
constellations of transcription factors and other DNA binding proteins, each seeking to bind
to favoured sequences along the DNA. Transcription factors may have high sequence
specificity but they are present at fairly low concentrations, whereas nucleosomes may have
lower specificity but are present at high concentrations, and thus both make important
contributions to the outcome. In a sense, therefore, the genome sequence is specifying how
this dynamically evolving competition will play out.

Similarly, it can be assumed that the nucleosomes and changing sets of competing factors
approximate a distribution equilibrium for any given window of time (that is, for any given
set of competing factor concentrations), and the statistical mechanics model summarized in
BOX 2 can be generalized to allow for competition not just between nucleosomes, but also
between one or more different transcription factors with each other and with
nucleosomes108. This problem can again be solved exactly by using dynamic
programming97,109. An example of the competition of nucleosomes with themselves and
with a single factor binding at two nearby sites is shown in FIG. 3. In this model,
nucleosomes reconfigure in response to changing transcription factor concentrations simply
because of the changing nature of the competition. The transcription factors influence the
resulting distribution of nucleosome locations and occupancies, while the nucleosomes
equally influence the distribution of bound transcription factors, as well as the occupancies
of the transcription factors110.

By complementing such an analysis of nucleosome and transcription factor binding
configurations with information relating transcription factor binding and the eventual
transcriptional output, it might be possible in the future to predict the transcriptional state of
many genes in a cell given only the genomic DNA sequence, concentrations of key
transcription factors, and the known sequence preferences of those transcription factors108.
Such a predictive ability would in turn be valuable for understanding how a normal cell is
transformed into a malignant one, and conversely, how a malignant cell might be
transformed back into a non-malignant one. Currently, however, other outstanding issues
remain, most notably, the extent to which these models will predict biological reality, as
determined by experiments.

Higher order chromosome structure and novel cancer diagnostics
At the other, highly compacted, end of the structural hierarchy of the chromosome, little
detailed structural information is currently available111, but there is great potential for
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important advances to be made from using approaches that are commonly used in the
physical sciences. Indeed, methods from the physical sciences are already being used in
cancer diagnostics.

Partial wave spectroscopy (PWS)112 takes advantage of the field effect, in which apparently
normal cells, which are distant from a cancerous or potentially precancerous lesion, can
develop anomalous properties that may be detectable even in the absence of knowledge
regarding the exact location of the lesion itself (FIG. 3). The PWS experiment yields a
signal, the magnitude of which can be a highly sensitive and specific predictor of the
existence of a cancerous lesion some distance away in the body. This approach has great
potential in the diagnosis of cancers, such as those of the colon, lung and pancreas, for
which existing diagnostics are ineffective, unpleasant or have a substantial risk of
complications. Although PWS was initially developed as a purely phenomenological
indicator, its striking preliminary successes have heightened interest in better understanding
the underlying physical and biological changes that it monitors. Quantitative studies on
patient samples versus normal controls have shown that increased PWS disorder strength in
cells that are distal to a cancerous lesion is a strong indicator of the existence of a
lesion112,113. However, the PWS technology has not yet been applied to problems of
distinguishing pre-malignant from malignant disease, which is an important goal of future
studies.

PWS measures the refractive index, which is related to the polarization of molecules, and in
turn is related to electron density. Of the main macromolecular constituents of a cell with
amounts that might plausibly have significant variability on subwavelength length scales,
nucleic acids and phospholipids stand out by virtue of having fairly high amounts of the
electron-rich element phosphorous. Chromatin in particular is both highly phosphorous-
enriched and highly heterogeneous in subcellular (and subnuclear) distribution, with notable
regions of high local chromatin concentration observed cytologically as dense
heterochromatic regions. Hence, one expects that dense nucleic acid-containing
superstructures, such as large-scale regions of compact heterochromatin, might dominate the
PWS disorder strength measurement.

Consistent with this expectation, direct tests show that both the nucleus and the cytoplasm
contribute to the measured disorder strength, but that the nuclear contributions dominate114.
Certainly within the nucleus, one expects chromatin structure to dominate refractive index
inhomogeneities and so the PWS disorder strength115.

