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truncating  CHD7  mutations in 5/20 patients with phenotypi-
cally 22q11.2 deletion syndrome. Differentiating between 
CHARGE and 22q11.2 deletion syndromes can be challeng-
ing. CHD7 and TBX1 probably share a molecular pathway or 
have common target genes in affected organs. We strongly 
recommend performing  CHD7  analysis in patients with a 
22q11.2 deletion phenotype without  TBX1  haploinsufficien-
cy and conversely,   performing a genome-wide array in 
CHARGE syndrome patients without a  CHD7  mutation. 

 Copyright © 2013 S. Karger AG, Basel 

 CHARGE syndrome (OMIM 214800, coloboma, heart 
defects, atresia of choanae, retardation of growth and de-
velopment, genital hypoplasia, and ear abnormalities) is 
a highly variable, multiple congenital malformation syn-
drome that shows considerable clinical overlap with oth-
er syndromes like Kallmann syndrome [Kim et al., 2008; 
Jongmans et al., 2009], VACTERL association (vertebral 
anomalies, anal atresia, cardiac defects, tracheo-oesoph-
ageal fistula, oesophageal atresia, renal anomalies, and 
limb defects) [Källén et al., 2004; Solomon, 2011], Gol-
denhar syndrome (oculo-auriculo-vertebral spectrum) 
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 Abstract 

 CHARGE (coloboma, heart defects, atresia of choanae, retar-
dation of growth and development, genital hypoplasia, and 
ear abnormalities) and 22q11.2 deletion syndromes are vari-
able, congenital malformation syndromes that show consid-
erable phenotypic overlap. We further explored this clinical 
overlap and proposed recommendations for the genetic di-
agnosis of both syndromes. We described 2 patients clini-
cally diagnosed with CHARGE syndrome, who were found to 
carry a 22q11.2 deletion, and searched the literature for 
more cases. In addition, we screened our cohort of  CHD7  mu-
tation carriers (n = 802) for typical 22q11.2 deletion features 
and studied  CHD7  in 20 patients with phenotypically 22q11.2 
deletion syndrome but without haploinsufficiency of  TBX1 . 
In total, we identified 5 patients with a clinical diagnosis of 
CHARGE syndrome and a proven 22q11.2 deletion. Typical 
22q11.2 deletion features were found in 30 patients (30/802, 
3.7%) of our  CHD7  mutation-positive cohort. We found
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[Van Meter and Weaver, 1996; Källén et al., 2004], and 
SOX2 anophthalmia syndrome [Engelen et al., 2011]. The 
most striking similarity of clinical features, however, is 
seen with 22q11.2 deletion syndrome as illustrated by 
Jyonouchi et al.[2009]. Here, we further explored the clin-
ical similarities between CHARGE syndrome and 22q11.2 
deletion syndrome.

  CHARGE syndrome has an estimated birth incidence 
of 5.8–6.7 per 100,000 live births [Janssen et al., 2012]. A 
patient is currently diagnosed with CHARGE syndrome 
if the clinical diagnostic criteria of Blake et al. [1998] or 
of Verloes [2005] are fulfilled. The major clinical features 
include choanal atresia, coloboma of the eye, hypoplastic 
semicircular canals, external ear anomalies, and cranial 
nerve dysfunction (as summarised in  fig. 1 ) [Bergman et 
al., 2011b]. CHARGE syndrome is inherited in an auto-
somal dominant fashion, but most cases are sporadic due 
to de novo mutations in the  CHD7  gene [Zentner et al., 
2010b; Bergman et al., 2011b].  CHD7  codes for a chromo-
domain helicase DNA-binding protein that has a cell 
type-specific and embryonic stage-dependent function in 
regulating the expression of other developmental genes 
[Vissers et al., 2004; Schnetz et al., 2009; Zentner et al., 

2010a]. Heterozygous  CHD7  mutations are found in 
more than 90% of the patients, who fulfil the clinical cri-
teria of CHARGE syndrome, but can also be detected in 
patients with an atypical phenotype [Jongmans et al., 
2006; Bergman et al., 2011b].

