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PURPOSE. To investigate photoreceptor and postreceptor retinal function in patients with
congenital stationary night blindness (CSNB).

METHODS. Forty-one patients with CSNB (ages 0.19–32 years) were studied. ERG responses to
a series of full-field stimuli were obtained under scotopic and photopic conditions and were
used to categorize the CSNB patients as complete (cCSNB) or incomplete (iCSNB). Rod and
cone photoreceptor (RROD, SROD, RCONE, SCONE) and rod-driven postreceptor (VMAX, log r)
response parameters were calculated from the a- and b-waves. Cone-driven responses to 30
Hz flicker and ON and OFF responses to a long duration (150 ms) flash were also obtained.
Dark-adapted thresholds were measured. Analysis of variance was used to compare data from
patients with cCSNB, patients with iCSNB, and controls.

RESULTS. We found significant reduction in saturated photoreceptor amplitude (RROD, RCONE)
but normal photoreceptor sensitivity (SROD, SCONE) in both CSNB groups. Rod-driven
postreceptor response amplitude (VMAX) and sensitivity (log r) were significantly reduced in
CSNB. Log r was significantly worse in cCSNB than in iCSNB; this was the only scotopic
parameter that differed between the two CSNB groups. Photopic b-wave amplitude increased
monotonically with stimulus strength in CSNB patients rather than showing a normal
photopic hill. The amplitude of the 30-Hz flicker response was reduced compared with
controls, more so in iCSNB than in cCSNB. The mean dark-adapted threshold was significantly
elevated in CSNB, more so in cCSNB than in iCSNB.

CONCLUSIONS. These results are evidence of normal photoreceptor function (despite the low
saturated photoresponse amplitude) and anomalous postreceptor retinal circuitry.

Keywords: congenital stationary night blindness, electroretinogram, dark-adapted threshold,
photoreceptor, postreceptor

Congenital stationary night blindness (CSNB) is a group of
retinal conditions generally characterized by subnormal

visual acuity and poor vision in dim light.1–4 High myopia at a
young age, nystagmus, and strabismus are common in CSNB.5,6

CSNB is considered nonprogressive, although exceptions have
been noted. A number of genetic mutations associated with
CSNB have been identified.7–19

Clinical diagnosis of CSNB is typically based on a character-
istic negative ERG waveform in which the ratio of the scotopic
b-wave to a-wave amplitude is less than one. This is ordinarily
attributed to a defect in transmission from photoreceptors to
second-order cells.6,20 Consistent with normal rod function,21

the amplitude of the ERG a-wave is usually normal in CSNB,22,23

although reduced a-wave amplitude has been reported in some
patients.21,24–28 Furthermore, the rhodopsin density and
kinetics of regeneration, assessed using reflection densitometry,
are normal in some patients29,30 but abnormal in others.31 In
the photopic conditions that have been studied, results suggest
altered retinal circuitry.22,25,28,32,33

CSNB is classified as either complete (cCSNB) or incomplete
(iCSNB).1,34 In cCSNB, the defect is localized to the ON bipolar
cell and alters transmission of the photoreceptor signal to the
bipolar cell. In iCSNB, the defect is localized to the
photoreceptor terminal and alters transmission from photore-
ceptors to both ON and OFF bipolar cells.2,6,35

The goal of the present study was to investigate retinal
function in CSNB using contemporary ERG procedures and
analyses. We analyzed the activation of phototransduction and
postreceptor function and assessed the relationship of photo-
receptor to postreceptor activity. Our overall aim is to delineate
the retinal circuitry in patients with CSNB.

METHODS

Subjects

Forty-one patients (34 males, 7 females) with CSNB were
studied. All but two were myopic. Corrected letter acuity,
tested in 31 patients, was reduced. Grating acuity,36 tested in
the remaining 10 patients who were younger than 2.5 years,
was below the 95% prediction limits of normal for age in all but
one.

To classify the patients as either cCSNB or iCSNB, we used
characteristics of both the scotopic and photopic ERG
response.3,37 For the dark-adapted response to a 3.35 cd�s/m2

stimulus, all 41 patients had a negative ERG waveform; that is,
the ratio of b-wave amplitude to a-wave amplitude was less than
1. Additionally, all had a reduced or absent response to a dim
flash (0.11 cd�s/m2). Thirty-five of the 41 were tested in
photopic conditions. Twenty-one of the patients were catego-
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rized as cCSNB and 14 as iCSNB; their clinical characteristics
are listed in Table 1.

