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SUMMARY
While it is commonly assumed that decisions taken slowly result in superior outcomes, is it
possible that optimal decision making does not always require sacrificing speed? For odor
categorization decisions, it was previously shown that rats use <300 ms regardless of difficulty,
but these findings could be interpreted as a tradeoff of accuracy for speed. Here, by systematically
manipulating the task contingencies, we demonstrate that this is the maximum time over which
sampling time can improve accuracy. Furthermore, we show that decision accuracy increases at no
temporal cost when rats can better anticipate either the identity of stimuli or the required timing of
responses. These experiments suggest that uncertainty in odor category decisions arises from noise
sources that fluctuate slowly from trial-to-trial rather than rapidly within trials and that category
decisions in other species and modalities might likewise be optimally served by rapid choices.

INTRODUCTION
Studies of reaction times have helped to constrain theories of decision making, leading to a
prominent class of models in which performance is limited by a random noise process that is
integrated during the presentation of a stimulus to improve the signal-to-noise ratio (Luce,
1986; Ratcliff and Smith, 2004). Such integration models can account for several commonly
observed relationships between the time and accuracy of decisions: (1) when problem
difficulty is increased, reaction times increase; (2) when stimulus sampling time is
controlled, performance increases with increased sampling duration; and (3) for a given
problem subjects can change their “speed-accuracy tradeoff” (SAT), responding more
accurately at a cost of slower responses or more quickly at a cost of reduced accuracy.
Integration models thus capture and help to explain the intuition that optimal performance
under uncertainty benefits from prolonged processing time. In addition to accounting for a
range of human behavioral data, simultaneous recordings of neural activity in primates have
shown neural correlates resembling the integrator variables posited in the models (Roitman
and Shadlen, 2002; Ratcliff and Smith, 2004).
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Studies of odor discrimination in rats have suggested, somewhat counterintuitively, that
under some circumstances decision making shows little benefit from increased sampling
beyond a single sniff (Uchida and Mainen, 2003; Uchida et al., 2006). These experiments
used a two-alternative forced-choice task in which eight different binary odor mixture
stimuli were randomly interleaved and rewarded according to a categorical boundary. As
mixture ratios approached the category boundary, choice accuracy dropped to near chance,
yet odor sampling time increased only 30 ms (Uchida and Mainen, 2003).

One possible explanation for the failure of subjects in this study to slow down their
responses in the face of more uncertain decisions is that they may have always set a
relatively low evidence threshold, leading to consistently rapid responses at a cost of
accuracy (Khan and Sobel, 2004). A key prediction of this untested “SAT hypothesis” is
that, given the right incentives and training, rats should be able to change their speed-
accuracy tradeoff and respond more slowly and accurately. An alternative explanation is that
the subjects were making optimal decisions but that integration would not be helpful for
improving accuracy in this task.

Can’t additional information always improve a decision? How could integration fail to
improve accuracy of uncertain decisions? One plausible explanation is that integrator
models assume decision accuracy is limited by stimulus noise that is temporally white
(uncorrelated in time). Temporal correlations in decision noise can defeat an integrator by
limiting the ability of averaging to improve signal-to-noise ratio, thereby diminishing the
benefits of repeated sampling (Uchida et al., 2006). In the limit, if noise fluctuations are
completely correlated within a trial (i.e., only varying across trials), then the benefits of
temporal integration within a single trial disappear entirely. Thus, if olfactory categorization
decisions cannot be improved by extended sampling time, this result would suggest that
there may be an important source of uncertainty that is missing from standard integration-
based decision models but may dictate the speed-accuracy relationships of some classes of
decision problems.

Here, we sought to distinguish these two general possibilities using a series of experiments
on the odor categorization task in which we systematically tested the impact of
manipulations of training and task structure on decision speed and accuracy. Through
manipulations of reward contingencies, we were able to slow down the subjects’ odor
sampling times, but this failed to increase performance. Conversely, by increasing the
predictability of stimuli and the timing of a response deadline, we were also able to increase
accuracy, but this increase did not come at a cost of speed. Thus, the results support the idea
that the limiting uncertainty in this class of decisions is different than the uncorrelated
stimulus noise assumed in standard decision models. These results can also help to reconcile
apparently disparate findings from previous studies of olfactory decision making (Abraham
et al., 2004; Rinberg et al., 2006).

RESULTS
The Odor Mixture Category Decision Task

We trained and tested male Long-Evans rats on the same two-alternative choice olfactory
categorization task employed previously (Uchida and Mainen, 2003). Each odor stimulus
was a binary mixture of two odorants and choices were rewarded according to the dominant
component (Figure 1A). The difficulty of the problem was controlled by the difference of
the stimulus from the boundary (50/50), denoted the “mixture contrast,” which was
randomly varied from trial-to-trial. A subject initiated a trial by a nose poke into the center
port where an odor was delivered (Figure 1B). It then responded by moving to either the left
or right choice port where it received water reward for correct responses and no reward for
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incorrect responses. In this task the reaction time (RT) consists of two components, the odor
sampling duration (OSD) and the movement time (MT) (Figure 1C and see Figure S1
available online). As reported previously (Uchida and Mainen, 2003), we observed a strong
dependence of performance accuracy on mixture contrast (Figure 1D; p < 0.005, ANOVA
post hoc multiple comparison test at p < 0.01). In contrast, there was no significant
dependence of OSD (Figure 1E; p = 0.88, ANOVA) or MT on mixture contrast (Figure 1F;
p = 0.9, ANOVA).

To remove any incentives for rapid responding, we trained a different set of naive rats under
“low urgency” conditions with a fixed minimum interval between the beginning of odor
sampling and the delivery of reward between the start of consecutive trials (Figure 1C).
These rats indeed showed significantly longer OSD and MT (Table 1; Figures 1E, 1F, S1B,
and S1C) but, interestingly, showed neither an improvement in accuracy (Figure 1D; Table
1) nor any dependence of OSD or MT on task difficulty (Figures 1E and 1F; Table 1).