  Chromosome 22q11.2 microdeletions have an esti-
mated birth incidence between 10 and 26 per 100,000 live 
births and cause a highly variable clinical phenotype
including velocardiofacial syndrome (OMIM 192430) 
which is the combination of velopharyngeal incompe-
tence and other palate abnormalities, congenital heart
defects, and dysmorphic facial features. DiGeorge syn-
drome (OMIM 188400) is another associated phenotype 
that includes features of congenital heart defects of the 
outflow tract, hypocalcaemia and immunodeficiency 
[McDonald-McGinn et al., 1993; Schwinger et al., 2010; 
McDonald-McGinn and Sullivan, 2011]. Since velocar-
diofacial syndrome and DiGeorge syndrome describe 
variable clinical expressions of the same entity, the term 
22q11.2 deletion syndrome is now more commonly used 
(features summarised in  fig.  1 ) [Jyonouchi et al., 2009; 
McDonald-McGinn and Sullivan, 2011]. This syndrome 
is inherited in an autosomal dominant manner from a 
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Feature Frequency 22q11.2 deletion CHD7 mutation Frequency
Anosmia
Cranial nerve dysfunction
Semicircular canal anomaly
Coloboma
Facial palsy
Choanal atresia
TE anomalya

Genital hypoplasiab

Hearing loss
Congenital heart defect
Cognitive delay
External ear anomaly
Motor delay
Cleft lip and/or palatec

Growth deficiencyd

Renal anomaly
Lymphopenia
Hypocalcaemia

?
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81% = 108/134
97% = 224/231
99% = 147/149
48% = 79/163
37% = 35/94
32% = 35/111
?
?

?
?

  Fig. 1.  Frequency of the most common clinical features seen in pa-
tients with a 22q11.2 deletion and patients with a  CHD7  mutation. 
Frequency is depicted as number of patients with feature/number 
of patients investigated; data is based on 943 patients from Chil-
dren’s Hospital of Philadelphia Database for 22q11.2 deletion 
group and on 280 patients indentified at the Radboud University 
Nijmegen Medical Centre (Nijmegen, The Netherlands) with a 

 CHD7  mutation as described in Bergman et al. [2011b]. TE anom-
aly = Tracheo-oesophageal anomaly.  a  In 22q11.2 deletion group 
only tracheo-oesophageal fistula.  b  Including 28 patients with hy-
pospadias in 22q11.2 deletion group.  c  148 patients in 22q11.2 de-
letion group had a submucosal cleft.  d  Height <2.5 SD in  CHD7  
cohort or below 5th percentile in 22q11.2 deletion cohort. 
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parent in 10% of new cases but mostly occurs de novo  
 [McDonald-McGinn and Sullivan, 2011]. The majority of 
patients with velocardiofacial syndrome and DiGeorge 
syndrome have a 3.0- (90%) or 1.5-Mb (8%) hemizygous 
deletion of chromosome 22q11.2 that can be identified 
using fluorescence in situ hybridization (FISH), multi-
plex ligation-dependent probe amplification (MLPA)
or genome-wide array analysis [Schwinger et al., 2010; 
Gennery, 2012]. Mutations in the  TBX1  gene located in 
the commonly deleted region cause a similar phenotype, 
and thus  TBX1  haploinsufficiency appears to significant-
ly contribute to the features of 22q11.2 deletion syndrome 
[Merscher et al., 2001].

  The overlap between CHARGE syndrome and 22q11.2 
deletion syndrome has long been recognised [Emanuel et 
al., 1992; de Lonlay-Debeney et al., 1997; Digilio et al., 
1997; Devriendt et al., 1998; Herman and Siegel, 1998]. 
The overlapping clinical features include congenital 
conotruncal heart defects, cleft palate, ear abnormalities, 
hearing loss, growth deficiency, developmental delay, re-
nal abnormalities, hypocalcaemia, and immune deficien-
cy [Jyonouchi et al., 2009; Bergman et al., 2011b]. Clinical 
features like coloboma, choanal atresia, facial nerve palsy, 
tracheo-oesophageal fistula, hypoplastic semicircular ca-
nals, micropenis, or hypogonadotropic hypogonadism 
generally occur more often in patients with CHARGE 
syndrome than in those with 22q11.2 deletion syndrome, 
although not exclusively (see  fig. 1 ). Because of the clini-
cal resemblance between the 2 syndromes, in our recent 
review, we recommended that  CHD7  is a good candidate 
gene to analyse in patients with clinical features of 22q11.2 
deletion syndrome, but who do not have a deletion or 
mutation of  TBX1.  We further recommended that a 
whole-genome array should be performed in patients 
suspected of CHARGE syndrome but without a  CHD7 
 mutation or deletion [Bergman et al., 2011b].

  The overlap between CHARGE and 22q11.2 deletion 
syndrome and the variable expression of both syndromes 
can hamper clinical diagnosis but also provides interest-
ing clues to the aetiology and pathogenesis of both syn-
dromes. We provided further details of the overlap be-
tween the 2 syndromes by describing case reports of pa-
tients diagnosed with CHARGE syndrome but carrying a 
22q11.2 deletion, by reporting the typical 22q11.2 dele-
tion features present in a  CHD7- positive cohort and by 
describing the results of  CHD7  sequencing in a cohort of 
patients with features of 22q11.2 deletion syndrome but 
without a deletion or mutation of  TBX1 . The molecular 
pathways underlying this clinical resemblance and the 
implications for genetic diagnostic work were discussed.