We did not classify the six patients who were not tested in
photopic conditions. The diagnosis of CSNB was appropriate
in these six because all had a negative ERG waveform, normal
fundi, and significantly elevated dark-adapted thresholds.

ERG responses were recorded from 61 healthy control
subjects recruited for prior studies; the a- and b-wave data from
the majority of these subjects have been reported previously.38

Dark-adapted thresholds were obtained from 26 control
subjects; these data have also been reported previously.39 All
control subjects had best corrected logMAR letter acuity of 0.1
(20/25) or better. The spherical equivalent of control subjects
ranged from �10.25 to þ3.00 (median �1.41) diopters. For
purposes of analysis, we designated subjects with myopia of
4.00 diopters or more as myopic controls (n ¼ 17).

The patients’ data were collected as part of their clinical
care and were analyzed with approval of the Boston Children’s
Hospital Committee on Clinical Investigation (CCI). Control
subjects were recruited and tested with approval from the CCI.
The study conformed to the tenets of the Declaration of
Helsinki. Written informed consent was obtained from control
subjects, consent from the parents of minors, and assent from
subjects age 8 to 18 years.

Procedures

Electroretinography. Pupils of the CSNB patients were
dilated with cyclopentolate hydrochloride (1%) and phenyl-
ephrine (2.5%); control subjects were dilated with tropicamide
(1%). The subject dark adapted for 30 minutes. Then, under
dim red light, 0.5% proparacaine was instilled and a bipolar
Burian-Allen electrode (Hansen Ophthalmic Development
Laboratory, Coralville, IA) was placed on the cornea and a
ground electrode on the skin over the mastoid.

Stimulus strength was measured using a calibrated photo-
diode (IL1700; International Light, Newburyport, MA) with a
scotopic or photopic filter. For the dark-adapted eye with an 8-
mm pupil, the maximum flash produced approximately 3.4 log
scotopic troland seconds (scot td s). The 3.35 cd�s/m2

stimulus, which was used to identify the negative ERG
waveform, and thus to diagnose CSNB, produced approxi-
mately 1.5 log scot td s. This is similar to the dark-adapted 3.0
International Society for Clinical Electrophysiology of Vision
(ISCEV) standard stimulus condition.40 To estimate photopic
trolands, we accounted for the Stiles Crawford effect by using
an effective pupil area of 20 mm2 for the dilated 8 mm pupil.41

Twenty-two of the patients and 31 of the control subjects
were tested using a Nicolet Compact 4 system (Nicolet
Biomedical, Madison, WI). The remaining patients and controls

were tested using an Espion system (Diagnosys, Lowell, MA).
Differences in the stimuli, amplifiers, and data acquisition
between these systems have been summarized.42 The band-
pass for the amplifiers was 1 to 1000 Hz for the Nicolet system
and 0.625 to 1000 Hz for the Espion system. For control
subjects, no significant differences between Nicolet and Espion
results were found for scotopic or photopic ERG parameters.
Therefore, the results obtained using the two systems were
combined.

Fourteen of the patients were tested under brief, light
general anesthesia (Minimum Alveolar Concentration ~1.0)
that does not significantly affect the ERG parameters.43 The
other patients (n ¼ 27) and all control subjects were tested
awake.

Dark-Adapted Rod and Rod-Driven Activity. Responses
to full field, brief (<3 ms), blue stimuli were recorded over an
approximately 5 log unit range (from �2–3 log scot td s);
stimuli were incremented in 0.3 log unit steps. Responses
contaminated by artifacts such as blinks and eye movements
were rejected. Two to 16 responses were averaged in each
stimulus condition. The interstimulus interval ranged from 2 to
60 seconds. Digitized responses were amplified, displayed and
stored for analysis. The amplitude and implicit time of the a-
and b-wave responses were measured and examined as a
function of stimulus strength.