Manipulations of Motivation
Since removing incentives for rapid responding was effective in slowing rats but did not
yield an increase in accuracy, we next tried increasing the cost of errors by introducing a
punishment for incorrect trials in the form of an air puff delivered to the snout (Paton et al.,
2006). This manipulation increased the OSD and MT (Figure 2Aiii; Table 1) but again failed
to induce an increase in accuracy (Figure 2Aii; Table 1). Therefore, we next tested the
effects of increasing the incentive to obtain correct responses by eliminating water outside
the task, increasing task difficulty and decreasing the number of available trials (see
Experimental Procedures for details). Although this manipulation produced a drop in body
weight of test subjects compared to controls (Figure 2Bi) demonstrating its effectiveness,
there was no difference in accuracy, OSD or MT between test and control groups (Figures
2Bii and 2Biii; Table 1).

To directly assess the impact of differential reward expectation on measures of response
time, we trained another set of rats on a one-direction-rewarded (1DR) version of the two-
alternative choice task. In this task version, only responses to one choice direction were
rewarded (when correct) and this rewarded direction changed across blocks within a session.
As expected, animals were biased to choose the rewarded side (Figure 2Ci) and performance
increased for the rewarded side for the difficult odor mixtures (Figure 2Cii). We found that
OSD for nonrewarded choices was slower than for the rewarded ones (Figure 2Ciii).
Moreover the effect of stimulus difficulty on OSD was diminished for the nonrewarded
choices (Figure 2Ciii), those choices whose difficulty no longer predicted the likelihood of
reward availability. These results suggest that the effect of difficulty on OSD arises not only
from varying perceptual uncertainty but also reflects the effect of difficulty on reward
expectation and hence response speed.

Manipulation of Sampling Time using a Response Deadline (Go Signal)
Having seen that response times are sensitive to reward and punishment but that changes in
OSD did not produce significant changes in accuracy, we next sought to test the possible
effect of larger changes in stimulus sampling time by manipulating the OSD more directly.
To do so, following a previous study (Rinberg et al., 2006), we introduced an auditory go
signal to cue the timing of the response while the odor stimulus continued to cue the correct
choice direction (Figure 3A). Responses initiated prior to the go signal were not rewarded
regardless of choice. We first trained subjects to wait for the go signal (see Experimental
Procedures). After training, we used fixed go-signal delays of 0, 0.2, 0.4, and 0.8 s, each
repeated for 3–6 sessions before switching (Figure 3B). Within each session odor mixtures
of the same difficulties as the RT task were randomly interleaved from trial-to-trial. Subjects
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obeyed the go signal, resulting in much longer OSDs than those seen in the original RT task
(Figure 3C; Table 1). However, despite the substantial increase in odor sampling durations,
we observed no change in accuracy (Figure 3D; Table 1; Figure S3). Indeed, accuracy of the
rats trained in the original RT task (Figure 1) was nearly identical to the performance of the
rats in the go-signal task. (Figure 3D, open circles versus filled circles, and Figure S4).

The failure to observe an increase in performance accuracy with longer go signals was
surprising, given that Rinberg et al. (2006) did find such an increase using apparently similar
conditions. Therefore, we next turned to examine whether overlooked differences in task
structure might account for this discrepancy. We first noted that while we had tested subjects
on a given go-signal delay for hundreds of trials in a row, Rinberg et al. randomly
interleaved go signals of different delays in a single session. Previous studies have shown
that the ability to anticipate the time at which a brief stimulus will be presented can affect
reaction time and accuracy of performance (Griffin et al., 2001; Nobre, 2001; Correa et al.,
2006; Katzner et al., 2012). We therefore hypothesized that expectation of (or readiness to
respond to) the timing of the go signal would also affect performance in this task.
Specifically, we reasoned that when go-signal delays vary randomly from trial-to-trial, the
subject may not respond as accurately as when responses are self-paced or instructed by a go
signal delivered at a constant delay.

Manipulation of the Predictability of the Response Deadline (Go Signal)
The predictability of random go-signal times has been formalized by the notion of “hazard
rate,” defined as the probability that a signal will occur given that it has not already occurred
(Luce, 1986). The “subjective hazard rate” (Janssen and Shadlen, 2005) is an extension of
this concept that takes into account the finding that the variance of subjective time
estimation increases proportionally to the interval duration (Gibbon, 1977; Gallistel and
Gibbon, 2000). By calculating the subjective hazard rate for the experimental distribution of
go-signal times, a quantitative prediction of performance as a function of go-signal delay
can be obtained. To test the idea that hazard rate impacts go signal performance, we
compared performance of subjects on two different distributions of go signals, formed using
uniform and exponential probability densities, which have very different hazard rates. These
distributions, their hazard rates and subjective hazard rates are depicted in Figure S4. The
subjective hazard rate for go signals in the uniform condition rises with time toward the end
of the distribution interval; therefore performance in this condition is expected to increase
relatively slowly over the distribution interval. In contrast, the exponential distribution has a
much flatter subjective hazard rate; therefore, performance in this condition is expected to
rise relatively more quickly resulting in relatively better performance at short delays.

Rats were tested first on the uniform distribution for several consecutive sessions (phase I),
then on the exponential distribution (phase II) and then again on the uniform distribution
(phase III) (Figure 4A). A single difficult odor mixture pair (12% mixture contrast) was used
throughout. As predicted, the performance advantage for long go-signal delays was smaller
when the exponential distribution was used (phase II; Figure 4A). Plotting performance as a
function of odor sampling duration also revealed, as predicted, a longer rise time in the
uniform distribution (rising-hazard rate) condition compared to the exponential distribution
(flat-hazard rate) (Figures 4B and 4C). Fitting the theoretical subjective anticipation
functions to the observed performance accuracy functions (Janssen and Shadlen, 2005)
showed the predicted dependence on the experimental hazard rate (Figures 4D and 4E).
Finally, we also observed corresponding changes in latency to respond to the go signal
(Figure 4F); again as predicted by the hypothesis that temporal anticipation affects the
readiness to respond to the go signal. Latency differences were particularly apparent when
comparing the response time to early go signals under the two distributions. Changes in
performance induced by switching go-signal distributions were reversible but took 1–2
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sessions (>500 trials) to develop (Figure 4A; note first session after switch from phase I to
phase II).

Could temporal anticipation and integration coexist in this task? Rinberg et al. (2006)
observed that the time to reach maximal accuracy increased with difficulty using uniform
distribution of go signals. We analyzed accuracy conditional on odor sampling duration for
the uniform go-signal distribution as well as for the exponential distribution and the reaction
time task. In each case, we observed no relationship between time to peak (“T95”) and
difficulty (Figure S5).