  Methods 

 A schematic overview of our study design is shown in  figure 2 .

  Patients 
 We described the clinical findings of 2 Dutch patients, who 

were diagnosed with CHARGE syndrome according to the clinical 
criteria of Blake et al. [1998] and/or Verloes [2005], but who ap-
peared to have a 22q11.2 deletion. We further summarised the 
available clinical data of 3 patients described in the literature with 
clinically typical CHARGE syndrome and a 22q11.2 deletion.

  We screened our database of 802 patients with a pathogenic 
 CHD7  mutation for clinical features more specific for 22q11.2 de-
letion syndrome, like hypocalcaemia, thymus anomalies and im-
munological problems, or who were reported to have a DiGeorge 
or 22q11.2 deletion phenotype.

  In addition, we analysed  CHD7  in a cohort of 20 patients from 
the Department of Paediatrics, Perelman School of Medicine at the 
University of Pennsylvania, Philadelphia, Pa., USA. These patients 
were selected from a cohort of 100 cases, who were clinically sus-
pected of 22q11.2 deletion syndrome, but in whom FISH did not 
detect a deletion of chromosome 22q11.2 and MLPA did not find 
any atypical deletions of the 22q11.22 region. In the patients se-
lected for  CHD7  analysis, point mutations in the  TBX1  gene had 
also been excluded. The 20 patients were selected, because their 

2 Dutch patients
with clinical
CHARGE syndrome 

Literature search: 3
additional patients 

Oligo-array: typical
22q11.2 deletion

A
802 patients with
pathogenic CHD7
mutation

Check clinical
features 

Report features
more specific for
22q11.2 deletion
syndrome 

B

FISH and MLPA: no
22q11.2 deletion
No TBX1 mutation 

Selection 20
patients based on
overlap with
CHARGE syndrome 

 CHD7 sequencing
If no mutation:
MLPA CHD7

C
100 Philadelphia
patients clinically
suspected of
22q11.2 deletion
syndrome 

  Fig. 2.  Overview of our study design. This flow diagram illustrates 
the 3 different parts of our study. The data in thickened boxes was 
available at the start of the study.  A  Clinical CHARGE patients with 
22q11.2 deletions;  B  patients with a  CHD7  mutation and features 
of 22q11.2 deletion syndrome;  C   CHD7  analysis in patients clini-
cally presenting as 22q11.2 deletion syndrome. 
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clinical features overlapped with features seen in CHARGE syn-
drome, including the presence of congenital heart defects, colo-
boma, immune defects, ear anomalies, renal malformations, and 
hearing loss.

  CHD7 Analysis 
 Blood samples from all patients were drawn after informed 

consent. DNA was isolated according to standard procedures. The 
37 coding exons of  CHD7  (exons 2–38, RefSeq NM_017780.02) 
and their flanking intronic sequences were amplified by PCR and 
sequenced as described earlier [Jongmans et al., 2006]. If no muta-
tions were identified,  CHD7  was screened for whole-exon dele-
tions and duplications by MLPA using a commercially available set 
of probes: the SALSA P201 kit (MRC-Holland, Amsterdam, The 
Netherlands; http://www.mrc-holland.com) [Bergman et al., 
2008].

  Analysis of 22q11.2 Deletions and TBX1 Sequencing 
 Patients gave informed consent, and blood samples were taken. 

22q11.2 deletions were detected or excluded in the Dutch patients 
by array comparative genomic hybridisation (CGH) using an Ag-
ilent 180 K oligonucleotide array (custom design no. 023363, Agi-
lent Technologies Incorporation, Santa Clara, Calif., USA) and/or 
FISH using probe RP11-481H20 and RP11-590C5. The array CGH 
procedures were carried out according to the manufacturer’s pro-
tocols. Normal male or female reference DNA was used as a con-
trol, and DNA analytics version 4.0.81 (Agilent Technologies In-
corporation) was used to analyse the results.

  The 20 Philadelphia cases were studied by FISH using the com-
mercially available probe N25 and then analysed by an MLPA as-
say specific for the chromosome 22q11.22 region (MRC Holland; 
SALSA P250 kit) to identify deletions, whose proximal endpoints 
are distal to the standard FISH probes and would not have been 
identified in the original cohort [Jalali et al., 2008]. Point muta-
tions in the  TBX1  gene were excluded by capillary sequencing fol-
lowing PCR amplification as previously reported [Gong et al., 
2001].

