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Background: Host innate immunity is against virus infection and replication.
Results: Toll-like receptor 3 activation leads to enhanced expression of a key Kaposi’s sarcoma-associated herpesvirus (KSHV)
protein.
Conclusion: KSHV uses host Toll-like receptor pathway to augment its critical gene expression.
Significance: A virus may usurp host innate immunity for its own benefits.

Kaposi’s sarcoma-associated herpesvirus (KSHV) is a human
�-herpesvirus. KSHV replication and transcription activator
(RTA) is necessary and sufficient for KSHV reactivation from
latency. Toll-like receptors (TLRs) recognize pathogen-associated
molecular patterns, act through adaptors, and initiate innate and
adaptive immuneresponsesagainstpathogens.Toll/interleukin-1-
receptor domain containing adaptor protein inducing interfer-
on-� (TRIF) is an adaptor associated with TLR3 and TLR4 signal-
ing, and is closely related to antiviral signaling to activate type I
interferon (IFN)production.Wepreviously found thatKSHVRTA
degradesTRIF indirectlyandblocksTLR3pathways. In this report,
we find thatTRIF, aswell asTLR3activation, enhancesKSHVRTA
protein expression. The C-terminal region of the RTA is involved
in the responding TRIF-mediated enhancement. The degradation
of TRIF and the enhancement of RTA expression are using two
different pathways. The enhancement byTLR-TRIF is at least par-
tially viapromoting translational efficiencyofRTAmRNA.Finally,
the receptor-interactingprotein1 (RIP1)maybe involved inTRIF-
mediated enhancement of RTA expression, but not in the RTA-
mediated degradation of TRIF. Therefore, the activation of TLR-
TRIF pathway enhances KSHV RTA protein expression, and
KSHVRTA in turn degrades TRIF to block innate immunity. The
putativeKSHV-TLR-adaptor-interacting loopmaybeacriticalele-
ment to evade andusurp host innate immunity inKSHV life-cycle.

Toll-like receptors (TLRs)4 are a family of evolutionarily con-
served receptors that recognize molecular patterns unique to
pathogens and activate host innate immunity against the patho-

gen (1, 2). One of the major products from TLR activation is
production of inflammatory cytokines such as tumor necrosis
factor-� (TNF-�), interleukin 1 (IL1), and type I interferons
(IFN). IFN is key component to mount a proper and robust
immune response to a viral infection (3, 4). Toll-IL-1 receptor
(TIR) domain-containing adaptor inducing IFN-� (TRIF), also
calledTIR domain-containing adaptormolecule-1 (TICAM-1),
is an adaptor protein involved in signal transduction during the
activation of TLR3 and 4 leading to activation of nuclear factor
�B (NF-�B) and type I IFN (5–7). TLR3 seems to be dependent
on TRIF for its downstream cascades (5, 8).
Kaposi’s Sarcoma-Associated Herpesvirus (KSHV), also

known as human herpesvirus 8, is a member of the human
�-herpesviruses family. KSHV is believed to be an etiological
factor for Kaposi’s Sarcoma (KS), and associated with several
other B lymphocytes malignancies such as primary effusion
lymphoma andmulticentric Castleman’s disease. As other her-
pesviruses, KSHV consists of two distinct phases: latent and
lytic replication during its life cycle. During latency, the virus
establishes persistent infection and only a small subset of genes
are typically expressed. Under conditions of lytic replication, all
the viral genes are activated in cascade mode and new viruses
are packaged and released from cells (9–12). KSHV replication
and transcription activator (RTA) is an immediate early gene
and highly conserved among �-herpesviruses (13–15). RTA is
apparently necessary and sufficient for the switch from KSHV
latency to lytic replication (12, 16). Beyond functioning in ini-
tiating viral lytic replication, RTA is involved in the induction of
cellular IL6 (17), degradation of TRIF, IFN regulatory factor 7
(IRF7), K-RBP, and Hey1 through proteasome pathway (18–
21), and blockage of p53-mediated apoptosis by competing for
binding to CBP (22). RTA interacts with other factors to mod-
ulate its transcription potential and other cellular activities
(22–26).
KSHV mainly infects endothelial cells and B lymphocytes,