Manipulation of Stimulus Predictability: Blocked versus Interleaved Context
Interestingly, we noted that performance accuracy in this task version was not only better
than the RT performance but also substantially better than in the preceding go-signal task
(compare Figure 4B and Figure 3D). The major factor that might account for this difference
was that in the first go-signal task (as well as the RT tasks), odor stimuli of various
difficulties were pseudo-randomly interleaved within a session (“interleaved”), whereas in
the latter task, a single difficult pair of stimuli (12% mixture contrast) was presented in a
block during an entire session (“noninterleaved” or “blocked”). We therefore inquired
whether blocking stimuli increased discrimination accuracy, perhaps by increasing stimulus
predictability.

To test this idea, we made a direct comparison of accuracy on interleaved versus blocked
stimuli in the RT paradigm. First, a new set of rats was trained to asymptotic performance
on interleaved stimuli in low-urgency conditions. Subsequently, they were then tested
sequentially on blocks of the three most difficult odor mixture pairs (Figure 5A). Switching
to the blocked, noninterleaved condition produced a significant increase in accuracy for a
given stimulus pair, especially for the two most difficult stimulus conditions (Figure 5B;
Table 1). Performance levels on the 12% mixture contrast pair was similar to that observed
in the blocked stimulus version of the go-signal task. However, despite the increase in
accuracy compared to the interleaved condition, odor sampling durations remained identical
between the two conditions (Figure 5C; Table 1). The improvement in accuracy on blocked
stimuli developed rapidly (within 20 trials; data not shown) and consisted of both a transient
component that disappeared when returning to interleaved conditions (about 2/3 of the total)
and a long-lasting component that persisted (about 1/3) (Figure 5A; compare first and last
sets of interleaved sessions).

Asymptotic Performance in Odor Mixture Discrimination within 300 ms
This experiment implies that the performance accuracy benefits observed in previous go-
signal tasks compared to RT tasks are simply due to testing with blocked stimuli. To test this
directly, the same four subjects that were tested on the go-signal task with blocked odor
pairs (Figure 4) were subsequently trained to asymptotic performance in the RT paradigm
also using blocked odor pairs (Figures 6A and 6B, phase IV). The stimulus difficulty was
increased over consecutive days. Accuracy on the most difficult stimulus pair (12% mixture
contrast) improved remarkably, from <70% on the interleaved condition to 91% ± 1% in the
blocked condition (Figures 6A and 6C). We therefore introduced two successively more
difficult problems: 4% and 2% mixture contrast, both obtained by using liquid dilutions of
the 12% mixture stimuli (see Experimental Procedures for details). Accuracy on these
stimuli, more difficult than any used previously by our group or others, was significantly
above chance (Figures 6A and 6C) but was not associated with an increase in OSD (Figures
6B and 6D). Finally, we reintroduced a go signal at a fixed delay of 1 s (Figures 6A and 6B,
phase V). The duration was fixed in order to allow optimal anticipation and subjects were
trained for 5–6 sessions. Despite much longer OSD compared to the RT condition (Figures
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6B and 6D) there was no significant difference in accuracy (p = 0.91, two-way ANOVA for
difficulty and OSD instruction) (Figure 6E). Thus, maximal odor categorization accuracy
was achieved by rats in self-paced conditions with <300 ms odor sampling time and could
not be further improved by providing additional time for stimulus integration. The only
impact of the go signal was to decrease performance when it was not fully anticipated, as
can be seen by comparing accuracy in Figure 4B and Figure 6C (12% contrast).

DISCUSSION
Studying rats performing an odor categorization task, we found that accuracy improves with
stimulus sampling time only up to about 300 ms, consistent with previous studies showing
rapid olfactory decisions (Karpov, 1980; Laing, 1985, 1986; Uchida and Mainen, 2003;
Wesson et al., 2008). Using reward (and punishment) manipulations (Figures 1 and 2) and a
response go signal (Figure 3), we were able to increase rats’ sampling time, but this failed to
improve accuracy. We also documented that reducing the stimulus set size (Figure 4) or the
expectancy of the go signal (Figure 5) increased rats’ accuracy, but with no temporal cost.
Thus we found that speed and accuracy varied independently in this task (summarized in
Figure 7). Taken together, as we will discuss below, we favor the interpretation that rapid
performance on odor categorization is an adaptive decision strategy in the face of
uncertainty that is not reduced by prolonged within-trial stimulus sampling and not simply a
tradeoff of accuracy for speed.

Our data also suggest an explanation of the apparent discrepancies between the studies of
Uchida and Mainen (2003) and Abraham et al. (2004) and Rinberg et al. (2006) that is not
based on differences in SAT. The higher accuracy reported in Abraham et al. (2004) and
Rinberg et al. (2006) could be attributed to the use of blocked rather than interleaved
stimulus difficulties (Figure 5). The greater change in response times with difficulty
(additional 40 ms) reported by Abraham et al. (2004) could be explained by effects of
reward expectation on response speed (Figure 2C). Finally, the increase in performance with
go-signal delay over 500 ms reported in Rinberg et al. (2006) could be explained by
increasing go-signal anticipation over time (i.e., increasing hazard rate) (Figures 3 and 4).
Comparing across studies and across conditions, the best performance overall was achieved
within <300 ms odor sampling, by well-trained rats performing the reaction time task in the
present study (Figure 6). Thus, differences in results across these studies appear to reflect
performance effects arising from differences in predictability of stimuli and responses,
together with difference in reward structure across tasks, rather than differences in SAT.

The Role of Reward and Motivation in Decision Tasks
The reinforcement structure of a task based on conditioned responses is likely to affect the
strategy of the animal with respect to speed and accuracy tradeoffs in perceptual decisions.
Indeed, the dependence of RT on reward value in a decision task has been used previously
as an index of motivation (Lauwereyns et al., 2002; Roesch and Olson, 2004). When
mistakes are more costly in lost opportunity, in time or in effort, then SAT should be biased
toward slower and more accurate responses. To induce such a change, we set the timing of
task events (stimulus onset, minimum reward delay, intertrial interval) using minimal
intervals so that increases in odor sampling period would not produce reward delays or
drops in average reward rates. We applied these “low-urgency” conditions from the
beginning of training to avoid initial learning of rapid responses. We also performed
experiments in which we increased the cost of mistakes using aversive reinforcement and in
which we increased the value of water reward by requiring animals to perform more trials to
obtain the same amount of water. The low urgency and aversive reinforcement experiments
had demonstrable effects on behavior, together slowing odor sampling time by around 100
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ms. However, they did not result in increases in choice accuracy compared to the baseline
condition, failing to support the SAT hypothesis.