  Results 

 Clinical CHARGE Patients with 22q11.2 Deletions 
  Table 1  lists all the patients with a CHARGE syndrome 

phenotype known to carry a 22q11.2 deletion including 
the 2 described below.

   Patient 1.  This girl was briefly described by Bergman 
et al. [2011b]. She was born by caesarean section because 
of foetal distress at 33 + 3 weeks of gestation. The preg-
nancy was complicated by gestational diabetes mellitus 
and polyhydramnios. Her birth weight was 2,830 g (97.7th 
percentile), and her Apgar scores were 9 and 9 after 1 and 
5 min, respectively. During the first 4 weeks of life, she 
had feeding problems necessitating nasogastric tube feed-

Table 1.  Clinical features in patients with clinical CHARGE syndrome and a 22q11.2 deletion

Features  Patients

Emanuel et al., 1992 Digilio et al., 1997 Devriendt et al., 
1998

our patient 1 our patient 2

Coloboma u + + + –
Heart defect u + + + +
Choanal atresia* u + + + +
Growth retardation u u + u u
Developmental delay u u + + +
Genital hypoplasia u + – – –
Ear anomaly u + + – +
SCC hypoplasia u u u + –
Cleft lip and/or palate u – – – –
Hearing loss u u + + –
Feeding difficulties** u u u + +
Facial palsy u u u – –
TE anomaly u – u – –
Hypocalcaemia u + – – –
Immunological abn. u + u – –
Thymus abn. u – – u –
Other CHARGE association, 

no further information
unilateral absent 
radius, hypoplastic 
ulna

preauricular tags, 
pit in left cheek

broncho-
tracheomalacia, 
GERD

pharyngomalacia

 Features more commonly seen in CHARGE syndrome than in 22q11.2 deletion syndrome are highlighted in grey.
abn. = Abnormalities; GERD = gastro-oesophageal reflux disease; SCC = semicircular canal; TE = tracheo-oesophageal anom-
aly; u = unexamined/unknown; + = present; – = not present.
* Atresia or stenosis of choanae. ** Only if necessitating tube feeding.
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ing. She was diagnosed with bronchotracheomalacia
and gastro-oesophageal reflux disease. Several congenital 
anomalies were noticed: coloboma of the left iris and both 
retinas, unilateral choanal stenosis, mild pulmonic steno-
sis, and bilateral mixed hearing loss. A CT scan of the 
mastoid showed abnormal semicircular canals as well as 
an abnormal vestibulum and an abnormal basal convolu-
tion of the cochlea. The girl had a developmental motor 
delay; she started walking at the age of 2 years and 3 
months. At her last examination, at the age of 3 years, she 
had a normal language comprehension (quotient score of 
91, comprehension scales of the Dutch Reynell Develop-
mental Language Scales). Physical examination showed 
simple ears, an anteriorly placed anus and a hockey-stick 
line crease on both palms. The diagnosis CHARGE syn-
drome was made based on the clinical diagnostic criteria 
of both Blake et al. [1998] and Verloes [2005]. Analysis of 
 CHD7  did not show a mutation or deletion. Subsequent-
ly, array CGH showed a de novo 2.6-Mb loss of 22q11.2 
(proximal breakpoint 17,210,818–17,270,293; distal 
breakpoint 19,891,492–19,870,318). The deletion was 
confirmed by FISH analysis.

   Patient 2.  This female infant was born prematurely at 
33 + 4 weeks with a birth weight of 1,565 g (10th–20th 
percentile). The pregnancy was complicated by polyhy-
dramnios. Postnatally, she experienced respiratory dis-
tress and was suspected of having a partial choanal atre-
sia. She had a congenital heart defect consisting of arte-
rial septal defect, ventricular septal defect and patent 
ductus arteriosis. Morphologic evaluation at the age of 2 
days revealed microcephaly (28 cm; –5.6 SD below mean), 
short palpebral fissures, dysmorphic ears with broad su-
perior crus of the antihelices, overfolded helices, and a 
bulbous nasal tip. CHARGE syndrome or a chromosom-
al abnormality was suspected, and array CGH, fundos-
copy, renal ultrasound, and brain imaging with special 
attention for the semicircular canals were suggested.
Array CGH showed a 2.9–3.0 Mb deletion of 22q11.21 
(proximal breakpoint 17,210,818–17,270,293; distal 
breakpoint 20,142,009–20,247,225) that was confirmed 
by FISH analysis. The other investigations had normal 
results, except for subtle abnormalities of the brain MRI 
scan with slightly delayed myelinisation and mildly en-
larged ventricles.