Rod photoreceptor function was assessed using ensemble
fits of the Hood and Birch44 formulation of the Lamb and Pugh
model of the activation of phototransduction.45,46 A curve-
fitting routine (fminsearch/fmin subroutine; Matlab; The Math-
works, Natick, MA) was used to determine the best-fitting
values of SROD [(scot td)�1 s�3], RROD (lV), and a brief delay td

(seconds) in the following equation:

Rði; tÞ ¼ 1� exp �0:5 I SRODðt � tdÞ2
� �� �

RROD for t> td

ð1Þ

In this equation, I is the stimulus in scot td s and RROD (lV) is
the saturated response amplitude. SROD scales the response
with stimulus strength44 and is related to the amplification
constant in the Lamb and Pugh model.45 Equation 1 was fit to
the leading edge of the a-wave up to the trough or to a
maximum of 20 ms. All parameters were free to vary.

The rod-driven b-wave stimulus/response function47 was
summarized by

V ðIÞ ¼ VMAX I=ðI þ rÞ½ � ð2Þ

that was fit to the b-wave amplitudes of each subject. In this
equation, V is the b-wave amplitude produced by stimulus I

(scot td s), VMAX (lV) is the saturated amplitude, and r is the

TABLE 1. Clinical Characteristics of Patients With cCSNB and iCSNB

cCSNB, n ¼ 21 iCSNB, n ¼ 14

Median Range Median Range

Age, y 6.5 0.19 to 20 9.0 0.86 to 32

Letter acuity, logMAR [Snellen] 0.40 [20/50] 0.18 to 0.60 [20/25 to 20/80] 0.54 [20/70] 0.30 to 1.00 [20/40 to 20/100]

Grating acuity, cpd 3.9 2.2 to 4.5 3.1 1.3 to 4.5

Spherical equivalent, D �7.25 �13.75 to þ1.00 �4.88 �10.50 to þ1.75

Number Percent Number Percent

Nystagmus 13 62 9 64

Strabismus 13 62 4 29

Paradoxical pupillary response 14 67 1 7
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stimulus that evokes a half-maximum b-wave amplitude. Thus,
1/r is a measure of b-wave sensitivity. The function was fit only
to those stimuli at which substantial a-wave intrusion did not
occur.48 Under these conditions, the b-wave represents activity
mainly in the rod-driven ON bipolar and other postreceptor
retinal cells.49–51

Light-Adapted Cone and Cone-Driven Activity. In 29 of
the 41 patients, cone and cone-driven responses were
recorded to a range of red flashes (0.3–35 cd�s/m2) presented
on a steady, white rod-saturating background (25.5 cd/m2).
Cone photoresponse parameters were calculated by fit of a
model of the activation of phototransduction to the first 5.5 ms
of the a-wave. A cascaded RC filter models the capacitance of
the cone membrane by numerical convolution of the filter
output with the Gaussian function.52 The equation is

Rði; tÞ ¼
�

1� exp
�
� 0:5 I SCONEðt � tdÞ2

��
RCONE

h i
* expð�t=sÞ ð3Þ

where RCONE is the saturated response amplitude (lV), SCONE a
gain parameter [(phot td)�1 s�3], td (seconds) a brief delay, and
s the time constant of the RC filter (1.8 ms). The symbol *
represents the convolution operation. The amplitude and
implicit time of the a-wave and b-wave responses were
examined as a function of stimulus strength.

Thirty-one of the 41 patients also had photopic function
tested with a 30-Hz flickering stimulus of 2.25 cd�s/m2.
Additionally, when we noticed that the photopic stimulus
response function in the CSNB group did not show a photopic
hill,53 we added a long-duration (150 ms) white flash (200 cd/
m2) presented on a steady background (42 cd/m2) to evaluate
the OFF response of cone bipolar cells.54 Ten of the patients
were tested with the long flash. The amplitude and time to
peak of the response to the 30-Hz stimulus and the amplitude
and implicit time of the ON response (b-wave) and OFF
response (d-wave) to the long flash were measured.

Dark-Adapted Visual Threshold. Thresholds were mea-
sured using a two-alternative, spatial, forced-choice psycho-
physical procedure. Following 30 minutes of dark adaptation,
the subject’s gaze was attracted to a small (30 minute arc)
flickering (1 Hz) red LED fixation target at the center of a dark
screen. When the subject was alert and looking at the fixation
target, a blue (k < 510 nm) stimulus (108 deg diameter, 50 ms
duration) was presented 208 to the left or the right of the
fixation target. For young children, on every trial, an adult
observer reported stimulus location (right or left) based on the
child’s head and/or eye movements and received feedback.
Older subjects pointed to the stimulus or reported verbally the
stimulus location. A staircase method55 was used to estimate
threshold. Threshold was obtained in 40 of the 41 patients
with CSNB. For CSNB patients tested awake, the ERG and dark-
adapted visual threshold (DAT) were measured on the same
day. When the ERG was done under anesthesia, thresholds
were measured on a different day.