and those cells express multiple TLRs (27–30). TLR4 is identi-
fied as an important barrier against KSHV infection, and KSHV
has developed a mechanism to rapidly suppress TLR4 expres-
sion (31). KSHV infection activates TLR3 and TL9 pathways,
and TLR7 signaling may lead to lytic replication of KSHV (31–
34). Also, murine �-herpesvirus 68 (MHV68) is a herpesvirus
with significant similarities to KSHV. Activation of the TLR3/4
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pathway potently inhibits the replication ofMHV68 (35). How-
ever, other reports suggest that TLR3 activation increases
MHV68 viral replication in vivo (36).
Previously, we found that KSHVRTAdegrades TRIF protein

through a proteasome pathway (21). In this report, we have
found that TRIF up-regulates the expression of RTA protein.
The enhanced RTA protein expression by TRIF is at the trans-
lational efficiency of its mRNA. The downstream target of
TRIF, receptor-interacting protein 1 (RIP1), may be involved in
the process. Those data strongly suggest thatKSHVusurps host
innate immune system for its own benefits.

MATERIALS AND METHODS

Plasmids, Antibodies, and dsRNA—Expression plasmids
of KSHV RTA and its mutant (RTA-K152E), EBV RTA,
pcDNA3.1-myc-TRIF, TRIF mutants (TRIF-Del, TRIF-N, and
TRIF-C) were described previously (21, 37–42). RTA-�C plas-
mid (aa 1–527) was a gift from Dr. Charles Wood (43). Human
FLAG-tagged-RIP1 expression plasmid was obtained from Dr.
Ning Shunbin. RTA antibody was described (44). Pan-luc,
K14A-luc, and �-galactosidase expression plasmids were all
described (37). Tubulin (T6557) and FLAG antibody (F1804)
were obtained from Sigma. The antibodies for Myc (SC-40),
IRF-1 (SC-497), andGAPDH (SC-47724)were fromSantaCruz
Biotechnology. TRIF antibody was from Cell Signaling (Cat.
4596). EBV-R antibody was from Argene (8C12). Poly (I:C)
(double-stranded RNA) was purchased from InvivoGen (tlrl-
pic) and used at 10 �g/ml.
Cell Culture—293T is a human fibroblast line. WT11(clone

9) is a TLR-3-expressing cell line (45) (gift fromDr. Ganes Sen).
RIP1(�/�) and RIP1(�/�) lines were obtained from Dr. Ning
Shunbin (46). Those cells were grown in Dulbecco’s modified
Eagle’s medium (DMEM, Invitrogen) supplemented with 10%
fetal bovine serum (FBS; Invitrogen) and 1% penicillin-strepto-
mycin (PS) at 37 °C in 5% CO2 incubation. 400 �g/ml G418
(Invitrogen) was used to maintain the TLR-3 expression in
WT11 cells. BC3 is a KSHV-positive PEL line and were main-
tained in RPMI 1640 plus 10% FBS.
Transient Transfection—Effectene (Qiagen) was used for the

transfection of 293T or WT11–9 cell lines following the man-
ufacturer’s recommendation. For BC3 cells, electroporation
(320 V; 925 microfarads) was used for transfection along with
other plasmids. One day after the transfection, the cells were
used for the treatment of various concentrations of sodium
butyrate. One day later, transfected cells were incubated with
Dynabeads-CD4 beads for 20–30 min at room temperature
with gentle rotation. CD4-positive cells were isolated by placing
the test tubes in a magnetic separation device (Dynal magnet).
The CD4-positive cells were washed three times in phosphate-
buffered saline and used to prepare cell lysates.
Protein Stability Assays—Protein biosynthesis inhibitor,

cycloheximide, was purchased from Sigma (C4859) and used at
50–100 �g/ml. Cells were transfected in 10-cm dishes, and
transfected cellswere split 4–6 h after transfection into a 6-well
plate. Next day, the cells were treated with cycloheximide for
the indicated period, and cell lysates were made and used for
Western blot analysis.