  At the age of 2 months, the ventricular septal defect 
was surgically corrected. From age 4–22 months, she re-
quired a tracheostomy because of the combination of very 
narrow choanae and pharyngomalacia. At the age of 10 
months, a gastrostoma with feeding tube were placed. At 
her last examination at the age of 2 years and 4 months, 

her height was 86 cm (–1 SD). Her head circumference 
was not measured, but she was normocephalic before (at 
the age of 22 months, her head circumference was 47.7 cm 
(–0.7 SD)). She was still being fed through her feeding 
tube and had just started to use some spoken words in ad-
dition to sign language after the removal of her trache-
otomy.

  CHD7 Mutations in Phenotypic 22q11.2 Deletion 
Syndrome 
  Patients with a CHD7 Mutation and Features of 

22q11.2 Deletion Syndrome.   Table 2  summarises the 30 
patients out of our international database of 802 patients, 
in which typical features of 22q11.2 deletion syndrome 
were described [Janssen et al., 2012]. We also included
3 additional patients from the literature, in whom the
precise  CHD7  mutation was not mentioned [Chopra
et al., 2009]. All 33 patients had features that are more 
commonly seen in deletion 22q11.2 syndrome than in 
CHARGE syndrome. A 22q11.2 deletion was excluded in 
25 of the 33 patients (76%). In one patient, a paternally 
inherited 2.5-Mb 22q11.23 deletion located distal to the 
22q11.2 deletion syndrome region was identified in addi-
tion to the  CHD7  mutation [Kaliakatsos et al., 2010]. At 
least, 16 of the 33 patients died in infancy.

   CHD7 Analysis in Patients Clinically Presenting as 
22q11.2 Deletion Syndrome.  We identified 5 pathogenic 
 CHD7  mutations in our group of 20 patients that were 
clinically suspected of 22q11.2 deletion syndrome.

   Table 3  summarises the mutations and known clinical 
features of the 5 patients clinically presenting as deletion 
22q11.2 syndrome, but in whom a  CHD7  mutation was 
identified. Remarkably, all 5 patients carried a truncating 
mutation in the  CHD7  gene. In addition, we identified 2 
silent  CHD7  mutations (c.4014C>T, p.Gly1338Gly and 
c.6216C>G, p.Pro2072Pro) in 2 other patients. Both si-
lent mutations had been identified in the 1,000 Genomes 
project (DbSNP rs199828744, rs188679907).

  Discussion 

 We highlighted the clinical overlap between 22q11.2 
deletion and CHARGE syndrome. Although some of the 
clinical features are present far more often in one of the 
syndromes ( fig.  1 ), none are seen exclusively in either 
22q11.2 deletion or CHARGE syndrome. For example, 
the presence of choanal atresia or semicircular canal hy-
poplasia does not exclude a 22q11.2 deletion, and severe 
T-cell dysfunction also occurs in CHARGE syndrome.
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Table 2. Patients with a CHD7 mutation, who show clinical features of 22q11.2 deletion syndrome

ID Type of 
mutation

Features
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0d del + + – – u + + – – u u + u + + +
0n del wg – + – u + u + u – u u u u u u u 22q11 phenotype, long 

slender fingers
P99 fs + + – u + u + u u + + u + u + +
P129d fs + + + + + + + + – + u + u + + u PTH def
P137 fs + + – + + u + + u + + u – u u + bronchomalacia, torti-

collis, GERD, absent 
thumbs

P147 fs + + – + u + + u u + u u – u u + fissure upper lobe right 
long, hypothyroidism

P197e fs + + – u u + + + u u u + u + + + laryngomalacia, eryth-
roderma, total alopecia

P238 fs u u u u u u u u u u u u u u + u
P245a fs + + u u + u + u u u u u u + u +
P293m fs + + u u u u u u u + u u + + + + tracheomalacia, PTH 

def, ectopia of one 
kidney

P304 fs + u + u u + + – u + u u u + + u
P767 fs – + u – + + + + – + + + – + u u PTH def, OSAS
P800i fs + + – – + + + + – + + + + u – + obstructive apneus
P866 fs u u u u u + + u u u u u u + u u
P875 fs – – + + + + + + + + + + – + + + laryngeomalcia, hypo-

thyreoidy, vermis 
dysplasia

P987h fs + + u u u + + u u + u u u + u u PTH def, limb abnor-
mality

P29a non + + u u u + + u + u u u u u u + abnormal limbs
P40 non + + + + u u + u u u u u u u + u
P37b non – + + u u + + + u + u – – + u + PTH def
P44c non + + + u u – + u u u u + u + + + PTH def, laryngomala-

cia, abnormal limbs
P122a non + + + u u + u u u u u u + + + u
P189b non u + – u u + + u u – u u + + + u hypothyroidism, partial 

agenesis corpus callo-
sum, horseshoe kidney

P256f, g non u + u u u + u u + u u u u u u + terminated pregnancy, 
left isomerism, hypo-
plastic optic nerves