Statistical Analyses

Although the clinical testing had been performed on both eyes,
ERG data from one eye of each patient were analyzed. The eye
with the better scotopic b-wave sensitivity (log r) was
selected. ANOVA was used to compare data from patients
with cCSNB, patients with iCSNB, and controls. Post hoc
comparisons were made using the Bonferroni test. The
uncategorized patients (n ¼ 6) were not included in the
analyses. The Mann-Whitney U test was used to compare long-
flash results in cCSNB patients and controls; this nonparamet-
ric test was used because criteria for equal variance between
groups was not met. The significance level of all tests was a
less than or equal to 0.01. Linear regression analysis was used

to evaluate ERG parameters for significant relationship to
refractive error (spherical equivalent). We also evaluated rod
photoreceptor parameters (SROD and RROD) for significant
relationship to postreceptor parameters (log r and VMAX).

RESULTS

Sample scotopic ERG records for cCSNB, iCSNB, and control
subjects are shown in Figures 1A through 1C. Both cCSNB and
iCSNB patients show a negative waveform with much reduced
b-wave amplitude compared with the control. Fits of a model
of activation of rod phototransduction are shown in Figures 1D
through 1F. The results show normal SROD but low saturated
rod amplitude (RROD) in cCSNB and iCSNB. The CSNB b-wave
stimulus response functions (Figs. 1G, 1H) are characterized by
low b-wave sensitivity (log r) and low saturated amplitude
(VMAX) compared with controls (Fig. 1I).

Sample photopic records are shown in Figures 2A through
2C. In CSNB patients, the amplitude of the photopic b-wave
increased with stimulus strength, whereas controls showed a
photopic hill; that is, at higher stimulus strengths (2.5–3.1 log
phot td s), amplitude decreased. In controls (Fig. 2F), the
response to the long flash shows both b-wave and d-wave. In
cCSNB (Fig. 2D), the response shows little or no b-wave and
normal d-wave. In iCSNB (Fig. 2E), the response shows small b-
wave and small d-wave.

The photoreceptor and postreceptor ERG parameters
(mean 6 SD) of CSNB patients and controls are summarized
in Table 2; the results of the statistical analyses are also shown.

Rod and Rod-Driven Activity

Saturated amplitudes (RROD and VMAX) were significantly lower
in CSNB patients than in controls but did not differ between
cCSNB and iCSNB (Figs. 3A, 3B). Photoreceptor sensitivity (log
SROD) did not differ between CSNB patients and controls (Fig.
3C). Postreceptor sensitivity (log r), however, was significantly
worse in CSNB patients than in controls (Fig. 3D); that is, a
brighter stimulus was required to produce a half maximum b-
wave amplitude in the former. Patients with cCSNB had
significantly poorer log r compared to those with iCSNB.

We found no relationships between rod photoreceptor and
rod-driven postreceptor response parameters in our patients.
For the sensitivity parameters, deficits in log r, which were
significant and broadly distributed (Fig. 3D), were not related
to log SROD, the values of which were almost entirely within
the range found in control subjects (Fig. 3C). For the amplitude
parameters, the relationship of saturated b-wave amplitude
(VMAX; Fig. 3B) and saturated rod amplitude (RROD; Fig. 3A) was
not significant. We interpret these results as consistent with a
defect in transmission from rods to postreceptor cells.

RROD as a function of spherical equivalent is shown in
Figure 4. In controls, RROD decreased as the amount of myopia
increased. In the CSNB patients (all categories combined),
there was no significant relationship, indicating no effect of
refractive error on response amplitude. The zero intercept for
the CSNB group differed from that in controls (normal and
myopic combined) by approximately 150 lV. This offset
indicates that deficits in RROD in CSNB cannot be due solely
to myopia.

