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Background: Phosphatidic acid is a key lipid second messenger often generated after receptor stimulation.

Results: After P2Y, receptor stimulation both PLD and DGK enzymes are responsible for producing PA species.
Conclusion: DGK facilitates a negative regulation of PLD and tightly controls PA levels.

Significance: Further understanding the PA signaling network is critical to developing next generation therapeutics for human

diseases.

Phosphatidic acid (PA) is a lipid second messenger located at
the intersection of several lipid metabolism and cell signaling
events including membrane trafficking, survival, and prolifera-
tion. Generation of signaling PA has long been primarily attrib-
uted to the activation of phospholipase D (PLD). PLD catalyzes
the hydrolysis of phosphatidylcholine into PA. A variety of both
receptor-tyrosine kinase and G-protein-coupled receptor stim-
ulations have been shown to lead to PLD activation and PA gen-
eration. This study focuses on profiling the PA pool upon P2Y
receptor signaling manipulation to determine the major PA
producing enzymes. Here we show that PLD, although highly
active, is not responsible for the majority of stable PA being
produced upon UDP stimulation of the P2Y receptor and that
PA levels are tightly regulated. By following PA flux in the cell
we show that PLD is involved in an initial increase in PA upon
receptor stimulation; however, when PLD is blocked, the cell
compensates by increasing PA production from other sources.
We further delineate the P2Y signaling pathway showing that
phospholipase C3 (PLCB3), PLC61, DGK{ and PLD are all
downstream of receptor activation. We also show that DGK{is a
novel negative regulator of PLD activity in this system that
occurs through an inhibitory mechanism with PKCa. These
results further define the downstream events resulting in PA
production in the P2Y, receptor signaling pathway.

G-protein-coupled receptor (GPCR)? activation initiates sig-
nal transduction modulating several essential physiological
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processes in the cell. The GPCR superfamily is the largest group
of cell surface receptors with more than 800 members (1). Dys-
function of GPCRs leads to many prevalent human diseases,
and these proteins represent a common therapeutic potential
with 50 —60% of all drugs targeting these receptors (2). Down-
stream signaling targets of GPCR activation are also key
enzymes for drug development; one of those is phospholipase D
(PLD).

P2Y receptors are a diverse group of GPCRs of which there
are eight subtypes (3); at least four are activated by uracil nucle-
otides, UDP or UTP (4). Nucleotide di- and triphosphates are
important extracellular signaling components that mediate a
plethora of intracellular signaling events, many of them
through stimulation of P2Y receptors, and the P2Y receptor is
the only subtype that is specifically activated by UDP (5). The
P2Y, receptor has a wide tissue distribution being found in
lung, heart, spleen, placenta, intestine, brain, and thymus (6).

Previous reports on P2Y receptor activation have suggested
that phospholipase D is an important downstream effector (7,
8). Specifically, the P2Y, receptor has been shown to activate
signaling pathways in the cell that turn on phospholipase C
(PLC) proteins and increase diacylglycerol (DAG) production
and protein kinase C (PKC) activity, which is a known activator
of PLD (6). PLD, which is responsible for the conversion of
phosphatidylcholine (PC) into the important signaling lipid
phosphatidic acid (PA), has long been considered the essential
PA producing enzyme. However, signaling PA can be generated
by several different enzymes, and the location, molecular spe-
cies, and timing of that production is tightly regulated (9). In
addition to PLD, other biosynthetic pathways for PA produc-
tion include: de novo synthesis from glycerol 3-phosphate, acy-
lation of lysophosphatidic acid by lysophosphatidic acid acyl-
transferase, and phosphorylation of DAG by diacylglycerol
kinase (DGK). Few studies exist that attempt to assess the com-
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pensatory roles played by different PA-producing enzymes
under inhibition of key pathways. This report addresses such
signaling after modulation of PLD in particular.

Two major isoforms of PLD exist, PLD1 and PLD2, each of
which is uniquely regulated (10-15). Each possesses iso-
form-specific functions due to differential subcellular local-
ization and modes of activation. In light of the importance of
PA in cellular signaling events, PLD has become an impor-
tant target for the development of small molecule inhibitors
(16-20). Our laboratories have developed dual PLD1/2
inhibitors (VU0155056), a 1700-fold PLD1-specific inhibitor
(VU0359595), and a 75-fold PLD2 preferring inhibitor
(VU0364739) to better understand the therapeutic potential
of these enzymes. Currently, PLD inhibitors are being eval-
uated for their potential use in brain disorders such as
Alzheimer disease and stroke (21), chronic inflammation
(22), and cancer (10, 23, 24).