P279i, k, l non – + + + + + + + – + + u – u – + cortical brain atrophy
P780i, k non – + + + + + + + – + – – + + – – NEC, hydrocephalus, 

GERD
P834i non + + u + + + + + + + u + u u u + laryngomalacia, PTH 

def, corpus callosum 
hypoplasia, horseshoe 
kidney

P898 non + + u u u u + u + + u u u u + u hydrocephaly
P1003j non – + + u u – + + u u u u u + + + glottic web, laryngo-

malacia, vertical talus
0a non u + u u u + + u u u u u u + u + preauricular tags
P616 spl + + – + u + + + u u u + – + u + scalp cutis aplasia, PTH 

def
0o U + + u u u u + u – + u u + u + +
0o U + + + + + u u u – + u + u u + u seizures
0o U + + u u u u u u – + u – u u + u bulbar palsy

Features more commonly seen in 22q11.2 deletion syndrome than in CHARGE syndrome are highlighted in grey.
u = Unexamined/unknown; + = present; – = not present; abn. = abnormalities; del = deletion exon 4; fs = frameshift; developm. = developmental; GERD = gastro-oesophageal re-

flux disease; ID = patient ID in online database of CHD7 mutations (www.chd7.org); non = nonsense; NEC = necrotising enterocolitis; OSAS = obstructive sleep apnea syndrome; PTH 
def = low parathyroid hormone or hypoparathyroidism; SCC = semicircular canal; spl = splice site; TE = tracheo-oesophageal; U = mutations unknown (all patients described in Chopra 
et al. [2008]); wg = whole gene; 0 = not mentioned in the online database.

a Gennery et al., 2008. b Writzl et al., 2007. c Inoue et al., 2010. d Wincent et al., 2008. e Kaliakatsos et al., 2010. f Vuorela et al., 2007. g Vuorela et al., 2008. h Van de Laar et al., 2007. 
i Jongmans et al., 2006. j Hoover-Fong et al., 2009. k Vissers et al., 2004. l Bergman et al., 2011a. m Sanka et al., 2007. n Randall et al., 2009. o Chopra et al., 2008.

* Atresia or stenosis of choanae. ** Only if necessitating tube feeding. 
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  Remarkably, almost exclusively, we found truncating 
 CHD7  mutations in both groups of patients suspected of 
having  TBX1  haploinsufficiency ( tables 2 ,  3 ). This is in 
line with our previous observation that  CHD7  missense 
mutations result in a milder phenotype. Features also 
seen in 22q11.2 syndrome, like congenital heart defects 
and cleft palate, occur more often in patients with a trun-
cating mutation than in those with a missense mutation 
[Bergman et al., 2012b]. Thus, the clinical overlap be-
tween these syndromes is predominantly seen in the more 
severely affected patients with a 22q11.2 deletion or 
 CHD7  mutation.

  How can we explain the remarkable clinical overlap 
between these 2 syndromes? It is possible that both syn-
dromes could be present simultaneously, but this must be 
extremely rare, as no cases have been reported yet. How-
ever, it cannot be excluded, since not all mutations in 
 CHD7  and  TBX1  are detectable by current techniques.
It is well known that no  CHD7  mutation can be detected 
in 5–10% of the patients with a clinical diagnosis of 
CHARGE, suggesting either undetectable  CHD7  muta-
tions (e.g. in the promoter region) or the existence of a 
second gene that can cause CHARGE syndrome when 
mutated. Nonetheless, both syndromes should be includ-
ed in a common differential diagnosis as discussed in our 
recent reviews [McDonald-McGinn et al., 1993; Bergman 
et al., 2011b; McDonald-McGinn and Sullivan, 2011].

  The most likely explanation for the phenotypic over-
lap between both syndromes is that the causative genes, 
 CHD7  and  TBX1 , function in the same embryonic path-

way or in pathways with a common target. The  CHD7  
gene is expressed ubiquitously during human embryonic 
development with a high expression in the foetal inner 
ear, eye, central nervous system, and in the neural crest of 
the pharyngeal arches [Sanlaville et al., 2006]. The CHD7 
protein belongs to the chromodomain helicase DNA-
binding (CHD) family [Woodage et al., 1997] and is 
thought to regulate gene transcription by ATP-depen-
dent chromatin modification during embryogenesis 
[Schnetz et al., 2009]. CHD7 cooperates with, amongst 
others, PBAF (polybromo- and BRG1-associated factor 
containing complex) in controlling neural crest gene ex-
pression and cell migration [Bajpai et al., 2010].