Therefore, for the case of PWS, physical science approaches have already made a valuable
contribution to cancer diagnostics. This approach potentially provides diagnostic sensitivity
and specificity in many cancer types that are comparable to or better than those that are
presently available using much more invasive tests. PWS should also help in understanding
the intracellular organization of chromatin, a problem that has resisted a definitive solution
for many decades. Much anecdotal evidence suggests that there is a relationship between
higher order chromatin compaction and transcriptional repression. Advances using PWS
spectroscopy as a discovery tool, together with other approaches from physical sciences
ranging from micromechanical studies on whole chromosomes, to novel imaging modalities
such as super-resolution optical microscopy and electron microscopy using engineered
nanoparticle markers, will probably shed much light on this longstanding problem in
fundamental molecular biology. Furthermore, a better understanding of the chromatin
organization and how it relates to the PWS disorder signal may in the future lead to further
refinement of this promising diagnostic tool.
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Deconvolving cancer complexity
Complex systems represent major areas of study for physical scientists. Fundamental
insights from areas such as thermodynamics, fluid and classical mechanics, in combination
with advanced computational visualization and simulation, could potentially aid in
understanding cancer. Genomic instability is a fundamental characteristic of cancer,
inherently variable between patients even with nominally the same disease and during
cancer progression within the same patient116. The current clinical taxonomy of cancer
technically defines more than 200 types, but closer inspection reveals that cancers are like
‘malignant snowflakes’, with no two cases identical at the cellular level117–119.
Heterogeneity is higher in tumour types that originate later in life and increases during
tumour progression120,121. As is particularly evident in pancreatic cancer122, tens or
hundreds of different diseases coexist within the same person with metastatic dis- ease, with
each metastasis having a distinct genetic profile and distinct signalling pathways, growth,
interaction with the microenvironment and response to treatment.

Non-genetic and extrinsic factors greatly add to the complexity of cancer: the stochastic
partitioning of proteins during cell division, which generates randomness in protein
abundance123; epigenetic heterogeneity including DNA methylation, histone modifications,
nucleosomal occupancy and remodelling, chromatin modifications and remodelling, non-
coding RNAs124 and proteomic profiles125; microenvironmental heterogeneity between
cancer types and metastases126, as well as within a single tumour; and the macroscopic
heterogeneity of the patient, including age, gender, weight, immune status, lifestyle and
mental health.

Faced with this overwhelming diversity, medicine has not substantially advanced in the
treatment of metastatic cancer — and perhaps it never will, unless the root causes of this
heterogeneity are clarified. Complexity theory in mathematics and physics is defined by the
quest to understand and predict the emergence of order and structure in complex and
apparently chaotic systems, such as turbulent flows. A major advance in breaking the overall
problem into more manageable pieces lies in the answer to the question of what defines a
cancer. Six fundamental, distinct hallmarks have been proposed55. It is possible that cancer
can be understood in terms of these hallmarks, which is akin to resolving a six- dimensional
vector into components along six coordinate axes. However, each ‘axis’ further comprises a
limited number of mutated genes that define pathological pathways127. This is accompanied
by the heterogeneity of genetic mutations even in two nominally identical tumours, owing to
a large number of infrequently mutated genes, which may be crucial drivers of the
development and the progression of tumours128. Systems biology129 offers a promising
approach to the organization of genomic data into quanta of biological order, and
information on molecular circuitry connecting cellular pathways and diseases states130. The
quest for intelligible underlying structures in cancer to which complexity theory could be
applied can be thought of as the search for ‘super-genes’ that are shared among cancer types,
which form 3–5% of the mutated gene population, and which affect the key pathways in
which the other mutations tend to cluster127,128. Even with this approach, the assessment of
cancer complexity challenges our optimism about finding cures with the currently available
molecularly targeted therapeutic approaches127,131,132.

The conventional approach to metastatic disease, which is what kills most cancer patients,
involves the use of systemically administered agents, in the form of chemotherapy,
radiotherapy or biomolecularly targeted therapeutics that have the capacity to reduce the
selective fitness advantage of metastasizing and/or metastasized cells. Such chemical and
biological agents are expected to simultaneously carry out a triad of functions: transport
from the point of administration to the intended cancer target sites, preferential accumulation