Herein we explore how the stimulation of the P2Y receptor
in 1321N1 astrocytoma cells affects PLD activity and PA pro-
duction. We show that upon UDP stimulation of the receptor,
PLD catalytic activity is enhanced, and PA production is ele-
vated. Moreover, in this system PLD is not the major source of
steady-state bulk PA under these conditions, and instead DGK{
is a significant contributor to PA production. As a result of our
investigation we implicate DGK{ as a novel negative regulator
of PLD catalytic activity in this signaling pathway.

EXPERIMENTAL PROCEDURES
Materials and Reagents

1-Butanol-d,, was purchased from CDN Isotopes (Quebec,
Canada), and 1-butanol was purchased from EM Science
(OmniSolv, Gibbstown, NJ). All solvents used for extraction or
mass spectrometry were of HPLC grade or better, purchased
from EMD Chemicals. R59949 and Ro32-0432 were purchased
from Sigma. UDP was also purchased from Sigma and diluted in
aH,,D,, buffer (10 mm Hepes, 10 mm DTT, pH 7). [9,10-*H]O-
leic acid (45.5 Ci/mmol) was purchased from PerkinElmer Life
Sciences; Silica gel 60 A TLC plates, 20 X 20 cm, were pur-
chased from Whatman (Clifton, NJ); lipid standards, 32:0 phos-
phatidyl methanol (PtdMeOH), and 24:0 DAG as well as odd
carbon glycerophospholipid standards were purchased from
Avanti Polar Lipids (Alabaster, AL). Phorbol 12-myristate
13-acetate was purchased from Fisher. PLD inhibitors
VUO0155056, VU0359595, and VU0364739 were synthesized in
house (16-19). 1321N1 and 1321N1 P2Y/ cells were a gift from
Ken Harden and Rob Nicholas (Dept. of Pharmacology, Univer-
sity of North Carolina at Chapel Hill, NC).

Cell Culture

1321N1 astrocytoma cells expressing P2Y ¢ nucleotide recep-
tors were grown in Dulbecco’s modified Eagle’s medium
(DMEM) supplemented with 10% fetal bovine serum (FBS) and
1% antibiotic-antimycotic using G418 as a selection agent in a
37 °C humidified atmosphere with 5% CO.,.

Glycerophospholipid Extraction for Mass Spectrometry

Glycerophospholipids were extracted using a modified Bligh
and Dyer procedure as previously described (25). Briefly, cells
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were plated in 6-well tissue culture plates at 300,000 cells/well
48 h before the experiment in complete growth medium. Cell
seeding was kept consistent to make experiments and condi-
tions directly comparable. Cells were serum-starved 18 h before
experiment. Each well was treated with DMEM + relevant con-
ditions (UDP (or H;,D;, buffer control), inhibitors, etc.) for 30
min at 37 °C. After treatment, the medium was removed, and
cells were scraped in cold 0.1 N HCI:MeOH (1:1); suspension
was then transferred to cold 1.5-ml microcentrifuge tubes and
vortexed with 400 ul of cold CHCI, for 1 min. The extraction
proceeded with centrifugation (5 min, 4 °C, 18,000 X g) to sep-
arate the two phases. The lower organic layer was collected,
phospholipid internal standards were added, and solvent was
evaporated. The resulting lipid film was dissolved in 100 ul of
isopropanol:hexane:100 mm NH,COOH (aqueous) 58:40:2 for
LC-MS analysis.

Diacylglycerol Isolation and Detection

DAG isolation from total phospholipids extracts was
achieved as previously described (26). Briefly, after phospho-
lipid extraction by modified Bligh and Dyer procedure, each
sample was applied to a glass Pasteur pipette column plugged
with glass wool and packed with a 6-cm bed of silica gel 60 A
equilibrated with 10 ml of eluent (65:35:0.7 CHCI,:CH,OH:
H,0). DAG molecular species were recovered in the first 3 ml
of eluent, and solvents were evaporated in a vacuum centrifuge.
Samples were dissolved in 70 ul of 9:1 CH;OH:CHCl, contain-
ing 5 pl of 100 mm CH;COONa and analyzed by mass spec-
trometry as sodium adducts. For quantitation, 100 ng of 24:0
DAG was used as an internal standard.

Lipid Mass Spectrometry

Glycerophospholipids (including phosphatidylbutanol) were
analyzed on an Applied Biosystems/MDS SCIEX 4000 Q TRAP
hybrid triple quadrupole/linear ion trap mass spectrometer
(Applied Biosystems, Foster City, CA) equipped with a Shi-
madzu high pressure liquid chromatography system with a
Phenomenex Luna Silica column (2 X 250 mm, 5-um particle
size) using a gradient elution as previously described (25, 27).
The identification of the individual species, accomplished by
LC/MS/MS, was based on their chromatographic and mass
spectral characteristics. This analysis allows identification of
the two fatty acid moieties but does not determine their posi-
tion on the glycerol backbone (sn-1 versus sn-2). Quantification
of glycerophospholipids was achieved by the use of an LC-MS
technique employing synthetic odd-carbon diacyl and lyso-
phospholipid standards (Avanti Polar Lipids) covering a wide
range of acyl chain lengths and unsaturation for which standard
curves have been established.