It is worth noting that in a perceptual decision task the expected reward probability covaries
with difficulty, which in turn might produce co-variations in RT that could be confounded
with stimulus integration. Based on our observations, we infer that a substantial portion of
the 30 ms difficulty dependence we observed might be due to motivational effects on RT,
with more uncertain stimuli prompting slower responses because of lower predicted reward
value (Figure 2C). One can also infer that the leaving times for correct “no-stay” responses
to unrewarded odors previously used to index RT (Abraham et al., 2004) may reflect such
motivational effects.

Stimulus Context: Interleaving versus Blocking Stimuli
We observed a strong effect of the number of interleaved stimuli on odor categorization
accuracy. Reducing the stimulus set from 8 to 2 odors produced a substantial increase in
accuracy (from around 60% to 80% correct on the hardest pair). This increase developed
rapidly (over tens of trials) and was largely, but not entirely, reversed upon return to the
blocked condition. Similar “stimulus context” effects have been described previously
(Green, 1961). We can consider several possible interpretations of this effect. First, the
presence of easier trials in the interleaved condition might decrease the incentive to try for
difficult ones. However, manipulation of motivational conditions failed to boost
performance (Figures 2A and 2B) making this interpretation unlikely. Second, the increase
in performance in the noninterleaved condition might reflect the ability to better predict the
stimulus when the size of the stimulus ensemble is limited. Third, the changes across
conditions might reflect a form of adaptation to the change in the range of mixture contrast,
similar to the phenomenon of contrast adaptation in the visual system (Ohzawa et al., 1982).
Forth, decreasing the range of stimuli may decrease the ambiguity of the category boundary
(Kepecs et al., 2008) and hence improve performance (Grinband et al., 2006). Further work
will be needed to distinguish these or other possibilities.

Temporal Anticipation of a Response Deadline Modulates Accuracy
In order to control stimulus duration, we manipulated odor sampling time by requiring the
animal to withhold responding until the occurrence of an auditory go signal that varied
randomly in time. When the probability density function of the go signal in this paradigm
was uniform, accuracy increased over 500 ms. One possible explanation offered for such an
effect is the accumulation of sensory evidence with time (Rinberg et al., 2006). However,
we also observed that changing the probability density function to an exponential
distribution reduced the interval over which performance increased to around 300 ms. This
change clearly cannot be explained by temporal integration of evidence, but indicates that
temporal anticipation of the occurrence of the go signal modulates decision accuracy (Hanks
et al., 2011). Consistent with this interpretation, increasing accuracy was accompanied by
decreasing response time to the go signal. In addition, it is critical to note that maximal
performance in go-signal tasks never exceeded performance in the equivalent RT paradigm.
Thus, go signals can reduce accuracy when it is not fully anticipated, but cannot increase
accuracy. Finally, when plotting accuracy conditioned on odor sampling duration, we
observed no relationship between time to peak and difficulty for individual animals (Figure
S5), as might be expected from integration. In sum, the effects of go-signal delay on
performance accuracy and RT are parsimoniously explained as effects of go-signal
anticipation but are not easily explained as effects of integration time.

Temporal expectation can be considered an orientation or allocation of “attention in time”
(Griffin et al., 2001; Nobre, 2001; Correa et al., 2006). Most studies of attention in time
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involve anticipation of a brief stimulus cue at a random time interval. Such temporal
attention has been shown to modulate activity in neocortical neurons (Ghose and Maunsell,
2002; Janssen and Shadlen, 2005; Jaramillo and Zador, 2011). Our protocol differed from
such studies in using a constant stimulus presentation in conjunction with a temporally
randomized response signal. Therefore go-signal anticipation effects might act at the stage
of motor preparation and execution as opposed to sensory processing (McDonald et al.,
2000; Correa et al., 2006).

Speed-Accuracy Tradeoff and the Origin of Decision Noise
These data have some potential implications with respect to possible sensory integration
processes operating during olfactory categorization decisions. First, it is important to note
that an odor sampling duration of 300 ms does not imply 300 ms of integration. RTs also
include “nondecision time” representing delays from sensory and motor processes that do
not contribute to integration. It is typical in RT models to include delays of 200–300 ms or
more (Luce, 1986; Mazurek et al., 2003). Although the length of nondecision times are not
easy to estimate independently, molecular manipulations of olfactory bulb circuitry can lead
to increases or decreases in sensory neural responses on the order of 100 ms (Abraham et al.,
2010). Assuming 100–150 ms motor delays, only 50–100 ms would remain for integration
processes within the 300 ms OSD.

A measurement more directly related to integration time is the change in RT from the easiest
to most difficult stimulus. The small difference we observed, 30 ms, is consistent with the
conclusion that nondecision delays make up the bulk of a 300 ms RT and that the incoming
signal strength is high relative to the “bound” or threshold of evidence so that a decision is
reached relatively quickly. As discussed above, part of this 30 ms difference might also
result from motivational differences between easy and difficult stimuli. These in turn are
consistent with lack of improvement with longer enforced sampling durations. At the same
time, these observations do not strongly imply integration. Models with little or no
integration, e.g., “sequential sampling” models (Watson, 1979), can also produce
dependence of RT on stimulus duration, increase in RT with difficulty (Ditterich, 2006) and
the speed-accuracy tradeoffs with changing evidence threshold.

Two of our observations are not readily reconciled with standard integration models. First is
the fact that manipulations of urgency slowed subjects’ odor sampling times substantially,
around 100 ms or around 30%, but did not increase accuracy. A “collapsing bound” (i.e.,
evidence threshold decreasing with time) is considered a mechanism for urgency in the
integration model (Bowman et al., 2012; Drugowitsch et al., 2012). A reduction in the
collapse rate could explain the increases in reaction time we observed in low urgency
conditions, but would entail an increase in accuracy, which was not found. The second
observation not readily explained is the increase in performance with reduction in the
number of interleaved stimuli (Figure 5). This effect could be explained by an increase in
the subject’s decision bound, but this would imply a concomitant increase in RTs, which did
not occur.