Michor et al. Page 13

Nat Rev Cancer. Author manuscript; available in PMC 2013 July 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



at these target sites and preferential cytotoxicity or cell signalling modulation. The failure to
treat metastases stems from the failure to develop agents that are capable of reducing the
reproductive success of metastatic cells, as well as the failure to address the three functions
simultaneously, for all different presentations of the disease within a patient at any given
time. One ‘blind spot’ has been the physics of mass and momentum transport. This is a
starting point for a different perspective on cancer, termed Transport OncoPhysics133. This
approach aims to reduce the complexity of apparently disparate biological hallmarks to the
unifying notion that these hallmarks all reflect the deregulation of mass transport. In this
framework, cancer is viewed as a disease of mass transport deregulation at multiple scales
— bridging the molecular to the cellular, the microenvironmental, organ and organism
levels (FIG. 4). An intriguing view emerges of a family of diseases characterized by
pathological disruptions of mass transport, in hierarchically nested systems. For example,
the defining aspect of malignancy, tissue invasion, is mass transport deregulation at the
interface between the cell and the microenvironment. Metastasis defines the transition to
lethality, and is a deregulation of local and distant cellular transport at the scale of the
organism. Tumour-associated angiogenesis completely overhauls microenvironmental mass
transport, and is another prime example of transport deregulation. The signalling pathologies
that accompany the evasion of apoptosis, growth signal dependence and growth inhibitory
messages from the immediate environment are also disruptions in molecular transport — for
molecular signalling occurs by the transport of signalling molecules.

To verify or disprove the Transport OncoPhysics approach, several concurrent, novel
investigational modalities and tools are required, which are based on mathematics and the
physical sciences: a multiscale mathematical theory of mass and momentum transport
through the body; multiscale imaging that enables the tracking of mass transport in living
organisms, with integrated resolution from subcellular to full body levels; and multiscale
probes, in conjunction with imaging techniques, to determine the transport properties at
various levels, as functions of the characteristics of the transported object. In the Center for
Transport OncoPhysics, within the US National Cancer Institute’s Physical Sciences-
Oncology Centers initiative134, we have focused on all three of these enabling aspects (the
multiscale modelling of cancer growth and multiparameter response to therapy135,136;
multiscale imaging137; and multiscale probes138), which also provide specific vectoring
across biological barriers to target lesions139, yielding novel mechanisms of transport,
accumulation and the release of the therapeutic payload. These have resulted in
unprecedented therapeutic results140,141 through the use of systems of nested (multistage)
particles, designed with explicit consideration of the physics and mathematics governing the
convection, margination, adhesion and cellular uptake of the particles142–145. Once the
physical laws of transport are determined, their parameters for individual lesions can be
obtained from direct observation through suitable imaging techniques. Among these
parameters are the blood flow velocity, shear stress at the vascular wall, vascular
permeability and the density of the specific antigens of interest that are expressed on the
vascular endothelium. Once these are observed, the mathematical routines for the rational
design of particulates can be used to yield therapeutic systems that are individualized for the
specific lesion — not only in the therapeutic payload but also in the therapeutic delivery
vector itself. This opens new frontiers for the idea of personalized therapy.

Conclusion and outlook
The physical laws and principles that define the behaviour of matter are essential for
developing an understanding of the initiation and progression of cancer at all length scales.
The theoretical approaches that enable the definition of behaviour within complex systems
offer opportunities for new insights into long-standing problems in cancer research. For
example, the metastatic process, the generation and maintenance of heterogeneity within and
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among tumours, the emergence of drug resistance and the ecological behaviour of cell types
with differing reproductive fitness and degrees of drug sensitivity, and the delivery of
therapeutics to the core of a tumour, as well as its distant metastases, will all benefit from an
application of physical science approaches to oncology — from mechanics to evolution,
chemistry and nanotechnology. Thus, the successful integration of approaches from
mathematics, physics and engineering with cancer biology may be our best hope to
understand complex systems such as cancer and to develop effective strategies for a cure.
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Glossary

Superconductivity A phenomenon of zero electrical resistance occurring in certain
materials below a characteristic temperature

Fractional quantum
hall effect

A property of a collective state in which electrons bind
magnetic flux lines to make new quasiparticles, and excitations
have a fractional elementary charge

Monte-Carlo method A technique in which a large quantity of randomly generated
numbers is studied using a probabilistic model to find an
approximate solution to a numerical problem that would be
difficult to solve by other methods

Coupled degrees of
freedom

The number of values in a study that are free to vary but that
are constrained to vary together

Emergent phenomena Complex systems and patterns that arise from a multiplicity of
relatively simple interactions