For diacylglycerol species, mass spectral analysis was per-
formed on a Finnigan TSQ Quantum triple quadrupole mass
spectrometer (Thermo Finnigan, San Jose, CA) equipped with a
Harvard Apparatus syringe pump and an electrospray source.
Samples were analyzed at an infusion rate of 10 ul/min in pos-
itive ionization mode with the scan range from m1/z 400 to 900.
Data were collected with the Xcalibur software package
(Thermo Finnigan) and analyzed with software developed in
our laboratory as previously described (26).
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PLD Endogenous Assays

PLD Endogenous Assay Using Radioisotopes—PLD activity
was assessed by measuring accumulation of the PLD activity
marker phosphatidylbutanol (PtdBuOH) that is generated in
the presence of 1-butanol by a transphosphatidylation reaction
as previously described (28, 29). Briefly, cells were labeled with
[*H]oleic acid, 10 wCi/ml, and incubated overnight. Cells were
stimulated with UDP (at various concentrations) in the pres-
ence of 0.3% 1-butanol for 30 min. Lipids were extracted and
separated by TLC. Corresponding lipid spots were then imaged
using a phosphorimaging tritium screen for 72 h and stained
with iodine to visualize standards. PtdBuOH and PA were
quantitated using Quantity One software (Bio-Rad).

PLD Endogenous Assay Using Deuterated 1-Butanol and
Mass Spectrometry—MS-based PLD endogenous assay was
performed essentially as described previously (29). Briefly, cells
were seeded at 300,000 cells/well into 6-well tissue culture
plates, and designed experiments were carried out in the pres-
ence or absence of 0.3% 1-BuOH-d,, for the desired times. At
the end of the stimulation, plates were placed on ice, and media
were aspirated. Glycerophospholipids were extracted by the
modified Bligh and Dyer procedure as described above and ana-
lyzed in the same manner. For these samples 100 ng of 32:0
PtdMeOH was used as an internal standard to quantitate the
PtdBuOH-d, species based on offline calibration using stan-
dard curves generated from commercially available PtdBuOH
standards (Avanti Polar Lipids). PtdBuOH is the unique prod-
uct of PLD activity.

siRNA Protein Knockdown

1321N1-P2Y, cells were plated at 2.2 X 10° cells/well on
6-well plates with growth medium (DMEM, 10% FBS) 24 h
before transfection. Cells were ~50% confluent at time of trans-
fection. On-Target Plus SMART pools (O-TPSp) of siRNA
(Dharmacon) of each target gene were transfected (100 nm
siRNA/well) using Dharmafect 1 (Dharmacon) according to the
manufacturer’s protocol. After 18 h, the transfection medium
was replaced with growth medium. Assays were carried out
72 h post siRNA transfection. Lipid production was then mea-
sured using either TLC or MS.

Western Blotting

Western analysis was performed to confirm the knockdown
efficiency of each target gene by siRNA. Antibodies for each
protein used: Ga;, and Ge, (sc-394 and sc-393), PKCe (sc-
8393), RhoA (sc-418), DGK{ (sc-8721), PLC61 (sc-30062), and
PLD1 (sc-25512) were purchased from Santa Cruz Biotechnol-
ogy, Inc. (Santa Cruz, CA). Cdc42 (610928) was purchased from
BD Biosciences, Arfl and Arf6 (NB 100-1962 and NB 200-635)
were purchased from Novus Biologicals (Littleton, CO);
GAPDH (2118) was purchased from Cell Signaling Technology
(Boston, MA). PLCB3 (B521) antibody was a gift from Paul
Sternweis (Dept. of Pharmacology, UT Southwestern at Dallas,
TX) (30). PLD2 antibody was a gift from Sylvain Bourgoin
(Laval University, Quebec, Canada) (31).
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Lipid Flux Measurements

Glycerophospholipid flux was followed using incorporation
of synthetic alkyne phosphatidylcholine into the cellular lipid
pools and subsequent isolation and identification of both
endogenous and exogenous lipid species (32, 33). Briefly, cells
were plated in 60-cm tissue culture plates at 600,000 cells/plate.
After 24 h cells were serum-starved. Five hours before the
experiment cells were labeled with alkyne containing 34:3PC
(1-(palmit-15-ynoyl)-2-oleoyl-sn-glycero-3-phosphocholine)
at 2 mg/plate in DMEM contain 0.25 mg/ml fatty acid free BSA
as a lipid carrier. Cells were stimulated with 50 um UDP either
with or without 0.3% 1-butanol-d,, at various time points. After
stimulation, cells were extracted, and lipids were analyzed by
MS as described above. Lipid identity was confirmed by frag-
mentation analysis.