What can account for the failure of rats to show expected speed-accuracy tradeoffs? First, it
remains possible that our training regime was somehow faulty or that rats are incapable of
optimal task performance. However, due to the arguments we have laid out above, we
believe that the answer is more likely that rats are indeed performing their best, but that
some of the inherent assumptions of integration models are not met by the odor
categorization task. A second possibility is that the information on which the decision is
based decreases with time, as for example might occur with sensory adaptation. However,
Uchida and Mainen (2003) found no increase in RT with 100-fold stimulus dilutions that
would be expected to reduce the effects of adaptation, making this explanation unlikely. A
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final possible class of explanation, that we believe is worthy of careful consideration, is that
the noise that limits performance in the categorization of odor mixtures is not of the type
postulated by integration models. Any scenario in which noise is highly correlated from
sample to sample within a trial would violate the key assumption that noise is temporally
uncorrelated and would curtail the benefits of integration.

As a specific hypothesis for a source of trial-by-trial noise could arise in odor mixture
categorization decisions, consider that in this task the category boundary between left and
right odor classes is set by the experimenter and must be learned by the subject through trial-
by-trial reinforcement. Any trial-to-trial variability in the category boundary due to
reinforcement learning would produce a source of noise that is completely correlated within
individual trials. Therefore, if uncertainty about the precise category boundary dominates
over stimulus uncertainty, the benefits of integration within a single trial would be curtailed,
tilting the optimal speed-accuracy tradeoff toward shorter sampling times for even an
optimal subject. Further experiments will be needed to test this hypothesis.

Under this interpretation, the present results are likely to reflect features of the task rather
than the modality or species. This has several implications. First, rodents performing tasks
that are dominated by uncorrelated sensory noise may indeed show the expected benefits of
extended temporal integration (B.W. Brunton and C. Brody, 2009, Soc. Neurosci., abstract;
P. Reinagel et al., 2012; Sanders and Kepecs, 2012). Second, decisions that favor short
sampling time are likely not to be limited to rodents or olfaction (Uchida et al., 2006;
Kahneman, 2011; Stanford et al., 2010). Indeed, it has long been appreciated that
performance on psychophysical tasks may saturate with as little as 100–200 ms of stimulus
exposure (Barlow, 1958; Watson, 1979). For example, in random dot motion discrimination
by humans, if difficulty is manipulated by lowering coherence, accuracy increases up to 3 s
of stimulus exposure, but if it is manipulated by lowering contrast, only up to 0.3 s (Burr and
Santoro, 2001). Finally, the present results are likely not applicable to all olfactory decisions
but specific to olfactory categorization decisions. Different tasks such as odor detection,
odor mixture segmentation or odor source tracking will each make different demands,
tapping into different underlying neural mechanisms to overcome different sources of
uncertainty.

EXPERIMENTAL PROCEDURES
Animal Subjects

Thirty-seven male Long-Evans rats (250 g at the start of training) were trained and tested
using procedures approved by the Cold Spring Harbor Laboratory, Institutional Animal Care
and Use Committee. Rats were trained and tested on a two-alternative choice odor mixture
categorization task where water was used as a reward as described previously (Uchida and
Mainen, 2003). The animals were pair-housed (except where noted) and maintained on a
reverse 12 hr light/dark cycle and tested during their dark period. Each rat performed one
session of 45–60 min per day (250–400 trials), 5 days per week for a period of 8–20 weeks.
Rats were allowed free access to food but were restricted to water available during the
behavioral session and for 30 min after the session and during non training days; water
amounts were adjusted to ensure animals maintained no less than 85% of ad libitum weight
at any time. A different set of naive rats were used for each experimental condition unless
otherwise noted.

Testing Apparatus and Odor Stimuli
The behavioral setup consisted of a box of 20 × 20 cm with a panel containing three conical
ports (2.5 cm diameter, 1 cm depth) (Uchida and Mainen, 2003). Each port was equipped

Zariwala et al. Page 9

Neuron. Author manuscript; available in PMC 2014 April 24.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



with infrared photodiode/phototransistor pair that registered a digital signal when a rat’s
snout was introduced into the port (“nose poke”), allowing us to determine the position of
the animal during the task with high temporal precision. Odors were delivered from the
center port and water from the left and right ports. Port signals were recorded and valves
controlled by a computer running custom software written in Matlab (Mathworks, Natick,
MA) equipped with multipurpose data acquisition cards (E-series, National Instruments,
Austin, TX).

Odor delivery was controlled by a custom made olfactometer (Uchida and Mainen, 2003).
The test odors were S-(+) and R-(−) stereoisomers of 2-octanol (Figure 1A), chosen because
they have identical vapor pressures and similar intensities. We used relatively low
concentration of odorants by diluting 50 ml/min odorized air in a total of 1,000 ml/min clean
air stream and 1:10 in mineral oil (total dilution factor: 0.005). Mixture ratios of 5/95, 20/80,
32/68, and 44/56 and their complements (95/5, etc.) were generated using pure odorants and
adjusting the flow rates of two independent mass flow controllers (Aalborg, Orangeburg,
NY) in appropriate ratios to sum to 50 ml/min (e.g., at 20/80 one flow controller delivers 10
ml/min and the other 40 ml/min). Ratios of 48/52 and 49/51 were generated by substituting
liquid mixtures in 45/55 and 55/45 ratios for the pure odorants and further diluting with air.
In control sessions, the same odorant was used in both air streams or two odors were
delivered at 50/50 ratio. Performance in these sessions was no different than chance (50%)
over ≥100 trials (see Figure 6A).

