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Brief Communications

Cortical Adaptation to a Chronic Micro-
Electrocorticographic Brain Computer Interface

Adam G. Rouse, Jordan J. Williams, Jesse J. Wheeler, and Daniel W. Moran

Department of Biomedical Engineering, Washington University, St. Louis, Missouri 63130

Brain- computer interface (BCI) technology decodes neural signals in real time to control external devices. In this study, chronic epidural
micro-electrocorticographic recordings were performed over primary motor (M1) and dorsal premotor (PMd) cortex of three macaque
monkeys. The differential gamma-band amplitude (75-105 Hz) from two arbitrarily chosen 300 wm electrodes (one located over each
cortical area) was used for closed-loop control of a one-dimensional BCI device. Each monkey rapidly learned over a period of days to
successfully control the velocity of a computer cursor. While both cortical areas contributed to success on the BCI task, the control signals
from M1 were consistently modulated more strongly than those from PMd. Additionally, we observe that gamma-band power during
active BCI control is always above resting brain activity. This suggests that purposeful gamma-band modulation is an active process that

is obtained through increased cortical activation.

Introduction

Primary motor cortex (M1) has long been understood to play a
key role in voluntary motor control (Jasper and Penfield, 1949).
Adjacent premotor cortical areas are also involved in this process,
though arguably less directly-higher levels of microstimulation
are needed to trigger movements and neural activity relating to
motor planning, in addition to execution of movement, are seen
in a variety of experimental settings (Weinrich and Wise, 1982).
The natural functions of these motor areas have been coopted to
create brain—computer interfaces (BCls) that use intracortical
recordings of small subpopulations of neurons to directly control
external devices, in nonhuman primates (Taylor et al., 2002) and
in humans (Donoghue et al., 2007). These systems are generally
based on the underlying principle that individual neurons in mo-
tor cortex are approximately linearly “cosine tuned” to a number
of different movement parameters, including velocity and posi-
tion of the hand during translational and rotational movements
(Georgopoulos et al., 1986; Wang et al., 2010). The relationship
between firing rate and movement kinematics seen in these clas-
sic open-loop neurophysiology studies can be strengthened and
modified when closed-loop BCI tasks are used to provide bio-
feedback, allowing subjects to enhance their performance by
learning to modulate neural activity in specific ways (Fetz and
Baker, 1973; Moritz et al., 2008).
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As an alternative to single-unit recordings, both local field
potentials (Heldman et al., 2006) and electrocorticography
(ECoG) (Crone et al., 1998; Schalk et al., 2007; Chao et al., 2010)
provide useful information about intended motor movements.
These studies and others have found various frequencies in the
high gamma range to be particularly informative. When using
ECoG for BCI applications, a common approach is to screen a set
of large-scale, topographically distinct motor movements to
identify specific actions that cause features of the neural record-
ings to differ significantly from the resting state. A particular
feature is then mapped onto a single degree of freedom in the
BCI, and subjects are instructed to imagine performing the cor-
responding movement to control the device (Leuthardt et al.,
2004). For example, a subject might imagine a tongue movement,
causing modulation of gamma band activity over tongue area of
M1. This change in neural activity is detected by the BCI device
and a cursor on a computer screen moves as a result. Performance
can be improved with practice once the subject receives closed-
loop feedback (Leuthardt et al., 2004), but the full potential of
this adaptation is not well quantified. What would happen if an
electrode were naively chosen without prescreening and gamma
band activity on that electrode caused a cursor to move in a
particular direction? Could subjects learn to use such an arbitrary
signal to exert purposeful control of a BCI device?

In this study, we implement just such a system. By eliminating
prescreening and motor mapping, the work presented here ac-
complishes two main objectives. First, we test whether subjects
can learn to perform a novel kECoG BCI task through biofeed-
back alone, and characterize the adaptation that occurs during
the learning process. Second, since we are not limited to using
electrodes identified via prescreening, we are able to select pairs of
electrodes such that one electrode is located over M1 and the
other over dorsal premotor (PMd) cortex. By assigning gamma-
band activity on these electrodes to opposing directions along
a single degree of freedom in a BCI task, we can quantify the
differences in modulation of neural signals from these cortical
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A, The two-target radial choice task. 1, At the start of the trial, the cursor is centered by the computer and one of two targets appears. 2, The monkey then has 5 s to move the cursor to

the correct target. 3, Once the cursor touches the outer circle or the maximum movement time has been exceeded, the trial is over, a 1 sintertrial interval occurs, and the monkey is rewarded if the
correct target was chosen. B, Electrode placement of epidural ECoG array shown on brain surface of monkey J. The two electrodes (green) used for horizontal control are shown along with the
reference electrode (R). The central sulcus (CS), arcuate sulcus (AS), and superior precentral dimple (SPD) are labeled.

areas in a well controlled, closed-loop environment. The find-
ings have practical implications for further development of
BCI technology.