Statistical Analysis

Mass spectrometry and siRNA results were analyzed by Stu-
dent’s ¢ test to assess changes between conditions in replicate
experiments (27).

RESULTS

UDP Stimulation of the P2Y Receptor Leads to Increased PA
Formation and PLD Activity—To determine the effect of UDP
stimulation of the P2Y receptor on lipid signaling molecules, a
1321N1 astrocytoma cell line previously developed to specifi-
cally overexpress the P2Y receptor was used. 1321N1 cells lack
endogenous purinergic receptors and thus do not respond to
extracellular nucleotides, making them an ideal model system
to interrogate P2Y signaling pathways (34 —37). Here UDP was
used to stimulate the P2Y, receptor in a dose-dependent man-
ner. After ligand stimulation, PA formation was measured
using quantitative lipidomic analysis developed in our labora-
tory (25, 27). PLD activation was also determined using a PLD-
specific transphosphatidylation reaction with MS detection
(29).

Upon UDP stimulation of the receptor there was a robust
70% increase in total PA (Fig. 1A4). This is a near doubling of the
total PA pool observed with doses greater than 1 um ligand
(>300 pmol absolute increase of PA). Every detectable species
of PA showed increases with UDP stimulation (supplemental
Fig. S1). To determine the ability of the receptor to activate
PLD, product formation was measured as a function of the
transphosphatidylation reaction unique to this enzyme. When
cells were stimulated with UDP in the presence of 0.3% 1-buta-
nol-d,,, a marked 3.5-fold increase in total phosphatidylbuta-
nol (PtdBuOH-d,) production was observed compared with
vehicle control cells (Fig. 1B). Total PtdBuOH levels increased
by nearly 300 pmol. The increase in PtdBuOH was dose-depen-
dent with saturating stimulation seen at UDP levels above 1 um
consistent with trends for total PA production. UDP stimula-
tion (50 um) of 132IN1 cells lacking P2Y, overexpression
resulted in no PtdBuOH production, demonstrating that this
result is a receptor-dependent response (supplemental Fig. S2).

Blocking PLD-derived PA Production by 1-Butanol Has No
Effect on Total PA Pools after UDP Stimulation—To determine
if PLD was responsible for the robust increase in PA, we blocked
PLD ability to make PA and reassessed PA levels. Primary alco-
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FIGURE 1. PA formation and PLD activity following UDP stimulation. 1321N1 cells stably expressing the P2Y receptor were serum-starved overnight and
then stimulated with varying concentrations of UDP in DMEM for 30 min. After ligand activation, cells were extracted with a modified Bligh-Dyer method to
isolate cellular lipids. Lipid species were then quantified using LC-MS. A, for phosphatidic acid analysis cells were stimulated with UDP in DMEM alone for 30 min
at 37 °C. B, for PLD activity assays, UDP stimulation was carried out in the presence of 0.3% 1-butanol-d,, to capture PLD lipid products as PtdBuOH-d, species.
Cellular lipids were quantified using standard methods, and values are reported as pmol of each lipid class. Data are the means =+ S.E. (n = 3).

hols have long been used as tools to block PLD-generated PA
production (10, 38). In the presence of primary alcohols PLD
carries out a preferred transphosphatidylation reaction result-
ing in the production of phosphatidyl alcohols rather than
phosphatidic acid (39-41). The specificity constant for 1-bu-
tanol is 5700 times higher than that of water in the active site of
PLD. By activating PLD in the presence of 1-butanol, PLD-
derived PA production would be greatly diminished because
the enzyme is mainly making PtdBuOH products (40). It is well
established in the field that phosphatidyl-alcohol products are
metabolically stable in intact cells with no detectible degrada-
tion observed over the course of at least 60 min (42—44). For
this reason transphosphatidyl alcohols are a quantitative and
reliable measure of PLD activity.

When the P2Y, receptor was stimulated with high UDP con-
centrations (100 M) in the presence or absence of 0.3% 1-bu-
tanol, there was only an ~9% difference in the total amount of
PA being produced (Fig. 24). The small difference between the
conditions was not statistically significant.

The lack of an effect on total PA levels upon inhibition of
PLD-mediated PA production by 1-butanol was surprising due
to the large increase in PLD activity observed. It is possible that
individual PA species could undergo significant changes that
are being diluted by total PA pool measurements. To further
explore this possibility we characterized individual PLD lipid
products. By using the transphosphatidylation reaction in this
manner we were able to trap the PLD products as a metaboli-
cally stable compound in the cell allowing for more robust
measurements. Upon stimulation of the receptor there were
large increases in every PtdBuOH species detected with an
average increase of >3-fold (Fig. 2B). The most abundant
PtdBuOH species detected were either mono- or di-unsatu-
rated (32:1, 34:1, 34:2 PtdBuOH) (Fig. 2B). Polyunsaturated
PtdBuOH species (38:5 and 38:4) were rare, making up <3% of
the total pool. These results are consistent with previously
reported PLD product fatty acid specificity (45). These data
suggest that PLD-generated PA is a short-lived signaling mole-
cule that is in high flux.