Reaction Time Paradigm
Rats initiated a trial by entering the central odor-sampling port, which triggered the delivery
of an odor. To prevent rats from developing a ballistic “odor poke” movement into and out
of the odor sampling port (Friedrich, 2006), the odor onset was subject to delay (dodor)
drawn from a random distribution (original paradigm: uniform random distribution with a
range of [0.3, 0.6 s]; low urgency paradigm: exponential, mean 0.5 s, offset at 0.1 and
clipped at 2.0 s) (Figures 1C and S1). The odor was available for up to 1 s. In the reaction
time task (Uchida and Mainen, 2003), rats could exit from the odor port at any time after
odor valve opening and make a movement to either of the two reward ports. Trials in which
the subject left the odor sampling port before odor valve opening were considered invalid
(see Figure S1). Odor delivery was terminated as soon as the rat exited the odor port. Stimuli
were presented in pseudorandom order resulting in 50% chance performance. Reward was
available for correct choices for up to 4 s after the rat left the odor sampling port in the
original task; in the low urgency condition it was available for 8 s (5 s in water manipulation
task phase III; Figure 2B) after odor valve onset. Trials in which the subject failed to
respond to one of the two choice ports within the reward availability period were also
considered invalid. Invalid trials comprised 19.9 ± 6.6% (mean ± SEM, n = 4 rats). Invalid
trials were not included in the calculation of performance accuracy or reaction times (OSD,
MT).

For correct trials, water was delivered from gravity-fed reservoirs regulated by solenoid
valves after the subject entered the choice port (original paradigm: dwater [0.1–0.3 s] from
water port entry; low-urgency paradigm: minimum delay, dwater = 2 s from odor valve onset;
Figure 1C). Reward amount (wrew), determined by valve opening duration, was set to 0.03
ml and calibrated regularly. Error choices resulted in water omission but were otherwise
unsignaled, except in the “air puff” paradigm (Figure 2) in which an air puff was delivered
to the snout of the rat through a tube inserted adjacent to the water delivery tube in the two
choice ports. In the reaction time tasks, invalid trials were not signaled. A new trial was
initiated when the rat entered odor port, as long as a minimum interval (dintertrial) had
elapsed (original paradigm: 4 s from water delivery; low urgency paradigm: 10 s from odor
valve onset; see Figure 1C). A “time out” penalty of 10 s was added to dintertrial for incorrect
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choices in the water manipulation task phase III (Figure 2B). The experienced interval
between consecutive trial onsets was 7.3 ± 0.3 in the original paradigm and 11.5 ± 0.1 s in
the low urgency conditions (n = 4 rats).

Water Manipulation
For the water manipulation task (Figures 2B and S2), eight naive rats, individually housed,
were first trained on the low-urgency RT task (with 6 s dintertrial) to asymptotic performance
under normal water restriction. Approved animal care and use procedures were strictly
observed during the water restriction regime. Training was ceased and rats were given ad
libitum food and water until stabilization of weight and water consumption (Wadlibitum,
range of 50 ± 20 ml/day). Water restriction was then resumed with the available water,
Wfree, set at 0.5·Wadlibitum, delivered using a syringe fitted with a Lixit valve (Lixit Animal
Care Products, Napa, CA). Weights were monitored for 3 days and then training was
resumed with session length fixed at 256 trials. At the beginning of the experiment, a
baseline was established for all rats. The amount of free water available outside the task,
Wfree, was set at 0.17·Wadlibitum and the volume of water reward (Wreward) was set
individually for each rat such that the total water available in the task Wtask was
approximately 2·Wfree (Figure S2). The testing consisted of three phases (I–III). (Phase I)
For the test group, only Wfree was reduced to 0 while maintaining Wreward constant. (Phase
II) We doubled the relative frequency of occurrence of the most difficult mixture ratios
(56/44 and 44/56) for the test group. (Phase III) An additional 10 s time out punishment for
error trials was introduced and the maximum time allowed for session completion was
reduced from 50 to 30 min. This manipulation decreased the amount of water consumed by
the test group and produced a drop in body weight (86.69% ± 3.8% of original weight test
group versus 92.63% ± 3.7% control group). No rat dropped below 85% of initial ad libitum
body weight at any time.

One-Direction Rewarded Task
Three naive rats were trained on the 1DR task (Figure 2C). Each session began with 400
trials where both sides were rewarded and then reward were provided only for one choice
direction (when correct) and this rewarded direction changed across blocks of 100 correctly
performed trials (~120–140 trials total). Reward were delayed for 1 s after entry into the
water-port. We provided auditory feedback for both correct and error choices for both the
rewarded and unrewarded sides. To ensure that rats responded to the nonrewarded direction
following incorrect choices we repeated the same stimulus in the next trial. Repeated trials
were removed from the analysis.

Go-Signal Paradigm
Go-signal paradigms were similar to reaction time paradigm except rats were required to
stay in the odor sampling port until a 2 kHz, 100 ms pure tone was delivered after delay
dtone after odor valve onset (Figure 3A). Otherwise, the task timing was identical to the low
urgency version of the RT task (Figure 1C). The following three conditions were considered
invalid trials and were not rewarded and not counted in accuracy or OSD measurements: (1)
short odor poke trials (withdrawal from the odor port before the go-signal) resulted a short
white noise burst (120 ms) and 4 s increase in dintertrial. (2) Long odor poke trials
(withdrawal >1.0 s after the go-signal) triggered a long white noise burst (3 s) and 4 s
increase in dintertrial. (3) Delayed choice trials (failure to enter a choice port within 4 s after a
valid odor sampling period) were invalid but not signaled in any way and did not result in
any increase in dintertrial.

In a first set of go-signal experiments (Figure 3), a single go-signal delay was used in each
session and a range of odor mixtures (12% to 90% mixture contrast) were randomly
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interleaved within the session, as in the RT paradigms. Go-signal delays were changed from
session to session while the odor stimuli remained constant (Figure 3B). The set of rats
tested in this paradigm were naive at the beginning of training.

In a second set of go-signal experiments (Figure 4), a single odor mixture pair was delivered
in each session and go-signal times were randomly varied within a session. In these
experiments, a single set of four rats was used in five sequential phases (I–V). (I) A
pseudorandom go-signal delay (dgo) for each trial was drawn from a uniform distribution
(0.1–1.0 s in 0.1 s increments). Mixture ratio difficulty was increased after stable
performance was achieved (8–10 sessions per ratio) (Figure 4A, phase I). (II) dgo was drawn
from an exponential distribution (mean 0.3 s) using the 12% mixture contrast stimuli (Figure
4A, phase II). (III) Subjects were retested using uniformly distributed go-signal delays while
keeping the same stimuli (Figure 4A, phase III). (IV) Subjects were tested on the RT
paradigm by eliminating the go-signal while keeping other task parameters constant. After
reaching stable performance, two more difficult mixture contrasts (4% and 2% mixture
contrast) were sequentially introduced (Figure 6A, phase IV). (V) Rats were returned to a
go-signal paradigm with dgo = 1.0 s at 2% mixture contrast and then trained to stable
performance on 4% mixture contrast (Figure 6A, phase V). (VI) RT performance was
measured on three easier ratio pairs (Figure 6A, phase VI).