Materials and Methods

Three male 6-10 kg macaque monkeys (M, J, and N) were used in this
study. Once each monkey was familiarized with the task (described be-
low) using a joystick for training, a custom-built chronic epidural
MECoG recording grid was implanted through a 22 mm craniotomy
centered over proximal arm area of M1 and PMd. The electrodes were
300 wm diameter platinum-iridium (90-10 Pt-Ir) wires arranged in a
28-electrode hexagonal pattern with a 3 mm interelectrode spacing (Fig.
1b). Signals were referenced to an identical electrode (i.e., differential
recordings) located at the dorsal edge of the recording chamber. The
recording chamber was a large titanium ring encircling the craniotomy
serving as the common ground for the recordings. Analog signals
were band limited between 3 and 500 Hz and digitized at 6 kHz using
a multichannel neurophysiology recording system (Tucker-Davis
Technologies).

One-dimensional radial choice task. In these experiments, a one-
dimensional (1D) radial choice task was implemented (Fig. 1a). The
scene of the task was displayed on an LCD monitor in front of the mon-
key. The monkey interacted with the task by controlling the velocity of a
spherical cursor, via joystick or brain control signal (described below). A
large circular ring served as the target for the task. To begin each trial, the
cursor was placed in the center of the ring. A 180° arc segment of the ring
changed color, indicating the rewarded direction for that trial. The mon-
key had 5 s to move the cursor from the center of the workspace through
the instructed target to receive a liquid reward. Moving the cursor
through the nonhighlighted ring segment was considered an error.

Control signal. For each experiment, the signals recorded from two
micro-ECoG (LECoG) electrodes were used for brain control. The re-
cordings were bandpassed between 75 and 105 Hz using a 16th order
digital Butterworth filter, then full-wave rectified and low-pass filtered at
3 Hz to generate a gamma-band amplitude estimate. Next, each ampli-
tude estimate was normalized by subtracting the mean and dividing by
the SD of the previous 100 s of the signal (Rouse et al., 2011). The
difference in the normalized amplitudes of the two signals was mapped to
cursor velocity such that modulation of both signals in the same direction
(e.g., above the mean) would lead to low cursor velocities, while modu-
lation in opposite directions would generate large velocities.

Using the two electrodes in this “push-pull” control setup has several
key advantages. First, it minimizes the effect of modulation at the refer-
ence recording site by subtracting away this common signal to ensure
that the two chosen electrode sites are responsible for controlling the
cursor. Likewise, having the two control signal electrodes relatively close
to one another (<1.5 cm) ensures that subjects cannot simply increase
gamma activity across the whole array to move the cursor. Rather,

the subjects need to learn how to modulate the activity differentially
under the two electrodes assigned for brain control.

Experimental timeline. Each monkey learned two distinct closed-loop
configurations for controlling a BCI cursor moving along an axis. Each
configuration used a different pair of electrodes, requiring each monkey
to modulate two sets of cortical sites underneath the recording grid. The
axis of the 1D task was oriented such that the cursor moved horizontally
(x) during the first control configuration and vertically ( y) during the
second set of experiments. This change provided a cue to the monkey that
a new BCI control approach was required.

Each set of experiments used two push-pull electrodes separated by 9
or 15 mm depending on the orientation of the recording pair. Electrode
locations were verified when the animals were killed by identifying the
electrode grid location relative to the major gyri and sulci landmarks of
each brain (Fig. 1b). During the initial training phase, a constant velocity
bias in the direction of the target was added to the decoded velocity
control signal to aid cursor movement in the correct direction. The
strength of this bias was adjusted to maintain an overall success rate of
~75%. As the monkey’s performance improved, the bias was gradually
reduced to zero at which point cursor movement resulted solely from
brain control.

Analysis. Performance of the subjects during the closed-loop radial
choice task was characterized by the percentage correct and trial time.
These metrics were combined into a single measure of bit rate based on
the percentage of targets correctly hit within a given amount of time. The
per trial bit rate of data transfer for a discrete target task can be deter-
mined with the following equation (Pierce, 1980):

1 —P
B = log,P + Plog,P +(1 — P) logz<ﬁ>, (1)

where N represents the number of targets and P is the percentage correct
expressed as a fraction. The bits per trial, B, can then be multiplied by the
trial rate (trials/s) to produce the bit rate per unit time.