Western Blot Analysis, RNA Extraction, and Reverse Tran-
scription-Polymerase Chain Reaction (RT-PCR)—Standard
Western blot analysis was performed as described (47–49).
Total RNA was isolated from cells using TRIzol extraction.
cDNAwas synthesized using 100 ng of RNA, oligo dT priming,
and SuperScriptTM reverse transcriptase (Invitrogen). LGH4930
(5�-TTCGCCTGTTAGACGAAGC-3�) and LGH4929 (5�-GAT-
TCGCAAGCTTCAGTCTCGGAAGTAATTACG-3�) primers
were used for detection of RTA expression, and actin1 (5-TTCT-
ACAATGAGCTGCGTGT-3�) and actin2 (5�-GCCAGACAGC-
ACTGTGTTGG-3�) primers were used for actin control.
Translational Efficiency Assays—293T cells were transfected

with various plasmids. 24 h after transfection, cells were
washed, cultured in methionine-free DMEM (GIBCO) supple-
mented with 10% of dialyzed FBS for 30 min, and then labeled
with of [35S]methionine (Perkin Elmer, 100�Ci/ml) for 30min.
Cells were lysed in 1% Nonidet P-40 buffer (100 mM Tris, pH
8.0, 1 mM EDTA, 100 mM NaCl, 1% Nonidet P-40, 1 mM PMSF
plus one tablet of protease inhibitor (Roche) per 10 ml) for 30
min on ice. Supernatants were immunoprecipitatedwith FLAG
antibody. Proteins were transferred to a PVDF membrane and
allowing to air dry. The membrane was exposed overnight to a
Kodak film to capture the 35S signal. Themembrane was re-hy-
drated in 100% methanol, and Western blot was carried out
with RTA antibody. The signal strengths were enumerated by
the use of the Bio-Rad Software Quantity One (version 4.6.7).
Transient Transfection andReporter Assays—Effectene (Qia-

gen) was used for the transfection of 293T cells. The luciferase
assays were performed using the assay kit from Promega
according to the manufacturer’s recommendation.

RESULTS

TRIF Increases Steady State Levels of RTAProtein—Toexam-
ine an effect of TRIF onRTAexpression, equal amounts of RTA
along with various amounts of TRIF plasmids were transfected
into 293T cells. As shown in Fig. 1A, TRIF protein expression is
gradually decreased as reported (21). However, the steady state
of RTA protein expression was increased upon TRIF expres-
sion. Of note, the expression of TRIF could be detected with
longer exposure and more lysates (data not shown). Epstein-
Barr virus (EBV), the prototype of human �-herpesvirus, has a
RTA homologue (EBV-R). We further tested if EBV-R was reg-
ulated by TRIF expression with similar approach. EBV-R pro-
tein expression was not increased by TRIF expression, and
EBV-R did not degrade TRIF (Fig. 1B). In addition, the same
phenomenon can be observed in other human cell lines, such as
MCF7 and U2OS (data not shown). Because RTA degrades
TRIF, whether the same pathway was used by TRIF to enhance
the expression of RTA was examined. RTA-K152E weakly
degraded TRIF, but the expression of the mutant was also
enhanced by TRIF (Fig. 1C). Furthermore, we tested if TRIF
enhanced the RTA-mediated transactivation of reporter gene
constructs. As shown in Fig. 1D, TRIF increased the activation
of Pan as well as K14 promoter reporter constructs, probably
through the enhancing the expression of RTA. Therefore, TRIF
activation increased steady state levels of KSHV RTA protein,
and the pathways for TRIF degradation and RTA enhancement
seem to be different.

TRIF Enhances KSHV RTA Expression
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TLR3 Activation Enhances RTA Expression—TRIF is required
for TLR-3 signaling (5, 8). Whether the activation of TLR-3
increases RTA protein expression in TLR-3-expressing cells
(WT11) was tested (45). The RTA expression plasmid was
transfected into the cells, and the cells were treatedwith dsRNA
for the activation of TLR3. The activation of TLR3 led to the
enhancement of the RTA expression (Fig. 2A). This enhance-
ment was specific for KSHV, as EBV-R could not be enhanced
by TLR3 activation (Fig. 2A). Therefore, TLR3 signal specifi-
cally enhanced KSHV RTA expression.
TRIF Enhances Endogenous RTA Expression—To examine