Training
The training sequence consisted of (1) handling and habituation to the behavior box (3
sessions); (2) water-port training (1 day); (3) odor-port training, in which a single odor
(usually ethyl butyrate) was rewarded at either port and the required center poke duration
was increased from 0 to 300 ms (2–4 sessions); (4) introduction of test odors in 5:95 and
95:5, rewarded at left and right choice ports with assignments counterbalanced across rats
(1–3 sessions); (5) introduction of increasingly difficult mixture ratio pairs rewarded at the
side corresponding to the dominant component (4–7 sessions). Go-signal task training
occurred between phase III and IV. For the purpose of experiments involving training on a
new stimulus or condition, stable or asymptotic performance was defined as <5% change in
performance over ≥5 sessions.

Performance Accuracy and OSD Analysis
All the analysis was performed in Matlab 6.5 Release 13. Behavioral accuracy was defined
as the percentage of correct choices over the total number of correct and incorrect choices.
Odor sampling duration (OSD) was calculated as the difference between odor valve
actuation until odor port exit, with 100 ms subtracted to account for the delay from valve
opening to odor reaching the nose (Feierstein et al., 2006; Figure 1C). Movement time (MT)
was defined as the time between odor port exit and choice port entry. We excluded from
calculation of performance accuracy and OSD trials in which odor port withdrawal occurred
less than 100 ms after odor onset (<10% of trials) or before the go signal in go-signal
paradigms (<25% of trials) and trials in which no choice was made or choice port entry
occurred after the response deadline (<1% of trials) (Figure S1E). Performance accuracy as
a function of mixture difficulty was fitted with a Weibull function using a maximum
likelihood method and OSDs using a linear regression, except in Figure 2Cii where a logistic
regression using binomial distribution was used. Logistic regression was also used to fit the
psychometric function in Figure 2Ci. Error bars are mean ± SEM (n across rats) or mean ±
SD (n across sessions). The effect of difficulty on accuracy or OSD was tested using one-
way ANOVA with pairwise comparisons between different mixture contrast ratios
(MULTCOMPARE function in Matlab) at a significance level of p < 0.0125 (i.e., adjusted
for multiple comparisons).
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Subjective Hazard Rate Analysis
In order to estimate the ability of the subject to anticipate the occurrence of a go signal, we
calculated the subjective anticipation function, as described in Janssen and Shadlen (2005).
First, we assume that the uncertainty in time estimation scales with elapsed time (“scalar
timing” [Gibbon, 1977; Gibbon et al., 1997; Janssen and Shadlen, 2005]) such that a go
signal which occurred at time t is perceived at time t ± σ(t), where

(Equation 1)

where the coefficient of variation or Weber fraction (ϕ) = 0.15 (Gibbon et al., 1997).
Therefore, a subjective estimate of the go-signal distribution was computed by smoothing
the probability distribution with a normal distribution whose standard deviation was
proportional to the elapsed time (Equation 1; Figures S4E and S4F)

(Equation 2)

The expectation of the go signal was then calculated according to its hazard rate (Janssen
and Shadlen, 2005):

where h(t) is the hazard rate, s(t) the subjective probability density function of go-signal
delays dgo and S(t) the cumulative probability density function of subjective go-signal
delays.

Performance accuracy was plotted as a function of delay to the go signal because the
subjective anticipation is a function of go-signal times and not OSDs. The subjective
anticipation functions (Figures S4G and S4H) (for uniform and exponential distributions)
were fitted to the performance accuracy functions (Figure 4D) using the following equation:

where r(t) is the instantaneous performance accuracy, c0 is a constant term, sunif and sexp are
the subjective anticipation function for uniform and exponential distributions (Equation 1),
and c1 and c2 are the weighting coefficients for the two anticipation functions. Optimal
parameters were found using a downhill simplex method, FMINSEARCH function in
Matlab.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Two Alternative Odor Mixture Categorization Task
(A) Stimulus design. Two odorants (the stereoisomers S-(+)-2-octanol and R-(−)-2-octanol)
were mixed in different ratios and rewarded according to the majority component. Odor
mixture contrasts determine the difficulty of the stimulus, with lower contrasts being harder.
(B) Sequence of events in a behavioral trial, illustrated using a schematic of the ports and the
position of the snout of the rat.
(C) Illustration of the timing of events in a typical trial in both the original task and low
urgency conditions task. Nose port photodiode and valve command signals are shown (thick
lines). Measurements of odor sampling duration (OSD) and movement time (MT), as well as
imposed delays (dodor, dwater, and dintertrial) are indicated by arrows for two conditions. In
the original conditions, dodor and dwater were drawn from uniform distributions with ranges
of [0.3, 0.6] and [0.1, 0.3], respectively, and dintertrial had a minimum of 4 s. In the low
urgency conditions, dodor was drawn from an exponential distribution with mean of 0.5 s
clipped between 0.1 and 2.0 s, dwater had a minimum of 2 s, and dintertrial had a minimum of
10 s. See Experimental Procedures for details. Note that the intervals between events varied
from trial to trial because of the variability in the timing of port entries and exits, and the
random delays between port entries and odor or water valve openings. Dashed lines
indicated omitted time.
(D–F) Comparison of performance in low urgency conditions designed to minimize
incentives for rapid responding compared to the “original” task conditions of Uchida and
Mainen (2003). Population data for the comparison of task performance under low-urgency
conditions (filled symbols) and original task (open symbols). Mean accuracy (D), mean of
the median OSD (E), and mean of the median MT (F) are plotted as a function of stimulus
difficulty (mixture contrast). Error bars are mean ± SEM (n = 4 rats). Accuracy data was
fitted to a Weibull function.
See also Figure S1.