After identification of the major PLD products, we further
explored the specific PLD contribution to the PA pool upon
receptor stimulation by looking at individual PA species. Total
PA was classified by either degrees of unsaturation (Fig. 2C) or
by acyl chain composition (Fig. 2D). Again there were few
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changes observed with 1-butanol addition. This data suggest
that PLD is not a major contributor to the overall steady-state
PA pool under these conditions. This could be explained in two
ways; (i) the PA generated by PLD is in flux and is quickly
metabolized to another lipid species in the cell, or (ii) there
could be a compensatory mechanism by which other PA-pro-
ducing proteins generate more PA to make up for the PA defi-
ciency caused by blocking PLD.

Small Molecule PLD Inhibitor Treatment Does Not Affect
Overall PA Levels after UDP Stimulation—Although 1-butanol
is a facile tool for blocking PLD-mediated PA production, treat-
ment with primary alcohols could have off-target effects, and
therefore, alternative methods were utilized. Primary alcohols
have frequently been described incorrectly as inhibitors of PLD
when in fact they mediate an alternative reaction to hydrolysis,
transphosphatidylation. To further explore the role of PLD in
this system, we utilized several recently developed small mole-
cule PLD inhibitors. For this experiment the dual PLD1/2
inhibitor (VU0155056) (16) as well as the isoform preferring
PLD1 (VU0359595) (18) or PLD2 (VU0364739) (19) inhibitors
were used, and PLD catalytic activity was assessed. The dual
PLD1/2 inhibitor, VU0155056, completely ablated PLD activity
upon UDP stimulation in this system (Fig. 34). The two iso-
form-selective compounds (VU0359595 and VU0364739) were
used at a dose that would completely block either PLD1 or
PLD2 activity, respectively, although not significantly inhibit-
ing the other isoform (18, 19). Each compound used individu-
ally or in combination significantly decreased PLD-generated
PtdBuOH levels. These data implicate both isoforms, PLD1 and
PLD2, as being downstream of P2Y receptor activation.

PA levels were then measured, and there was a small but not
statistically significant change (12%) in total PA levels when
PLD1 and PLD2 inhibitors were used in concert (Fig. 3B). These
data are consistent with results from 1-butanol treatment,
again supporting the claim that PLD is not a major contributor
to the stable total PA pool under these conditions. This shows
PLD1 and PLD2 are active and are known sources of PA; how-
ever, the contribution to the overall stable pool is not
substantial.

Characterization of P2Y4 Signaling Pathway Using siRNA
Knockdown of Signaling Proteins—To further characterize the
pathway from P2Y receptor to PLD activation, RNAi was used
to knock down proteins previously implicated in P2Y receptor
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or PLD signaling. Cells were then labeled with [*H]oleic acid, lated PLD activity in this system because siRNA isoform knock-
and metabolic flux of that lipid into PtdBuOH and PA was fol- downs independently or together gave a significant decrease in
lowed by TLC. Knockdown of PKC or Arfl and -6, known to  overall PtdBuOH production (Fig. 44) (also consistent with
modulate PLD signaling, had significant effects on PLD activity =~ PLD inhibitor experiments). Other established PLD activating
(Fig. 4A). Both PLD1 and PLD2 contribute to the UDP-stimu-  proteins including RhoA, Cdc42, and Racl (46-48) were
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knocked down with no significant effect on activity (data not
shown). Additionally, an interesting and unexpected result was
seen when protein levels of DGK{ were ablated; the activity of
PLD increased 2-fold, suggesting a novel negative regulation of
PLD activity by DGK{ (Fig. 4A4).

