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ABSTRACT

Motivation: Genetic variants identified by genome-wide association

studies to date explain only a small fraction of total heritability. Gene-

by-gene interaction is one important potential source of unexplained

total heritability. We propose a novel approach to detect such

interactions that uses penalized regression and sparse estimation

principles, and incorporates outside biological knowledge through a

network-based penalty.

Results: We tested our new method on simulated and real data.

Simulation showed that with reasonable outside biological knowledge,

our method performs noticeably better than stage-wise strategies (i.e.

selecting main effects first, and interactions second, from those main

effects selected) in finding true interactions, especially when the mar-

ginal strength of main effects is weak. We applied our method to

Framingham Heart Study data on total plasma immunoglobulin E

(IgE) concentrations and found a number of interactions among differ-

ent classes of human leukocyte antigen genes that may interact to

influence the risk of developing IgE dysregulation and allergy.

Availability: The proposed method is implemented in R and available

at http://math.bu.edu/people/kolaczyk/software.html.

Contact: chenlu@bu.edu

Supplementary information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

Unlike Mendelian diseases, in which disease phenotypes are lar-
gely driven by mutation in a single gene locus, complex disease

and traits are associated with a number of factors, both genetic
and environmental, as well as lifestyle. In addition, while most

Mendelian diseases are rare, many complex diseases are fright-
fully common, from asthma to heart disease, hypertension to
Alzheimer’s and Parkinson’s to various forms of cancer.

Arguably motivated by classical successes with Mendelian dis-
eases and traits, the study of complex diseases and traits in the
modern genomics era has focused largely on the identification of

individually important genes. Genome-wide association studies

(GWAS), the current state of the art, have been central to the

discovery of many genes in various diseases (e.g. Hindorff et al.,

2010). However, unfortunately, the vast majority of genetic

variants associated with complex traits identified to date explain

only a small amount of the overall variance of the trait in the

underlying population (Manolio et al., 2009). As a result, most

GWAS findings thus far have had little clinical impact.
Currently, most GWAS are carried out one single nucleotide

polymorphism (SNP) at a time. Typically, for each SNP, a model

is specified, relating disease status or disease trait to the SNP plus

other potentially relevant covariates. The statistical significance

of each SNP is quantified through the P-value of an appropriate

test. Finally, a multiple-testing correction is applied to correct the

collection of P-values across SNPs. The end result is a list of

SNPs declared to be significantly associated with the status or

trait of interest, which in turn can be mapped to their closest

genes, although some associations have been found in ‘gene

deserts’ (Hindorff et al., 2010). The single-SNP approach has

the important attribute that it is (relatively) computationally

efficient. However, it can be severely under-powered because of

the small effect size of most genetic variants identified to date

(Hindorff et al., 2010; Manolio et al., 2009). Additionally, this

approach does not adjust for correlation among SNPs, nor does

it extend in a natural manner to search for interactions between

markers. In contrast, multiple regression (i.e. where multiple

SNPs are modeled simultaneously) is a natural alternative.

However, naive implementation (i.e. incorporating all SNPs of

interest) is both infeasible and undesirable. This is due to various

reasons, including the sheer number of SNPs typically available

(e.g. hundreds of thousands to millions), the comparatively small

number of SNPs likely to be associated and ‘small n, large p’

problems.

Recently, however, computationally efficient multiple regres-

sion strategies for GWAS have begun to emerge that use various

methods of high-dimensional variable selection (e.g. Ayers and

Cordell, 2010; Logsdon et al., 2010; Ma et al., 2010; Szymczak

et al., 2009; Wu et al., 2009, 2010; Zhou et al. 2010). Compared

with traditional single-SNP methods, penalized regression

methods have been found to yield fewer correlated SNPs

(Ayers and Cordell, 2010) and to be capable of producing sub-

stantially more power while having a lower false-discovery
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rate (FDR; He and Lin, 2011). Furthermore, and most relevant
to the current article, regression methods can include SNP by
SNP interactions in a natural manner. However, to date, this

typically has been done in a greedy stage-wise manner, by fitting
main-effect models first and then restricting attention to inter-

actions among those effects found significant (Wu et al., 2009,
2010). In addition, the above work makes limited or no use of
supplementary biological information on, for example, biological

pathways and gene function.
We propose a novel network-guided statistical methodology to

facilitate the discovery of gene-by-gene (G�G) interactions
associated with complex quantitative traits related to human dis-
ease, one which addresses both of the shortcomings cited above.