whether TRIF could enhance RTA under physiological condi-
tions, KSHV latently infected PEL cell line, BC3, were trans-
fected with various expression plasmids along with CD4
expression plasmids. BC3 was selected due to its transfection
efficiency and relative tight control of the KSHV lytic replica-
tion. The cells were treated with sodium butyrate, and the
transfected cells were enriched by CD4-magnetic bead selec-
tion as described before (50–54). The concentrations of
sodium butyrate were adjusted to the levels that just barely
induced the lytic replication of KSHV. Following the transfec-
tion of TRIF, the expression of RTA was clearly increased (Fig.
2B). Therefore, TRIF enhanced of RTA expression from viral
genome in BC3 cells with chemical inductions.
TRIF Increases the Translation Efficiency of RTAmRNA—To

examine the mechanism by which TRIF enhances the expres-
sion of RTA, whether the RNA translational efficiency was
involved was examined. Basically, the cells were transfected
with various plasmids, pulse labeled with [S35]methionine
for 30 min, and cell lysates were used for immunoprecipita-
tion with FLAG antibody, followed by Western blot analysis
with RTA antibody. The newly synthesized proteins were
metabolically labeled with [S35]methionine, and the relative

translational efficiency was measured by the ratio of the
newly synthesized proteins versus total proteins. As shown
in Fig. 3, A and B, the translation efficiency of RTA mRNA
was enhanced at least 50% in the presence of TRIF. In addi-
tion, TRIF did not have an effect on the half-life of RTA
protein in the 24 h time period, during which RTA expres-
sion was enhanced (Fig. 3C). And the protein synthesis
inhibitor was working properly because IRF1 has anticipated
half-life (55). Next, the mRNA levels of RTA were not
changed dramatically in the presence of TRIF (Fig. 3D). All
those data collectively supports that notion that TRIF
increased the translation efficiency of RTA mRNA, which
consequently increased the levels of RTA proteins.
Multiple Regions of TRIF Stimulate RTAExpression—Tonar-

row down the region(s) of TRIF for the enhancement of RTA
expression, we have used several mutants as shown in Fig. 4A
(21). Those deletion mutants were transfected into 293T cells,
and whether the TRIF mutants were enhancing the RTA
expressionwas examined. As shown in Fig. 4B, allmutantswere
able to enhance the RTA expression. In addition, all those TRIF
mutants were degraded by RTA as reported (21). These data
suggest that the multiple regions of TRIF targeted RTA for its
enhancement.
A RTA Deletion Mutant Failed to Be Enhanced by TRIF—To

determine the region of RTA responsive to TRIF expression, a
serial of mutants had been examined, and one mutant in par-
ticular (RTA-�C) was different from others (Fig. 4C). TRIF
failed to enhance the expression of the RTA-�C mutant, how-
ever, TRIF significantly enhanced the expression of wtRTA in
the same assay (Fig. 4D). The expression of TRIF is also shown.
Therefore, the C-terminal region of RTA was responsible for
the enhancement of RTA expression by TRIF.

FIGURE 1. TRIF increases the expression of RTA. A, 293T cells were transfected with cDNA, RTA (0.1 �g), and various TRIF plasmid (0.01, 0.05, 0.1 �g). The cell
lysates were collected 1 day later, and the expression was examined by Western blot. B, same as A, but TRIF (0.1 �g) and EBV-R (0.05, 0.1 �g) were used. C, 293T
cells were transfected with various plasmids as shown on the top. RTA (0.1 �g) and RTA-K152E (0.05 �g) were used for transfection. The images in the same box
indicate that they are derived from the same membranes. The identity of proteins is as shown. D, 293T cells were transfected with various reporter constructs
along with the CMV-�-gal, TRIF, or RTA expression plasmid as shown on the top. Both Pan and K14 promoters are well-known for their responsiveness to RTA.
Luciferase activity was normalized to �-galactosidase activity. The fold activation of each promoter construct is shown with standard deviation. One repre-
sentative of three independent experiments is shown.
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Receptor Interacting Protein-1 (RIP1) May Be Involved in the
Enhancement of RTA Expression—Because we failed to detect
physical interactions between TRIF and RTA (21), it is very
likely that TRIF degradation and RTA expression enhance-
ments occur indirectly. To examine the cellular factors
involved in the degradation and enhancement, we used specific
cell lines that lack critical components forTLR3 signaling, espe-
cially the downstream mediator of TRIF. RIP1 is critically
involved in the TRIF-mediated NF-�B activation (56). In the
RIP1(�/�)mouse embryonic fibroblast (MEF) line, TRIF failed
to increase the expression of RTA; however, the degradation of
TRIF was still exist (Fig. 5A). In the corresponding RIP1(�/�)
MEFs, TRIFwas still enhancing the expression of RTA (Fig. 5B).
In addition, overexpression for human RIP1 alone was suffi-
cient to increase the RTA expression in human 293T cells. RTA
did not obviously degrade RIP1 because the relative ratios of
RIP1 to tubulinwere similar (Fig. 5C). All those data collectively