  The  TBX1  gene codes for the T-box transcription fac-
tor TBX1 that regulates the expression of downstream 
growth and transcription factors that are involved in the 
development of the heart, thymus, parathyroid, and pal-
ate. TBX1 physically interferes with SMAD1, influencing 
its binding to SMAD4 and thus signal transduction [Ful-
coli et al., 2009]. Interestingly, CHD7 was found to colo-
calise with SMAD1 (OMIM 601595) and other transcrip-
tion factors at enhancer elements near genes that are
repressed [Schnetz et al., 2010]. Thus, both TBX1 and 
CHD7 regulate gene transcription and might well regu-
late the transcription of the same genes.

  Mice with heterozygous  Chd7  mutations show semi-
circular canal defects, septal heart defects, cleft palate, 
choanal atresia, hyposmia, olfactory bulb anomalies, tes-
tes hypoplasia, hearing loss, and low body weight [Bos-
man et al., 2005; Adams et al., 2007; Hurd et al., 2007, 

Table 3.  Features of 5 patients with clinical 22q11.2 deletion syndrome but without TBX1 haploinsufficiency, in 
whom CHD7 mutations were found

Patient ID CHD7 CHD7 Clinical features*

CH95-172 c.493_496delinsGG p.Pro165fs suspected of having 22q11.2 deletion syndrome, no 
further information available

CH95-218 c.2440C>T p.Gln814X ADHD, speech therapy, sensorineural/conductive 
hearing loss, scoliosis, myopia, retinal coloboma, 
dysmorphic features

CH94-143 c.3024T>G p.Tyr1008X thymic hypoplasia, CLP, hypocalcemia, normal
cardiac ultrasound, auricular dysplasia

CH96-184 c.4357C>T p.Gln1453X low PTH, low Ca, low T cells, small thymus,
dysmorphia, micrognathia, low-set malformed ears, 
choanal atresia, velopharyngeal incompetence,
laryngotracheomalacia, ASD

CH99-214F c.4424del p.Glu1475fs suspected of having 22q11.2 deletion syndrome, no 
further information available

* Typical CHARGE features are indicated in bold.
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2011; Layman et al., 2009; Bergman et al., 2010 ]. Other 
CHARGE features, e.g. coloboma, external ear anomalies 
and tracheo-oesophageal defects, have not been reported 
in  Chd7 -deficient mice. This discrepancy in phenotype 
between man and mice might be caused by species-spe-
cific differences in CHD7 requirements or differences in 
genetic background [Zentner et al., 2010b].

  Mice with haploinsufficiency for  Tbx1  show the full 
range of malformations that can be present in the 22q11.2 
deletion syndrome [Merscher et al., 2001]. Tissue-specif-
ic conditional mutagenesis of  Tbx1  has shown its role in 
the secondary heart field [Xu et al., 2004], pharyngeal me-
soderm [Zhang et al., 2006], pharyngeal endoderm [Ar-
nold et al., 2006], pharyngeal epithelia [Zhang et al., 
2005], and otic epithelium [Xu et al., 2007].

  Surprisingly, mice with a double heterozygous muta-
tion of  Chd7  and  Tbx1  show a severe cardiovascular phe-
notype and severely reduced postnatal viability compared 
to mice with a heterozygous mutation of  Chd7  or  Tbx1 
 [Randall et al., 2009]. The synergistic haploinsufficiency 
of both genes resulted in an enhanced effect on the fourth 
pharyngeal arch morphogenesis, abnormal thymus de-
velopment and malformations of the semicircular canals. 
These observations in mice together with our observa-
tions in the patients presented in this paper suggest that 
both genes act in the same developmental pathway. Ran-
dall et al. [2009] hypothesised that Chd7 might modulate 
 Tbx1  expression but were unable to prove that the expres-
sion of either gene changed in mouse embryos mutated 
at the other locus. Hurd et al. [2011] showed that  Tbx1  
expression was expanded more ventrally in the develop-
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CHD7 CHARGE syndrome