Elastic energy Energy stored in the configuration of a physical system as work
is carried out to distort its volume or shape

Population genetics The mathematical study of the dynamics of genetic variation
within populations

Mesoscopic A subdiscipline of condensed matter physics that deals with
materials of an intermediate length scale, between the size of a
quantity of atoms (such as, a molecule) and of materials
measuring microns

Probes Nanoparticles or macromolecules that test the transport
properties of tissues and biological barriers

Delivery vector A carrier nanoscale or microscale particle, for injection in the
systemic circulation, that encapsulates anticancer therapy, and
delivers it preferentially to target tissue
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At a glance

• Approaches from the physical sciences can contribute to the rate at which
powerful new diagnostic tools and therapies can be discovered and brought into
the clinic. We provide examples from four areas to describe how teams of
physical scientists, cancer biologists, clinicians and cancer advocates are
tackling cancer from the perspective of the physical sciences.

• The principles of evolutionary biology can be used to study the mechanisms and
dynamics of tumour initiation, tumour progression, the response to treatment
and the emergence of resistance. For example, large-scale cross-sectional
genomic data sets can be combined with novel evolutionary approaches to
predict the temporal order of somatic events that arise during tumorigenesis.
Such knowledge helps to guide the generation of the correct genomic context in
animal models of human cancer and helps to prioritize the validation of potential
drug targets.

• DNA in vivo is often sharply distorted away from the canonical Watson – Crick
structure; different DNA sequences vary greatly in the ease with which such
sharp distortions can be accommodated. Most of the eukaryotic genomic DNA
is bent around histones to form nucleosomes. The capacity of the DNA
sequence to undergo such distortion can influence the specific preferred
locations for many of the nucleosomes.

• The existence of a cancerous lesion can sometimes be detected through the
analysis of the altered behaviour of cells that are located substantial distances
away from the primary lesion, a phenomenon that is known as the ‘field effect’.
Partial wave spectroscopy takes advantage of the field effect to allow for the
sensitive and specific detection of cancers in tissues that are difficult to reach.