suggested that RIP1 might be involved in TRIF-mediated
enhancement of RTA expression.

DISCUSSION

Innate immunity is important to control viral infection, and a
successful counteraction of innate signaling may be a necessity
for the survival of a virus in vivo. It has been shown that KSHV
encodes several genes to counteract the innate system. KSHV
uses at least two viral gene products to nullify the function of
IRF7, amaster gene for type I IFN production (20, 47). Latency-
associated nuclear antigen blocks the activation of IFN through
IRF-3 (48). ORF10 blocks the IFN signaling in KSHV-infected
cells (49). On the other hands, it has been shown that virus may
use molecules involved in the innate immunity for its own ben-
efits. KSHV uses TLR7 signaling pathway for its reactivation
process (33), EBV uses the same signaling pathway for its viral
protein expression (57). MHV68 uses cellular Mavs adaptor

FIGURE 2. Activation of TLR-3 increases RTA expression. A, various plasmids were transfected into TLR-3-expressing cells (WT11–9) as shown on the top.
After 4 – 6 h of transfection, the cells were washed once and then treated with(�) or without(�) dsRNA (10 �g/ml). The cells were collected after overnight
treatment, and cell lysates were used for detection of RTA or EBV-R, respectively. The images in the same box indicate they are derived from the same
membranes. The identities of the proteins are shown. B, BC3 cells were transfected with pcDNA3 or TRIF along with CD4 plasmids. Cells were treated with
sodium butyrate (NaBu) for 24 h. The transfected cells were enriched, and the expressions of endogenous proteins were analyzed. Images in the same box
indicate they derived from the same membrane. The identities of the proteins are shown.

FIGURE 3. TRIF increases the translation efficiency of RTA mRNA. A, 293T cells were transfected with cDNA, Flag-RTA (0.1 �g), and TRIF plasmid (0.05, 0.1 �g).
The cells were labeled with [S35]methionine for 30 min, and the cells lysates were used for immunoprecipitation with FLAG antibody. The immunoprecipitates
were separated and transferred onto Immobilon membranes. S35-labeled protein (newly synthesized) were measured. The membranes were then used for
Western blots with RTA-antibody. The relative translation efficiency was calculated as newly-synthesized protein (S35-labeled) versus total proteins. Bottom
numbers, the relative translation efficiency of RTA. B, average of relative translation efficiency of RTA from three independent experiments is as shown. Standard
deviations are also shown. C, 293T cells were transfected with RTA or TRIF plus RTA plasmids. Cycloheximide (CHX) was added. Cell lysates were made at various
time points after treatment (in hours). Western blot was performed to examine the protein stability. The images in the same box indicate that they are derived
from the same membranes. D, different RTA-expression plasmids were transfected with various amounts of TRIF plasmids. Total RNA were isolated, and RTA
mRNA levels were detected by semi-quantitative RT-PCR. Actin levels were used as a control. One representative of several independent experiments is shown.
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molecular pathway to modify its gene products for the maxi-
mum replication (58). MyD88may be involved in the establish-
ment of MHV68 latency in vivo (59).