Results
All three monkeys successfully learned to control the cursor using
both arbitrarily assigned configurations for horizontal and verti-
cal control. For each configuration’s best week (5 d) of pure brain
control (no bias), the percentage of targets correctly selected
ranged from 85 to 95% (chance = 50%). Less than 10% of the
trials resulted in the monkey reaching the 5 s time limit without
selecting a target. The mean movement time to select a target was
~2-3 s for each monkey. This corresponds to a bit rate range of
10-25 bits/min.

Performing the brain-control task required the monkeys to
differentially modulate the amplitude of the gamma band signal.
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targets divided by their pooled SD:

Figure 2.

Epidural ECoG mean control signals and histogram. Data are from a single week (5 d) of recording once bias had
been completely turned off with a consecutive block of both 400 correct plus any incorrect trials from each day for a total of 2000+
trials for each monkey— dimension combination. 4, Mean control signals between 75 and 105 Hz for monkey M on the electrode
over M1 for both leftward (red trace) and rightward (blue trace) movements. The shaded area represents the 95% confidence

interval of the mean. After an initial symmetric rise, the amplitude for the left trials continues to rise significantly more to properly

d = Mr — ML
/(”R - 1)0% + (n, — 1)0{
\ ng + n, — 2

control the cursor. B, Histogram showing separation in spectral amplitudes between 75 and 105 Hz for trials of right versus left
targets. €, The d statistic for each control channel for the six different monkey— dimension combinations was calculated using the
separation of the mean amplitudes for the two targets. The more caudal recording electrode is shown on the left for each control
pair. Error bars represent 95% confidence intervals. D, Cortical location of control electrodes for all three monkeys. The color coding

) in C maps directly to the colors in D. The label “S” represents the strongly modulated electrode, while the “W” represents the
weaker modulated electrode in the push-pull pair. The central sulcus (CS), arcuate sulcus (AS), and superior precentral dimple (SPD)

where py and p; represent the mean arelabeled.

HECoG root mean square (RMS) in the

75-105 Hz band for right and left targets,

respectively. The difference between wy and p,; is normalized by
dividing by the pooled SD (o, 0p) of the right and left target
distributions. n, and 1, are the number of trials to right and left
desired targets, respectively. The d’ value is in units of SDs and
represents the amount of separation in observed signal amplitude
during the two target conditions. d’ is a classic metric of signal
detection theory and provides a direct measure of how well the
amplitude of the signal can be used to predict the correct target
(Green and Swets, 1966).

The d’ values for all channels used for brain control are shown
in Figure 2c. These d' values are calculated using the best week of
performance (with no bias) and are calculated from 5 consecutive
days of recording for each of the six monkey—dimension com-
binations. The labeled sign of each electrode indicates whether
modulation above baseline on that channel generated a positive
or negative velocity. For optimal performance on the task, “pos-
itive electrodes” should have large positive d’ values while “neg-
ative electrodes” should have large negative d’ values. Figure 2¢
shows that there were four clear examples (M-x, J-x, J-y, and N-y)
where one electrode was being strongly modulated while the
other electrode stayed relatively constant for both conditions or
even modulated slightly in the nonoptimal direction for push-
pull control. Conversely, in the two other cases (M-y and N-x)
neither electrode by itself had a large and distinct separation be-
tween the two conditions; however, both electrodes were modu-
lated in the correct direction.

Each of the six electrode pairs used for control was chosen
such that one electrode was over M1 and the other was over PMd.
For each pair in Figure 2¢, the left bar is the d’ value from the

electrode over M1 while the right bar is from PMd. In all cases, the
electrode located over M1 was modulated more strongly (i.e., had
a larger magnitude d’) than the electrode over PMd. Figure 2d
shows the locations of electrodes mapped onto a standard ma-
caque brain atlas. For each pair of electrodes, the one with the
larger d' statistic was labeled with “S,” and the other with “W.”
Anatomical segregation of the strongest modulated channels
over M1 is readily apparent.

In addition to examining the electrodes assigned for control,
the other electrodes of the recording array were also analyzed to
quantify the spatial scale of modulation that occurred. The
analysis divided electrodes based on their distance from the
previously identified strongly and weakly modulated control
electrodes. In addition to the control electrodes (0 mm), the
modulation observed on the electrodes 3 and 6 mm away from
the actual control electrodes was also quantified in Figure 3a.
The largest modulation occurred on the assigned control elec-
trode that was strongly modulated and decreased on sur-
rounding electrodes.