Zariwala et al. Page 16

Neuron. Author manuscript; available in PMC 2014 April 24.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 2. Impact of Manipulations of Motivation (Reward, Punishment) on Speed and Accuracy
of Discrimination
(A) Effect of air puff punishment. Comparison of the original task conditions (filled circles)
to the low-urgency task with air puff punishment for error choices (open circles). (Ai)
Schematic showing delivery of air puff to the snout of an animal from the water delivery
port. (Aii) Accuracy as a function of stimulus difficulty (mixture contrast). (Aiii) Median
OSD as a function of stimulus difficulty (mixture contrast). Error bars are mean ± SEM (n =
4 rats).
(B) Water restriction experiments. Control group (open symbols): 50 min session duration,
no time out for errors, and a fixed amount of water (Wfree) was given outside the task (see
Experimental Procedures). Test group (open symbols): 30 min session duration, 10 s time
out for errors, and no water given outside task. (Bi) Mean body weight as fraction of ad
libitum weight. See also Figure S2. (Bii) and (Biii) are as for (Aii) and (Aiii).
(C) One-direction reward (1DR) experiment. (Ci) Choice performance was biased in blocks
where correct choices were rewarded only on one side (open triangles and solid lines)
compared to when correct choices were rewarded on both side (filled square dashed line).
The direction of bias was always toward the rewarded port. Error bars are mean ± SEM (n =
3 rats). (Cii) and (Ciii) are as for (Aii) and (Aiii).
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Figure 3. Prolonged OSDs Instructed using a Go Signal Fail to Improve Performance Accuracy
(A) Schematic of the go-signal task. An auditory go signal was played after a delay dgo from
odor onset and subjects were required to remain in the odor port until after dgo (see
Experimental Procedures).
(B) Time line of go-signal delays across sessions.
(C) Mean of the median OSD as a function of mixture contrast and the length of go-signal
delay (n = 4 rats). Shades of gray represent different go-signal delays. Open circles and
dashed line indicate the results from a different set of subjects in the original RT task
(Figure 2).
(D) Mean performance accuracy with different go-signal delays.
See also Figure S3.
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Figure 4. Performance Accuracy Depends on the Distribution of Go-Signal Delays
Go-signal delays are chosen from a uniform distribution (filled symbols) or exponential
distribution (open symbols). Note that an exponential distribution results in a flat hazard rate
function while a uniform distribution result in a rising hazard rate function. A difficult single
mixture pair (12% mixture contrast) was used throughout.
(A) Mean difference in performance accuracy between trials with late (0.7–1.0 s) and early
(0.1–0.3 s) go-signal delays (n = 4 rats). Time 0 denotes the last point before changing from
uniform distribution (rising hazard rate) to exponential distribution (flat hazard rate). Filled
symbols: uniform distribution (phases I and III); open symbols: exponential distribution
(phase II). Note that the switch in performance accuracy from exponential to uniform
distribution is expressed only on the second day after the switch (arrow) but that there is no
such delay switching back to the uniform distribution.
(B) Mean performance accuracy as a function of OSD for two different go-signal
distributions pooled across all rats (n = 4 rats). Filled circles: uniform distribution (phase
III); open circles: exponential distribution (phase II). Star: accuracy significantly different
(for the largest OSD) between the two conditions (p < 0.01; one tailed z test for proportion).
(C) Mean T95 (shortest OSD that gave 95% of maximum accuracy) for two different go-
signal distributions (n = 4 rats; p < 0.05, Friedman paired test). Individual rats are shown
with different symbols. Filled symbols: uniform distribution (phase III); open symbols:
exponential distribution (phase II).
(D) Mean performance accuracy as a function of go-signal delays for the population data.
The solid line is the fitted subjective anticipation function in the two conditions (black solid
line: go signal with a uniform distribution, phase III; dashed line: go signal with an
exponential distribution; phase II).
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(E) Weights associated with rising and flat theoretical subjective anticipation functions after
fitting to the discrimination performance curve of individual rats (different symbol shapes)
in two different conditions (open symbols: go signals with a uniform distribution; closed
symbols: go signals with an exponential distribution). Note that in the uniform condition
weights are higher for the rising anticipation and in the exponential condition weights are
higher for the flat anticipation. See also Figure S4.
(F) Comparison of reaction times to short (0.1–0.3 s) go signals in the two conditions.
Individual rats shown in different symbols as shown in (C) (n = 5 sessions).
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Figure 5. Reducing the Range of Mixture Contrasts Results in Increase in Performance
Accuracy at No Cost of Speed
(A) Mean performance accuracy of 6 rats over the course of 30 days of training. Filled
circles: sessions with interleaved mixture contrasts; open circles: sessions with the blocked
(noninterleaved) condition. Color indicates mixture contrast. The mean accuracy during the
last 100 trials in a session is shown.
(B) Mean performance accuracy (n = 6 rats). Psychometric curve was fit using a Weibull
function. Filled and open symbols represent interleaved and blocked conditions.
(C) Mean of the median OSD (n = 6 rats).
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Figure 6. Accuracy in RT Paradigm Is as High as that Obtained with Prolonged Odor Sampling
(A) Accuracy of rats in a RT paradigm and in fixed 1.0 s go-signal paradigm (n = 4 rats).
(B) Mean median OSD. Day 9 and 39 are control sessions using the same odor in all odor
channels keeping all other task and reward parameters constant. Day 19 is a control session
with a 50/50 air mixing of two odorized air streams each of a 55/45 and a 45/55 premixed
odors.
(C) Comparison of performance accuracy for rats trained on 1.0 s go signal (closed circles)
and on RT paradigm (open circles) (n = 4 rats).
(D) Mean median OSDs in the two paradigms (n = 4 rats). Note that error bars are smaller
than the symbols.
(E) Comparison of the mean accuracies between the go-signal and RT paradigms for two
mixture contrasts (2% and 4%) for four individual rats (different symbols) (n = 5 sessions).
See Figure S5.
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Figure 7. Dissociation of Accuracy and Speed
(A) Summary of experiments in which OSD was affected.
(B) Summary of experiments in which accuracy was affected. Each pair of connected dots
compares population performance accuracy and OSD for the difficult mixture contrast
(12%) for a given manipulation (different manipulations shown with different symbols and
control groups are shown with filled symbols and experimental groups with open symbols;
see legend).
Error bars indicate SEM. For all experiments n = 4 rats except blocked versus interleaved (n
= 6 rats).
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