Figure 5A shows the results of the first measurement of DAT
in the patients; the median age at first test was 6 years. All but
five subjects had significantly elevated threshold. The median
threshold was 1.40 (range,�0.11–3.03) log units above normal.
Threshold elevation was significantly greater (t¼4.5, df¼32, P

< 0.01) in the patients with cCSNB (mean 1.72 [range, 0.95–
3.03] log units) than in those with iCSNB (mean 0.77 [range,
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�0.11–1.80] log units). Figure 5B shows repeated measure-
ments of DAT over a 2- to 10-year span in 15 patients. In 14, the
thresholds were quite stable; in one, elevation increased 0.8
log unit, which is less than the 1 log unit defined as a
significant change in threshold.39 DAT and postreceptor b-wave
sensitivity (log r) in our patients with CSNB were significantly
correlated (r ¼ 0.46; P < 0.01).

Cone and Cone-Driven Activity

The photopic ERG data are summarized in the lower half of
Table 2. The cone photoreceptor parameters, RCONE and log
SCONE, for the patients and control subjects, are shown in
Figure 6. RCONE was significantly lower in both cCSNB and
iCSNB patients than in controls. There was no significant
difference in log SCONE between patients and controls.

Figure 7 shows mean (6SEM) photopic b-wave amplitude
as a function of stimulus strength. In both cCSNB and iCSNB,

amplitude was lower than in controls and did not show a
photopic hill53 (Fig. 7A). Mean b-wave implicit time was
delayed in both patient groups across all intensities compared
with controls (Fig. 7B).

Amplitude of the response to the 30-Hz stimulus was
significantly lower in CSNB than in controls (Fig. 8A).
Amplitude was significantly smaller in iCSNB than in cCSNB.
Time to peak differed significantly between patients and
controls but did not differ between cCSNB and iCSNB (Fig. 8B).

Of the 10 patients with CSNB who were tested with the
long-duration (150 ms) flash, 9 had cCSNB. The b-wave (ON
response) was markedly reduced in all nine (<6.5 lV), but all
had a prominent d-wave (OFF response). The mean implicit
time of the d-wave was prolonged compared with control
subjects (Table 2). The one patient with iCSNB had reduced b-
and d-wave amplitude and prolonged implicit time compared
with controls.

FIGURE 1. Sample scotopic (dark-adapted) ERG records and model fits to a- and b-waves from a cCSNB patient, iCSNB patient, and control subject.
(A–C) ERG responses to a series of flashes. Flash strength in log scot td s is indicated to the left of the traces. The responses to the stimuli equivalent
to the ISCEV dark-adapted 0.01 and 3.0 condition are represented by a thicker line. (D–F) The first 40 ms of the response (solid lines) and the model
fits of equation 1 to the leading edge of the a-wave (dashed lines). The calculated values of SROD and RROD are indicated. Note that the scale on the
vertical axes in these three panels differ. (G–I) B-wave amplitude plotted as a function of stimulus strength. The smooth curve represents equation
2. The calculated values of log r and VMAX are indicated.
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FIGURE 2. Sample photopic (light-adapted) ERG records from the same subjects as in Figure 1. (A–C) ERG responses to a series of flashes. Flash
strength in log phot td s is indicated to the left of the traces. The response to the stimulus equivalent to the ISCEV light adapted 3.0 condition is
represented by a thicker line. (D–F) Responses to a long (150 ms) flash; the stimulus onset and offset are indicated below the responses. The b-
wave (ON) and d-wave (OFF) components are indicated by arrows in panel (F). (G, H) Responses to 30 Hz flickering light.

TABLE 2. ERG Photoreceptor and Postreceptor Parameters in cCSNB Patients, iCSNB Patients, and All Control Subjects

Parameter

cCSNB iCSNB Control

StatisticsMean SD n Mean SD n Mean SD n

Scotopic ANOVA

Log SROD (scot td�1)s�3 1.91 0.07 21 1.93 0.62 14 1.95 0.07 58 F ¼ 2.331; df ¼ 2, 90; ns

RROD, lV 253.96 59.60 21 225.62 73.55 14 382.34 70.78 58 F ¼ 45.618; df ¼ 2, 90; P < 0.01

Log r 1.14 0.51 21 0.13 0.48 14 �0.80 0.12 61 F ¼ 313.773; df ¼ 2, 93; P < 0.01

VMAX, lV 91.71 40.56 21 88.28 31.86 14 410.02 78.33 61 F ¼ 255.099; df ¼ 2, 93; P < 0.01