Initial learning time course

In addition to looking at the d" metric during peak performance,
the initial time course of control signal modulation was also ex-
amined. When first learning to control each new electrode con-
figuration, the subjects had no information on which cortical site
or what type of cortical modulation (i.e., above or below running
mean) would correctly move the cursor. Since initial training was
aided by a computer-controlled bias (see Materials and Meth-
ods), success rate is a poor measure of learning. However, even in
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the target appeared. For each control sig-
nal electrode, two distributions of the
RMS of the signal between 75 and 105 Hz
were compared with the baseline distribu-
tion: (1) the distribution for trials where
an increase in amplitude caused the cur-
sor to move toward the displayed target

— Mx

Jx (“increased amplitude”); and (2) the dis-
—_—y tribution for trials where the presented

m" target could be reached by decreasing the
— Ny

amplitude on the electrode (“decreased

Strongly modulated control electrode B
4r e 5r
~ 2 ¢ ¢
e + |
OF v Frov B 4
) e
_ . 3l
0 3 6 >
Weakly modulated control electrode < ol
4r
n 2 )
T ° £ 1
— o TR
0 ~ @
- , d . .
0 3 6 0 1 5

Distance from control electrode, (mm)

Figure 3.

w
w

N
b.
RMS mean, (V)

Increased Amplitude >
RMS mean, (V)
4

10 15
Recording Day

A, d" as a function of distance from the control electrode. Electrodes are grouped based on distance from a strongly
modulated or weakly modulated control electrode as shown in Figure 2c. For the strongly modulated electrodes, the mean d”’
values significantly decreased as a function of distance (ANCOVA, p << 0.001) from a mean d” of 2.40 on the control electrodes to
0.97 on the electrodes 6 mm away. B, Time course of learning as measured by Ad". The increase in the difference between positive

and negative control channel (Ad”) across recording days as the subject adapts to the task. The endpoint (large dot) represents full
brain control (no bias). Each point represents the first time that a monkey for a given dimension reached a given Ad” value.
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amplitude”). The mean RMS for both the
increased amplitude targets (Fig. 4a) and
decreased amplitude targets (Fig. 4b) was
compared with the mean RMS during the
baseline recording period. Individually,
eight of eight control electrodes showed
significant differences from baseline when
increased amplitude was optimal, while
only two of eight electrodes were signifi-
cantly different when decreased ampli-
tude was optimal (one-sided paired ¢ test,
p < 0.05). Overall, combined two-way

ANOVA was significantly different for the
~ @ Mx—

increased activity case (p < 0.001) and
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:313: creased activity case (p = 0.48). The ob-
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Figure 4.

brain to gain control.

the presence of bias, the d’ statistic provides a way to quantify
cortical modulation during learning.

Successful performance of the brain-control task requires
properly modulating the activity under at least one electrode
(ideally both). In the push-pull configuration used here, the crit-
ical quantity is the difference between the two d’ values, or Ad". A
larger Ad' value between the two channels in the push-pull
decoding scheme leads directly to increased performance. Figure
3b shows the cumulative maximum performance across days,
quantified as the best Ad’ observed over a 100-trial interval. (To
focus on the learning trend, only increasing changes in Ad" are illus-
trated such that each plot is monotonically increasing.) All subjects
showed a clear rise in performance while learning the task.

BCI control versus rest

The control signals obtained from each electrode were normal-
ized by subtracting the running average and dividing by the SD.
How does the running average used for normalization in this
study compare to baseline activity? At the start of each day, a 5
min segment of baseline activity was recorded before the begin-
ning of the task. A power spectrum was calculated from these
baseline recordings using one second nonoverlapping sliding
windows. For comparison, in this analysis only, a movement
power spectrum was performed on the first second of data after

Baseline RMS mean, (V)

3 more difficult than modulating activity
above baseline levels.

Discussion

This study describes adaptation to a BCI
using chronic epidural pECoG record-
ings, and illustrates several features that
have practical importance for the design
of future systems. Perhaps the most clear
and promising finding is the fact that all three monkeys were able
to learn to control two different electrode configurations that
were naively chosen, not selected based on screening tasks. While
there was some variation in the level of peak performance, every
configuration that was used in these experiments provided control
that was substantially above chance. Additionally, the electrodes as-
signed for control were selectively more modulated than surround-
ing electrodes. This suggests that BCI control with ECoG signals is
not limited to observable changes during screening tasks but rather
can also include randomly assigned cortical locations and/or fre-
quencies. Additionally, the time course of adaptation to a novel con-
figuration occurred on the order of days. One potential reason for
the rapid learning is the novel “brain + bias” training scheme used in
this study. By initially adding bias to control signals, the subject is
kept more engaged with a reasonable reward level. As true brain
control performance improves, it is straightforward to eliminate the
bias.