In this report, we studied the effects of TRIF on the regula-
tion of KSHV. We find that: 1) TRIF specifically increases
steady state levels of KSHVRTAprotein and the increasedRTA
was functional (Fig. 1); 2) TLR3 activation leads to higher levels
of steady-state RTA protein expression (Fig. 2A). Because TRIF
is required for TLR3 signaling, the results suggest that the
endogenous TRIF activation would contribute to RTA expres-
sion; 3) the ectopic expression of TRIF leads to enhance expres-
sion of RTA from the viral genome upon induction of lytic
replication (Fig. 2B). All those data collectively indicates that
TLR-TRIF pathway may enhance the expression of RTA under
native environments. Therefore, there is a potential regulatory
loop: the activation of TRIF leads to enhanced KSHVRTA pro-
tein expression, and RTAdegrades TRIF to block innate immu-
nity induced by TLR activations (Fig. 6).
We have extensively addressed the biological function of the

regulatory loop. We thought the loop might suggest that TLR3
was a positive regulator of KSHV lytic replication as RTA is a
keymodulator of lytic replication.Wehave concentrated on the
detection of TLR3 agonist (dsRNA) on the effect of KSHV for
the following reasons: (A) KSHV infection activates TLR3 path-
way. (B) TRIF is specifically involved in the TLR3 pathway; and
(C) TLR4 already shown to be a negative regulator of KSHV
(31). We had examined: (A) if TLR3 enhances spontaneous
KSHV replication; (B) whether TLR3 activation plus chemical

treatments lead to greater KSHV lytic replication; (C) If TLR3
activation at different times of lytic replication leads to KSHV
replication enhancements. (D) Whether overexpression of
TRIF in KSHV-infected cells, enhances the KSHV lytic replica-
tion. Of note, virus production in the supernatant was used as
readout for the detection of viral replication, and all our data
suggest that TLR3 activation and TRIF per se were negative
regulators of KSHV lytic replication (data not shown). There-
fore, the only evidence that TLR3may enhance viral replication
is from murine �-herpesvirus 68 (MHV68), a murine KSHV
homologue. It is reported that TLR3 activation increases
MHV68 virus titers in vivo (36). However, other report argues
against this notion (35). Based on all the results, it is apparent
that TRIF-mediated RTA enhancement will facilitate the deg-

FIGURE 4. Domain analysis of TRIF-mediated enhancement of RTA. A, schematic diagram of TRIF mutant constructs. The number denotes amino acid
positions. The drawing is not to scale. B, multiple regions of TRIF mediate the enhancement of RTA expression. 293T cells were transfected with vector pcDNA3,
TRIF mutants (0.1 �g), and RTA (0.2 �g) expression plasmids in various combinations as shown on the top of the panel. Total DNA for transfection was
maintained the same with the use of vector DNA. Cell lysates were made 1 day later, and Western blot analysis was performed. RTA and GAPDH antibodies were
used. The identity of proteins is as shown. C, schematic diagram of RTA mutant constructs. The number denotes the amino acid positions. The drawing is not
on scale. D, the C-terminal region of RTA is required for TRIF-mediated enhancement. 293T cells were transfected with cDNA, RTA-�C (aa1–527), RTA, and TRIF
plasmids in various combinations. The expression of targets was examined by Western blot. RTA-�C was determined by FLAG antibody, and the RTA was
determined by RTA-Ab. The images in the same box indicate they are derived from the same membranes. The identity of proteins is as shown.

FIGURE 5. RIP1 may be involved in the enhancement of RTA expression. A and B, RIP1(�/�) MEFs (panel A) or RIP1(�/�) cells (panel B) were transfected with
cDNA, TRIF, and RTA plasmid as shown on the top. Cells were collected 1 day later, and expression of target proteins was examined by Western blot with the
RTA antibody first. The membranes were then stripped and probed with other antibodies. The identity of proteins is as shown.*: residual signals for RTA protein.
The images in the same box indicate they are derived from the same membranes. C, 293T cells were transfected with cDNA, RIP1, and RTA plasmids. One day
after the transfection, the cells were collected for Western blot analysis. The images in the same box indicate they are derived from the same membranes.