Photopic ANOVA

Log SCONE (phot td�1)s�3 1.44 0.15 17 1.51 0.10 12 1.52 0.11 25 F ¼ 2.474; df ¼ 2, 51; ns

RCONE, lV 49.53 24.09 17 32.28 14.15 12 77.48 22.03 25 F ¼ 20.520; df ¼ 2, 51; P < 0.01

30-Hz flicker

Amplitude, lV 77.23 19.50 20 17.83 10.62 11 119.80 43.05 35 F ¼ 40.438; df ¼ 2, 63; P < 0.01

Time to peak, ms 33.65 3.77 20 35.40 3.89 11 28.25 2.03 35 F ¼ 34.619; df ¼ 2, 63; P < 0.01

Long flash d-wave Mann-Whitney U

Amplitude, lV 64.75 30.88 9 35.49 10.49 22 ns

Implicit time, ms 176.72 2.72 9 171.98 1.29 22 U ¼ 21; P < 0.01

ns, nonsignificant.
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DISCUSSION

Our quantitative assessment of photoreceptor activity (a-wave

responses) showed significant reductions in amplitude param-

eters (RROD and RCONE) in patients with CSNB. Photoreceptor

sensitivity (SROD and SCONE) estimated from the models

(equations 1 and 3) did not differ between patients and

controls; this is evidence that activation of phototransduction

is normal in these patients. Significant deficits in postreceptor

activity were found for both rod-driven and cone-driven

responses. Consistent with the hypothesis that there is a

functional disconnect between the photoreceptors and post-

FIGURE 3. Rod and rod-mediated ERG parameters in cCSNB (upright triangles), iCSNB (inverted triangles), uncategorized CSNB (plus sign),
control subjects (diamonds), and myopic control subjects (circles). (A) RROD, (B) VMAX, (C) Log SROD, and (D) Log r. Each point represents one
subject. The horizontal bars indicate the means for cCSNB patients, for iCSNB patients, and for all control subjects.
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FIGURE 4. RROD as a function of spherical equivalent (diopters) for cCSNB (upright triangles), iCSNB (inverted triangles), uncategorized CSNB
(plus sign), control subjects (diamonds), and myopic control subjects (circles). The regression fit to all control data is represented by the solid line

(y¼ 9.03xþ 406.21) and to all patient data by the dashed line (y¼ 1.9xþ 254.6). The vertical dashed line represents the zero diopter intercept.

FIGURE 5. (A) The first DAT measurement for cCSNB (upright triangles), iCSNB (inverted triangles), and uncategorized CSNB (plus sign). The
horizontal bars indicate the means for the cCSNB and iCSNB patients. (B) DAT as a function of age for patients who were tested at least twice. In
both panels, the solid line represents the mean and the dashed lines represent 62 SD for control subjects.
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receptor neural retina in CSNB,1,6,20,35 we found no significant
relationship between rod and rod-driven postreceptor re-
sponse parameters.

Low RROD could be explained by a reduction either in rod
outer segment length or in the number of rod photoreceptors.
However, no changes in retinal structure were apparent in two

anatomic studies of eyes with CSNB.56,57 Retinal imaging using
adaptive optics found normal rod density (cells/area) 108 from
fixation and a normal rod photoreceptor mosaic in the
perifoveal region in patients with CSNB.58 Thus, the significant
deficits in RROD found in our patients must have some other
explanation. Jamison et al.59 used APB (2-amino-4-phosphono-

FIGURE 6. Cone photoresponse parameters in cCSNB (upright triangles), iCSNB (inverted triangles), control subjects (diamonds), and myopic
control subjects (circles). (A) RCONE, (B) Log SCONE. The horizontal bars indicate the means for cCSNB patients, for iCSNB patients, and for all
control subjects.

FIGURE 7. Photopic b-wave amplitude and implicit time plotted as a function of flash strength in cCSNB (upright triangles), iCSNB (inverted

triangles), and all control subjects, including those with myopia (gray diamonds). (A) Amplitude. (B) Implicit time. The 1.9 log phot td s stimulus
corresponds to the ISCEV light-adapted photopic 3.0 condition.
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butyric acid) to block the activity of simian ON bipolar cells
and found that RROD decreased but SROD did not change. They
concluded that the postreceptor cells scaled the rod dark
current leading to the decrease in a-wave amplitude and low
RROD. Perhaps the low RROD values in our patients are
explained by this mechanism, by the absence of early
postreceptor components,60 or by an as yet unidentified
feedback mechanism or anomalous cell-to-cell interaction.