TBX1 22q11.2 deletion syndrome

JAG1 Alagille syndrome

GLI3 Pallister Hall syndrome

FGFR1 Kallmann syndrome 
Pfeiffer syndrome

FGF8 Kallmann syndrome

SOX2 Syndromic microphthalmia
type 3

OTX2 Syndromic microphthalmia 
type 5

MYCN Feingold syndrome

TCOF1 Treacher Collins syndrome

FGF10 Lacrimo-auriculo-dento-
digital syndrome

  Fig. 3.  Multiple congenital anomaly syndromes having clinical 
overlap with CHARGE syndrome and 22q11.2 microdeletion syn-
drome. In figure 3, we show the overlapping clinical features of 
CHARGE and 22q11.2 deletion syndrome with known genetic 
syndromes. All the genes mentioned in this figure or their proteins 
have been associated with either CHD7 or TBX1. The expression 
of      FGFR1 ,  OTX2  and  TBX1  depends on CHD7 in some tissues; 
 TBX1  and  FGF8  are in epistasis in ectodermal development; bind-

ing of the protein treacle which is encoded by  TCOF1  partly de-
pends on the presence of CHD7, and SOX2 and CHD7 are co-
factors that regulate the expression of  JAG1, MYCN  and  GLI3 , 
amongst others [Randall et al., 2009; Hurd et al., 2010; Zentner et 
al., 2010a; Engelen et al., 2011; Layman et al., 2011]. Figure 3 shows 
that the linked molecular pathways are reflected by the shared clin-
ical features of the syndromes.     



 Clinical Overlap between 22q11.2 Deletion
Syndrome and CHARGE Syndrome 

Mol Syndromol 2013;4:235–245
DOI: 10.1159/000351127

243

ing inner ear of a  Chd7  null mouse conditional mutant 
( Chd7  Gt/Gt ) compared to the wild-type mouse embryo. 
This effect was not seen in heterozygously mutated mice 
( Chd7  Gt/+ ), suggesting that there is a dose-dependent in-
hibiting effect of  Chd7  on  Tbx1  in the inner ear which 
might be essential for inner ear neurogenesis [Hurd et al., 
2011].

  As an alternative theory, a shared convergent pathway 
via fibroblast growth factor 8 (FGF8, OMIM 600483) has 
been suggested, but has not been proven [Randall et al., 
2009]. It was shown that reduced Chd7 dosage in the ol-
factory placode, pituitary and hypothalamus in mice re-
duced the expression of the FGF8 receptor  Fgfr1  (OMIM 
136350) [Layman et al., 2011]. FGF8 and its receptor 
FGFR1 are interesting linking factors, since both are also 
involved in the pathogenesis of other organs frequently 
affected in CHARGE syndrome, like the combination of 
hypogonadotropic hypogonadism and anosmia [Pallais 
et al., 1993; Bergman et al., 2011a, 2012a]. The fact that 
this combination is seldom seen in patients with 22q11.2 
deletion could be explained by the more ubiquitous ex-
pression of  CHD7  compared to  TBX1 .

  The tight relationship between 22q11.2 deletion and 
CHARGE syndrome is not an isolated observation. Both 
syndromes share common features with other syndromes 
that may reveal further clues for interaction of their caus-
ative genes and underlying embryonic pathways. For in-
stance,  SOX2  mutations (OMIM 184429) result in a phe-
notype characterised by anophthalmia, tracheo-oesopha-
geal abnormalities, pituitary defects, and genital abnor-
malities. Like CHD7, SOX2 is assumed to play a role in 
neural stem cells, and Engelen et al. [2011] showed that 
CHD7 is a SOX2 transcriptional cofactor with their com-

mon target genes being  JAG1, GLI3  and  MYCN  (Notch 
and Shh signalling pathways). Shh signalling regulates the 
expression of  TBX1  in the pharyngeal arch probably 
through transcription factors of the FOX family [Yam-
agishi et al., 2003]. TBX1 has also been described as an 
upstream regulator of the Notch-signalling effector  HES1  
in the pharyngeal arch and a downstream target of  JAG2  
in tooth morphogenesis [Mitsiadis et al., 2010; van Bueren 
et al., 2010]. CHD7 and TBX1 have been described to in-
teract with proteins known from other overlapping syn-
dromes ( fig. 3 ). Thus, CHD7 and TBX1 may also interact 
indirectly through different pathways, like the Notch and 
Shh signalling pathways.

  In conclusion, the clinical diagnosis of 2 highly vari-
able syndromes, CHARGE and 22q11.2 deletion syn-
drome, can prove challenging. The syndromes should 
therefore be included in a common differential diagnosis, 
and we strongly recommend performing  CHD7  analysis 
in any patients with a 22q11.2 deletion phenotype but 
without TBX1 haploinsufficiency and performing a
genome-wide array for 22q11.2 deletions in clinical 
CHARGE patients without a  CHD7  mutation. We have 
shown that there is strong clinical evidence that both mo-
lecular pathways are linked, although the precise nature 
of this link needs further exploration.
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