PA production was also monitored under these conditions.
When known activators of PLD, such as PKC (46) and Arf (49),
or PLD1 or PLD?2 itself were knocked down, there was no sig-
nificant effect on PA levels upon UDP stimulation (Fig. 4B).
These siRNA knockdown experiments are consistent with data
presented above using either 1-butanol or small molecule PLD
inhibitor treatment. Significant changes in PA levels were seen
with G/, ;, DGK{ or a co-knockdown of PLCB3+ PLC41. The
P2Y, receptor is known to signal through G, activating a PLCS
pathway (6), making these conditions the ideal internal control
for this experiment. PLC is responsible for the cleavage of phos-
phatidylinositol 4,5-bisphosphate to DAG and inositol 1,4,5-
trisphosphate. DAG is then converted to PA through phosphor-
ylation by DAG kinases. Interestingly, when PLCB3 was
knocked down on its own, there was no significant change in PA
levels. PLCB3 and PLC81 had to be knocked down together
before any decrease was seen. Several other PLC isoforms
known to be present in these cells were also knocked down
either individually or in combination with no observable effect
on PA production or PLD activity (supplemental Fig. S3). The
lack of effect seen with PLC isoform knockdowns on PA levels
suggest that PA is tightly regulated in these cells.
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The 2-fold increase in PLD activity with DGK{ knockdown
could possibly be explained by a subsequent induction of PLD1
or PLD2 expression. PLD1 and PLD2 protein levels were
assessed by Western blot in the presence of DGK{ knockdown
and no change in PLD1 or PLD2 expression was seen (Fig. 4C).
All protein knockdowns were confirmed by Western blot (sup-
plemental Fig. S4).

These data show that there is a key regulation of both PLD
activity and PA production by DAG-producing (PLC) or -me-
tabolizing (DGK) enzymes in this system. RT-PCR analysis
shows the presence of both DGK{¢ and DGKS isoforms (Fig.
4D), but only DGK{ protein knockdown had a significant effect
on either PLD activity or PA production (DGK& knockdown
had no effect; supplemental Fig. S3).

DAG Kinase { Contributes to DAG-PA Conversion after P2Y
Stimulation—Experimental results indicate that the majority of
total stable PA in this system is not coming from phosphatidyl-
choline to phosphatidic acid conversion by PLD. Data support
the hypothesis that a major contributor to the PA pool is
through a phosphatidylinositol 4,5-bisphosphate-DAG-PA
pathway involving PLC3 and PLC51 isoforms and DGK{ (PA
decreased with protein knockdown; Fig. 4B). To further sup-
port this idea, we first show that DAG levels are elevated in
response to UDP stimulation. Every species of DAG measured
showed a significant increase (except 28:0 DAG) with, some
increasing more than 2-fold (Fig. 5, white bars).
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stimulated with 50 um UDP for 20 min. Additional fold increase over UDP-stimulated DAG levels is indicated by black bars plotted with respect to basal
conditions. DAG species 38:4 is plotted differently to indicate a decrease (24%) with respect to the UDP-stimulated level when DGK{ was knocked down. (n =

2; black bars: *, p < 0.05; **, p < 0.01).

To determine if DGK({ is a key isoform catalyzing DAG to PA
conversion, we also measured DAG levels when DGK{ was
knocked down to confirm that DAG is building up and not
being converted to PA via another DGK isoform. Cells were
transfected with siRNA against GAPDH control protein or
DGK{ and then stimulated with UDP. There was a significant
increase in overall DAG levels with several species showing sig-
nificant elevation with DGK{ knockdown above UDP-stimu-
lated control levels (Fig. 5, black bars). This paired with
observed decreases in PA after DGK{ knockdown confirm that
DGK({ is a key enzyme contributing to DAG metabolism and
PA generation upon UDP stimulation of the P2Y receptor.

PLD Is Regulated by a PKCa-DGK{ Mechanism—The large
potentiation of PLD activity upon DGK{ protein knockdown
observed in the lipid flux experiments suggests that the protein
is essential for the negative regulation of PLD activity. Previous
studies from other laboratories have found PKCa and DGK{
exist in a regulatory complex (50, 51). Our data suggest that this
signaling pathway may be under the control of a similar PKC-
DGK regulatory mechanism. To test this hypothesis, siRNA
was used to knock down PKCa or DGK{ alone or in conjunc-
tion, and endogenous lipid levels were assayed with a quantita-
tive MS based lipidomic approach. Consistent with previous
experiments (involving radiolabeled oleic acid labeling; Fig. 4),
DGK{ knockdown resulted in a large activation of PLD (Fig.
6A). Interestingly when DGK{ and PKCa were knocked down
together, the large increase in PLD activation was attenuated
significantly (>50% decrease). The activation of PLD upon
DGK{ knockdown did not occur in the absence of receptor
stimulation (Fig. 6A). In addition to siRNA knockdown we also
used a small molecule PKC inhibitor to further explore this
mechanism. When DGK{ was knocked down and PKC activity
was inhibited (with Ro32-0432), the DGK{-mediated PLD acti-
vation was ablated to near control levels (Fig. 6A4). These data
support the hypothesis that DGK{ regulates PLD through a
PKCa-dependent mechanism, possibly through a PKCa-DGK{
protein complex previously described (50, 51). When PKCa
was knocked down or inhibited chemically, there was only a
small decrease in PLD activity, suggesting that there are addi-
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tional non-PKC modes for activating PLD after P2Y receptor
stimulation.