Under rod-mediated conditions, the normal postreceptor b-
wave reflects the activity of ON bipolar cells and other second-
and third-order neurons.49–51,61,62 In our patients, we desig-
nated the small positive potential that followed the a-wave as
the b-wave and used it to estimate postreceptor activity (Figs.
1, 3). Over the stimulus range used to fit equation 2, the
implicit time of this potential was similar to that in controls,
and at higher stimulus strengths, the implicit time of this
potential was shorter than in controls (Fig. 1). Other studies of
CSNB have demonstrated similar shortening of b-wave implicit
time.25,26 As for the mechanism, we are reminded that Jamison
et al.59 showed that block of both ON and OFF pathways by
administration of APB plus PDA (piperidine-dicarboxylic acid)
led to short implicit time of the small positive potential
following the a-wave. They speculated that this potential was
produced by photoreceptors or other light-sensitive postre-
ceptor cells rather than by bipolar cells. In intact human
records, we cannot specify with certainty the origin of the
small (b-wave) potential.

The photoreceptor results in photopic conditions were
similar to those in scotopic conditions in that RCONE was
significantly lower in patients than in controls but SCONE was
normal (Fig. 6). The reduced amplitude and prolonged implicit
time of the photopic b-wave in patients suggests defects in the
ON pathway (Fig. 7). The photopic hill that characterizes the
normal b-wave stimulus response function and is attributed to
the interaction between ON and OFF bipolar cell activity63 was
not found in our CSNB patients. A decrease in the amplitude of

the ON bipolar cell response and a delay in the peak of the OFF
response with increasing stimulus intensity is thought to
account for the photopic hill in the normal cone-mediated
ERG. Altered interplay between the ON and OFF bipolar
circuitry may account in part for the lack of a photopic hill in
CSNB. In the cCSNB patients who were tested with the long
(150-ms) flash, the b-wave amplitude was markedly attenuated,
indicating an ON pathway abnormality, coupled with pro-
longed d-wave implicit time, indicating an OFF pathway defect
(Fig. 2D). Together these alterations in retinal circuitry could
account for the absence of a photopic hill in cCSNB. Sustar et
al.64 have reported abnormal long-flash responses in a larger
sample of patients with CSNB.

We can find no explanation for the normal dark-adapted
threshold in five of our patients (Fig. 5A). All five had a negative
ERG, and four of the five had additional ERG characteristics of
iCSNB; all had normal fundi on serial examinations. Prior
studies of CSNB have reported dark-adapted thresholds ranging
from 0.5 to 3.6 log units above normal.37,65–68 Our average
threshold elevation was 1.4 log units, whereas final thresholds
measured following a bleaching exposure were elevated up to
3.6 log units. Thresholds in our patients were measured after
dark adapting from room light rather than following a
bleaching exposure. Recovery of threshold from room light
has a shorter time course than recovery from a bleach. Thus,
procedural differences, the known slow kinetics of recovery in
several forms of CSNB,37,69 and the small sample size may
explain, in part, the apparent discrepancy between our results
and those previously reported.

In summary, we interpret our results as indicative of robust
and normal photoreceptor function in CSNB despite the low
saturated photoresponse amplitude. Postreceptor function in
our patients shows evidence of anomalous retinal circuitry that
varies with type of CSNB. Among animal models of CSNB,70–72

postreceptor retinal circuitry, which varies with genetic
diagnosis, may be analyzed by pharmacological dissection.73

FIGURE 8. The 30-Hz flicker for the cCSNB (upright triangles), iCSNB (inverted triangles), control subjects (diamonds), and myopic control
subjects (circles) for (A) amplitude and (B) time to peak. Each point represents one subject. The horizontal bars indicate the means for cCSNB
patients, for iCSNB patients, and for all control subjects.
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Study of the ERG in these animal models using the approach
applied in the present study would be a step in translating the
knowledge to the human retina. Another step would be further
noninvasive study of retinal processes in genotyped patients
with CSNB. This is expected to advance knowledge of CSNB
circuitry in particular and of human retinal circuitry more
generally.
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