FIGURE 6. Schematic diagram of the TRIF and RTA interaction. Upon KSHV
infection of a permissive cell, the TLR3 pathway is activated, and RTA is also
expressed. RTA is able to degrade the critical adaptor molecule, TRIF, for TLR3
signaling, and consequently blocks TLR3-mediated innate immunity directed
against KSHV. At the same time, the virus is able to use the TLR3-TRIF pathway
to enhance the expression of RTA, and to expedite the degradation process of
TRIF, and furthermore to block the TLR3-mediated inhibitory effects on KSHV
replication.

TRIF Enhances KSHV RTA Expression
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radation of theTRIF itself, and thus blocks the inhibitory effects
of TLR3 (Fig. 6).
TRIF is a multifunctional adaptor protein, mediating activa-

tion of several transcription factors including NF-�B (60), and
trigger apoptosis.Ourwork has been added another novel func-
tion of TRIF, i.e. to enhance a viral gene expression for the
benefits of viruses. The mechanism of the enhancement is
mainly by promoting translational efficiency of RTA mRNA
(Fig. 3), although other mechanisms, such as transcriptional
control as well as protein stability, might also present. Further-
more, RIP1, which is a downstreammolecule of TRIF activation
pathway, might be involved in the TRIF-mediated enhance-
ment of RTA expression (Fig. 5). However, the results seem to
contradict to the fact that TRIF interacts with RIP1 using its
C-terminal region. It is clear that the capability of TRIF to
enhance RTA expression varies among different cell lines. In
293T cells, TRIF seems to have highest efficiency (Fig. 1 and
data not shown). In addition, different TRIF fragments also
have different efficiency for enhancing RTA expression. We
summon that the different cell lines may be responsible for the
apparent discrepancy. As RIP1 expression in 293T cells
enhancing RTA expression (Fig. 5), RIP1 seems to be one of the
mediators involved in the enhancement of RTA.
So far the exact responsive domain(s) for RTA to respond to

TLR3/TRIF activation is not completely identified (Fig. 4). We
narrowed the region down to the C-terminal (Fig. 4). Based on
the results in 293T cells, a fine mapping of the RTA domain
responsive to TRIF had been proven to be difficult (data not
shown). RTA�C is unique that it did not respond to TRIF. We
suspect that multiple regions of RTAmay response to different
regions of TRIF for the enhancements.
The detailed molecular mechanism for the enhancement of

translation efficiency of RTAmRNA is currently unknown. It is
known that TRIF signaling stimulates translation efficiency of
TNF-� mRNA via prolonged activation of protein kinase MK2
inmacrophages (61). Also, TLR-TRIF signaling has been shown
to suppress endoplasmic reticulum stress-induced translation
inhibition through activation of eIF2B (62, 63). Whether a sim-
ilar mechanism is also used for TRIF-mediated RTA enhance-
ment is under investigation. The specific enhancement of
KSHVRTAmay have a uniquemechanismbecause the respon-
sive sequences are located in the C terminus of the molecule
(Fig. 4).
We propose the following scenario upon primary KSHV

infection: KSHV infection of cells would lead to the activation
of TLR3, which may result in IFN production as well as the
apoptosis of the infected cells for the suppression of viral repli-
cation. KSHV RTA is an immediate early gene that expressed
upon viral infection, and RTA may block TLR3-mediated
innate immunity by degrading TRIF. Furthermore, the activa-
tion of TLR3 pathway leads to the enhancement of RTAprotein
expression, which would accelerate the degradation process of
TRIF, which would attenuate the TLR3 signaling (Fig. 6). In
addition, RTA may indirectly affect TLR4 signaling by activat-
ing vIRF1 that inhibits TLR4mRNA expression. Because TLR4
is involved in the KSHV pathogenesis in KS and exerts innate
immunity against KSHV (31), and TRIF is involved in TLR3, 4

signaling (60), the putative regulatory loop may play an impor-
tant role in KSHV life cycle.
In sum, we have identified a novel method that KSHV uses

for its gene expression. Together with our previous findings, a
regulatory loop is apparent: KSHV degrades TRIF, a TLR adap-
tor, to block TLR-mediated antiviral effects; and TRIF
enhances expression of a KSHV critical protein to block TLR3-
mediated repressive effects. This report provides evidence that
a virus not only blocks the host innate immunity, but also har-
nesses an immune pathway for the benefits of virus infection.
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