We also assessed PA production under these conditions.
UDP stimulation increased PA production (>60%), and PA
production was decreased when DGK({ protein was knocked
down (15% decrease; p < 0.05). No other large changes in PA
were observed with siRNA knockdown either under basal or
UDP-stimulated conditions (Fig. 6B and supplemental Fig. S5).
To determine if this was a universal PLD regulation in these
cells we stimulated the endogenously expressed thrombin
receptor. Thrombin stimulation led to increased PLD activity;
however, DGK{ protein knockdown had no effect on either
PLD levels or PA production, suggesting that this is a signaling
pathway specific effect (supplement Fig. S6).

To better determine that this mechanism was DGK{-centric
and did not involve other classes of DGK isoforms, we used a
small molecule DGK inhibitor (R59949) that is specific to type I
DGK isoforms and is not effective against DGK{ (52, 53). Treat-
ment with R59949 had no effect on either UDP or phorbol
12-myristate 13-acetate stimulated PLD activity (Fig. 6C). This
would suggest that the mechanism by which DGK regulates
PLD is through an inhibitor resistant DGK isoform. To confirm
that the DGK inhibitor works properly, DAG levels were
assessed and shown to be elevated under these conditions (data
not shown). Unfortunately, there are no small molecule inhib-
itors specific to DGK{ currently available. Treatment with PKC
inhibitor Ro32-0432 led to differential effects depending on
stimulation. Under UDP stimulation no change in PLD activity
was seen with PKC inhibition; however, when stimulated with
phorbol ester (phorbol 12-myristate 13-acetate) there was a
large decrease in PLD activation when PKC was blocked. This is
consistent with the known mechanism of PLD activation via
PKC upon phorbol ester stimulation (54) and suggests that after
P2Y, receptor stimulation PLD is activated in ways that are
both dependent and independent of PKC.

PLD Contribution to the PA Pool Is Small but Immediate after
P2Y, Receptor Activation—To more closely assess the time
frame of signaling activation, we carried out a time course and
followed specific lipid species to determine if there was a more
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significant temporal element to PLD activation in this system.
Monitoring lipid distribution and flux in the cell is difficult due
the plethora of molecular species and metabolic pathways. To
simplify this monitoring process we utilized a MS-based
alkyne-tagged lipid method previously developed in our labo-
ratory (32, 33). We labeled 1321N1 P2Y, cells with an alkyne
containing PC (34:3), an exogenous version of a major PLD
substrate (34:1 PC), and followed the alkynyl chain as it was
incorporated into other phospholipid classes after receptor
stimulation. By using this exogenous lipid we can monitor if a
specific PC is being remodeled, metabolized, or converted to a
different lipid class in a time-dependent manner. We did this
both in the presence or absence of the alternative PLD substrate
1-butanol. After UDP stimulation of the P2Y, receptor, there
was an immediate increase (5 min) in PtdBuOH levels (Fig. 74),
suggesting PLD activation occurs quickly. This was true for
both exogenous alkyne lipids (34:3) as well as endogenous lipid
species (34:1), showing that PLD was able to use the alkyne lipid
efficiently, consistent with previous reports (32).

When PLD-mediated PA generation was blocked with pri-
mary alcohol, interesting results were seen. There was a statis-
tically significant difference in PA levels at early time points
after receptor activation in the presence of 1-butanol (Fig. 7B).
Again this was true for endogenous (34:1 and 32:1) and exoge-
nous (34:3) as well as remodeled (32:3) lipid species. Under
these conditions all PA species showed a distinct time shift
when 1-butanol was present (supplemental Fig. S7, A and B).
These data suggest that the immediate increase in PA levels
after P2Y, receptor stimulation is heavily dependent on PLD
activity. This also shows that when PLD generation of PA is
blocked, the cell compensates over time to adjust PA levels back
to those seen in the absence of a PLD blocking agent, showing
the tight regulation of PA pools. Thirty minutes post-stimula-
tion there is no difference in PA levels either with or without
primary alcohol.

Other lipid classes were also analyzed. Both phosphatidyl-
serine and phosphatidylethanolamine contained alkyne lipids
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showing that exogenous PC was metabolized into other glyc-
erophospholipid classes (data not shown). Another interesting
trend was seen with phosphatidylinositol lipids. Both endoge-
nous phosphatidylinositol (PI; 34:1) and alkynyl-PI (34:3) levels
decreased over time after P2Y stimulation, and in the presence
of a primary alcohol that decrease was more pronounced (sup-
plemental Fig. S7C).

DISCUSSION

Cellular PA is produced through multiple mechanisms, but
PLD has long been represented in the literature as the main
source of signaling PA. Because of the essential roles attributed
to PA in the cell as well as the importance of PC breakdown
(55), PLD has received much attention.