While the subjects were all able to modulate cortical signals to
move the cursor, our push-pull decoding scheme resulted in a
mixture of observed BCI behavior. When conducting these ex-
periments, we determined that it was necessary to normalize the
two control signals to make sure that overall differences in signal
amplitudes did not enable the subject to use global amplitude

The mean RMS values for each day. 4, Increased amplitude targets. B, Decreased amplitude targets compared with
baseline RMS at the beginning of the day. The data suggest that increasing the signal amplitude is the active process used by the
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changes to create a differential signal that would move the cursor.
While this did result in what we believe to be more selective
cortical areas of modulation, it did not always require the true
push-pull modulation that we initially expected. For instance, we
often observed that task-related modulation was largely re-
stricted to the signal on a single electrode, while the amplitude of
the other signal was held relatively constant.

Stronger modulation consistently occurred under the more
caudal electrode of the pair (i.e., the one closer to the central
sulcus, in M1), while the rostral sites in PMd were more weakly
modulated. Several explanations for this finding are possible.
First, the stronger modulation of M1 seen in this study could be a
reflection of the velocity-based decoding algorithm chosen for
the study. The decoding algorithm mapped the high gamma band
activity to cursor velocity. The dominant kinematic parameter
encoded in M1 is velocity (Moran and Schwartz, 1999), and while
dorsal premotor activity does contain some velocity encoding, it
also contains strong hand position and target encoding as well
(Pesaran et al., 2006). Second, neuronal differences between cor-
tical areas could affect the strength of the modulated signal rela-
tive to the signal-to-noise ratio. M1 is defined by large layer V
output cells known as Betz cells that descend to the spinal cord
through the corticospinal tract and form the major motor output
pathway of the brain. When firing action potentials, these pyra-
midal cells generate large extracellular currents, which likely
comprise a significant portion of the high gamma ECoG signal.
Premotor cortex also contributes significant efferent pyramidal
neurons to the corticospinal tract; however, these cells comprise a
smaller percentage per unit volume in PMd (Weinrich and Wise,
1982; Dum and Strick, 1991).

The modulation differences between cortical areas have prac-
tical implications in ECoG BCI design. While primary motor
cortex may be one of the best areas for ECoG BCI control, it
would be beneficial to recruit other areas like dorsal premotor
cortex to take an active role in control. Training paradigms that
better facilitate recruitment of more weakly modulated cortical
sites should be further explored. For example, when the activity
under one electrode is observed to be stronger than the other
electrode, the relative weighting between the two push-pull elec-
trodes could be adjusted to increase the relative contribution of
the more weakly modulated electrode (i.e., much like an eye
patch that covers the dominant eye allows the lazy eye to im-
prove). This could strengthen the modulation occurring on the
weaker channel and create a more balanced push-pull control.

Also of practical concern is that active modulation could be
used to increase high gamma power above resting levels, but
decreasing from rest appeared difficult even when it would be
beneficial to do so. Much debate exists about the neuronal pro-
cesses that contribute to observed high gamma signals in ECoG
recordings, but there is strong evidence that high gamma activity
is related to single-unit activity (Heldman et al., 2006). Previous
single-unit studies have shown that when subjects are required to
modulate a differential control signal using two neurons, the sub-
jects will increase the firing rate in one neuron while maintaining
baseline activity in the other neuron (Fetz and Baker, 1973).
Thus, it appears that increases in high gamma activity specifically
correspond to mental effort in BCI tasks. This is consistent with
previously observed increases in high gamma activity with actual
motor movements (Pfurtscheller et al., 2003; Leuthardt et al.,
2004; Miller et al., 2007; Yanagisawa et al., 2012).

The observed increased activity of high gamma ECoG signals
when engaged in a BCI task has a practical implication to BCI
design. First, the design of decoding algorithms should take into

Rouse et al. ® Cortical Adaptation during a ECoG BCl Task

account the expected asymmetry in the range of modulation and not
expect a linearly balanced modulation of signal amplitude above and
below baseline. Second, it appears that increases in high gamma
activity are a good predictor of whether the subject is actively in-
volved in the task. Measuring this level relative to a known baseline
could potentially serve as a state detector that determines when the
user wants to operate the BCI controlled device.
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