• Cancer is an extraordinarily complex disease. Methods that are commonly used
in physics can reduce the complexity of cancer to a manageable set of
underlying principles and phenomena. In particular, Transport OncoPhysics
views cancer as a disease of multiscale mass transport deregulation involving
the biological barriers that separate different body compartments. Probes that
can be used to investigate the mass transport properties of tissues can be used as
directed vectors for the localized, preferential release of therapeutics into
tumours.
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Figure 1. Similarities among soap bubbles, cells in the Drosophila Nature Reviews eye and loss of
Cancer tissue organization in cancer
The normal ommatidium structure within the Drosophila melanogaster retina is shown (part
a). Note the beautifully regular pattern of six cells, four in the middle and two around, which
constitutes the basic organizational unit. The geometry of the ommatidium mirrors that of
four soap bubbles (part b), suggesting that surface tension has an important role in defining
the shape of the ommatidium. Cells misexpressing N-cadherin are marked with green
fluorescent protein (GFP; false-coloured purple) (part c). Cell outlines are visualized with
fluorescent E-cadherin (green). A simplified form of an equation is shown, which was used
by Hilgenfeldt et al.18 to model the interplay of physics (for example, membrane mechanics)
and biology (for example, N- and E-cadherin levels). Kronecker delta function terms
representing homophilic interactions are not shown for clarity. Equation terms are explained
in the text. Alterations in cell and tissue architecture in colorectal cancer are shown (part d).
The arrows represent normal and dysplastic crypts (with diameters of 75 microns and 150
microns, respectively). Parts a–c are reproduced, with permission, from REF. 16 (2004)
Macmillan Publishers Ltd. All rights reserved. Part d is courtesy of B. Vogelstein, John’s
Hopkins University, USA.
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Figure 2. Tissues are complex dynamic systems that feature multiscale mechanochemical
coupling
Progress has been made particularly in delineating the molecular mechanisms of force
generation by the cytoskeleton, the details of cell–cell adhesion and force sensing by
proteins such as talin 1 and vinculin. However, mechanical effects in biology are inherently
multiscale, in the sense that single cells can generate stresses and strains that contribute to
the mechanics and the organization of entire tissues, and in turn, millimetre-scale tension
fields within tissues can provide signals that are sensed by potentially millions of cells
within that tissue. Understanding this interplay will require new types of experiments that
can interrogate all relevant scales simultaneously, and broad conceptual and theoretical
advances. ECM, extracellular matrix; FAK, focal adhesion kinase; P, phosphorylation;
ROCK, Rho-associated, coiled-coil containing protein kinase; SFK, SRC family kinase.
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Figure 3. Physical sciences shed light onto nucleosome and transcription factor competition and
chromosome packaging
Schematic illustration of the partial wave spectroscopy (PWS) experiment (part a). Cells
from the tissue of interest are brushed from the tissue and studied ex vivo. Each cell is
individually scanned in a two-dimensional lattice of diffraction-limited pixels (strictly
voxels because of the thickness of the cell). The cells are illuminated with light of
wavelength λ, and backscattered waves propagating along one-dimensional paths within
each voxel are measured as functions of lateral position over the cell (x, y) and of
wavelength λ. Wavelength-dependent variability in reflectivity R at each pixel arises from
the interference of photons scattered from refractive index fluctuations within the cell at that
location, providing information about internal cellular heterogeneity on subwavelength
length scales. The magnitude of the spectral fluctuations at each pixel in the image are
represented by a disorder strength, Ld = <Δn2> × lc, where Δn is the local fluctuations in
intracellular refractive index and lc is the correlation length of these fluctuations. For many
different cancer types, the measured disorder strength increases in cells that that are located
some distance away from a cancerous lesion, even though the cells being analysed are
themselves not cancerous. Parts b–g illustrate the free energy landscape from a typical
section of genomic DNA97. The 10 bp oscillations in interaction energy arise from the ~10
bp helical symmetry of DNA, the approximately circular DNA wrapping in the nucleosome,
and the mechanical nature of the nucleosome–DNA interaction (part b). Parts c–g illustrate
nucleosome–transcription factor competition97. The purple curves in part d show the
corresponding distribution of nucleosome start probabilities with no transcription factor
present (from the solution of equation 3 in BOX 2), and the top two rows of orange ovals
(part e) represent two of the many different nucleosome configurations, all of which have
significant probability in the equilibrium distribution. The purple curves in part g show the
corresponding distribution of nucleosome occupancy (summed over the full set of allowed
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configurations, from the solution of equation 4 in BOX 2). The free energy landscape of a
transcription factor, shown in part c, highlights two specific binding sites with equal
energies (affinities), as indicated by the two sharp valleys in energy (the two green lines).
The transcription factor also has slightly varying affinities for nonspecific sequences
(indicated here by the thickness of the green bar covering the remainder of the landscape). In
this example, the model is solved for a transcription factor concentration that is sufficiently
high so as to give high occupancy at one of the binding sites (probability approaching 1;
green curve in part d). However, because this site overlaps a preferred nucleosome location,
binding at this site requires redistribution of the local nucleosome organization, to a new
distribution of nucleosome start probabilities (orange curves in part d). The bottom two rows
of orange and green ovals in part f represent two of the many different configurations of
nucleosomes and bound factors, respectively, which have significant probability in the
resulting equilibrium distribution. The corresponding nucleosome and transcription factor
occupancies are shown in orange and green, respectively, in part g. Even though the two
transcription factor sites have identical intrinsic affinities for the transcription factor, the
required nucleosome redistribution is energetically inexpensive for the right-hand
transcription factor binding site, compared with the left-hand transcription factor site, which
allows a higher occupancy at the right-hand site for a given transcription factor
concentration. The image of the nucleus in part a is reproduced, with permission, from REF.
146 (1997) National Academy of Sciences. The graph in part a is reproduced, with
permission, from REF. 112. Parts b–g are reproduced, with permission, from REF. 97. a.u.,
arbitrary units.
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Figure 4. The application of physical science approaches for understandingNatur Reviews
Cancer deregulated transport in cancer
This is an illustration of the efforts to develop a broader understanding of the physical
barriers and the biological factors that are involved in the progression of tumours and the
efforts to design novel biocompatible delivery carriers that can overcome or take advantage
of these barriers with favourable pharmacokinetics and tissue distribution profiles for highly
efficient delivery of novel therapeutic and imaging agents. A physics- and biology-driven,
and a mathematics-based, design of the engineered drug delivery vectors multiplies the
probability of recognition of the novel targets, thus providing a synergistic solution for the
imaging and therapy of tumours at the interface of physics, engineering, mathematics and
cancer biology.
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