The data presented herein demonstrate that the cellular PA
pool is a dynamic population that is tightly regulated. Modula-
tion and inhibition of one key PA-producing enzyme, PLD, has
little effect on total steady-state PA levels in 1321N1 cells under
these conditions. When the P2Y, receptor is stimulated, it is
clear that both PLD activity and PA levels increase greatly, but
siRNA knockdown or chemical inhibition of PLD indicates the
enzyme is not the only source of bulk-PA production. These
data do not show that PLD-generated PA is unimportant;
rather, it is possible that the flux of the PLD-generated PA is so
fast that we are unable to trap that population using total lipid
pool measurements. Our lipid flux experiments further support
the claim that PLD is responsible for the initial immediate gen-
eration of PA after UDP treatment. When this essential enzyme
is blocked, the cell eventually overcomes this blockade by
increased activity from other sources. This would suggest that
PLD-generated PA is a critical signaling pool that is rapidly
metabolized.

PA has dichotomous roles in the cell as a structural lipid
important in inducing negative membrane curvature, protein
recruitment, and vesicle formation as well as an important sig-
naling second messenger (56). Due to the different roles this
lipid fills, global measurements do not provide a complete pic-
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ture. More research into distinguishing PA pools in the cell is
currently under way, and it is likely that small subcellular PA
pools are those essential for many of the important signaling
properties associated with this molecule. PLD1 and PLD2 are
differentially localized, with PLD1 being mostly found in inter-
cellular membranes and PLD2 found constitutively at the
plasma membrane (10). Our laboratory (16 —19) as well as oth-
ers (20, 57) have published several reports implicating small
molecule PLD inhibitors as possible anti-cancer agents. It has
been shown that PLD inhibitor treatment leads to decreased
cancer cell invasion (16), cell spreading, chemotaxis (20), and
possibly could be a tool to decrease cancer metastasis (58). The
utility of these small molecules to inhibit such essential cellular
processes while not effecting bulk steady-state PA levels is
intriguing and would suggest that there is a small subpopula-
tion of essential signaling PA that is tightly regulated and criti-
cal to these cellular processes.

Identification of other novel regulatory mechanisms of PLD
activity provides additional opportunities for small molecule
therapeutic development. The identification of DGK{ as a neg-
ative regulator of PLD activity is one of these novel mecha-
nisms. Mérida and co-workers (59) have proposed that DGK({ is
part of a much larger protein complex that scaffolds lipid
metabolizing enzymes and effectors near cellular membranes.
The possible role of DGK({ as a scaffolding protein further sup-
ports the importance of local modulation of the signaling event.

It has been established in several cell systems that DGK{ and
PKCa are found associated in a regulatory complex (51). Based
on literature evidence and the results reported herein, we pro-
pose that that regulation is intact in this system.

This study further delineates the mechanism of PLD activa-
tion downstream of P2Y, receptor stimulation (Fig. 8). UDP
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activates the P2Y, receptor, which is a GPCR signaling through
Ga,-activating PLC enzymes; specifically 53 and 61 isoforms
are required. PLCs catalyze the conversion of phosphatidyli-
nositol 4,5-bisphosphate into DAG and inositol 1,4,5-trisphos-
phate. DAG is then phosphorylated by DGK{ to generate PA.
Increased DAG levels also activate PKCeq, which in turn acti-
vates PLD. PLD can also be turned on in a PKC-independent
manner through Arf (or other small GTPases). We have shown
that both PLD1 and PLD2 isoforms are involved in this path-
way. When DGK( protein is not present, the pathway is dereg-
ulated, and PLD is hyperactive.

Studies presented in this work are the first direct evidence
showing that DGK( is a negative regulator of PLD activity. It is
also shown that DGK and PLD are in a tightly regulated com-
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pensatory mechanism by which steady-state PA levels are con-
trolled. PLD is activated by P2Y receptor stimulation, but that
activity is highly dynamic and difficult to discriminate as part of
the overall PA population. Activation of PLD downstream of
several P2Y receptors (P2Y,, P2Y,, P2Y,, and P2Y) is known (8,
60, 61), and exploration of these signaling pathways could pro-
vide new insight into the relevant role of this phospholipase.
Despite its limitations, work in the field of the purinergic recep-
tors has frequently used the 1321N1 cell line. It has been a
useful model system in which to explore signaling pathways.

This work further illustrates that the PA signaling network is
complex and highly integrated. Attempts to successfully mod-
ulate this signaling pathway for therapeutic development will
require a detailed understanding of these interconnections.
Determining why cells have evolved such a dynamic network
designed to maintain cellular PA levels even to the point of
having signaling pathways compete remains to be fully eluci-
dated. This reinforces our understanding of the essential roles
that signaling PA pools play in cellular functions and that
abnormalities have roles in pathology.
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