Main effects and interaction effects in our model are chosen
simultaneously, thus allowing for the possibility of detecting

genes for which the marginal main effect is weak. Variable selec-
tion is done through penalized regression using sparse estimation

principles. The penalty allows for the incorporation of informa-
tion on biological pathways and gene function into the analysis
of continuous traits related to human disease. In doing so, this

penalty acts as an informal prior distribution on the set of pos-
sible G�G interactions, which in practice allows the investigator

to reduce the number of interactions examined for the model
from the nominal and computationally prohibitive O((number

of SNPs)2) to a more manageable, say, O(number of SNPs).
Simulations indicate that, given relevant pathway information,

our approach performs well in finding true interactions without

losing the ability of detecting main effects, and can noticeably
outperform existing stage-wise methods. In addition, application

of our proposed methodology to a study of plasma total
immunoglobulin E (IgE) concentrations for participants in the
FraminghamHeart Study (FHS) illustrates the substantial prom-

ise of the method.
The rest of this article is organized as follows: in Section 2, we

describe our statistical approach. We introduce the model and

our proposed penalty, describe how biological information is
incorporated into the penalty and explain the optimization algo-

rithm used for model fitting and a strategy for choosing tuning
parameters. The design and results of an extensive simulation

study are presented in Section 3, in which we examine models
with varying degrees of interactions and penalties reflecting
different extents of biological knowledge. Our analysis of the

IgE concentration data is provided in Section 4. Some additional
discussion may be found in Section 5.

2 METHODS

2.1 Modeling G�G interaction

Let Y be a quantitative trait of interest, and let fXjg
p
j¼1 be p predictors

representing SNPs. To include interactions, we are interested in a model

of the form

Y ¼ �0 þ
Xp
j¼1

�jXj þ
X
k4j

�jkXjk þ � ð1Þ

where Xjk ¼ XjXk. We expect that both the �js and the �jks are sparse,

as it is unlikely that there is more than a small fraction of SNPs affecting

the phenotype Y, either as main effects or as interactors.

In practice, p will range from hundreds to millions. Our goal is to fit

the high-dimensional model (1) to data. When p is large but only a small

percentage of predictors and interactions are present in the true model, a

general approach is to minimize a penalized regression criterion.

Accordingly, we propose to estimate the coefficients � ¼ ðf�jg, f�jkgÞ
T

in our model using a penalized least-squares criterion. Let

Y ¼ ðY1 , . . . ,YnÞ
T, Xj ¼ ðX1j , . . . ,XnjÞ

T and Xjk ¼ ðX1jX1k , . . . ,

XnjXnkÞ
T represent our variables Y, Xj and Xjk collected over n samples.

Our criterion is then written as follows:

~� ¼ argmin
�

1

2
jjY�

Xp
j¼1

�jXj �
X
k4j

�jkXjkjj
2 þ PWð�Þ ð2Þ

Penalized linear regression has been found to be a powerful tool for

fitting high-dimensional models, particularly in situations where the nom-

inal number of variables is large relative to the number of observations

(e.g. Bühlmann and Van De Geer, 2011). In the context of GWAS,

typically p� n. Hence, it is impossible to fit a model with the full set

of Oðp2Þ nominal interactions among all p SNPs. However, the coefficient

vector � is expected to be sparse. Therefore, a penalty function that

enforces sparseness can be helpful here, by encouraging the optimization

in (2) to find solutions in which a large percentage of the main effects

and their interactions are zero, thus dropping the corresponding terms

from the model.

Following standard practice, we wish to include interactions only if

their corresponding main effects are also included in the model. The

construction of the sparseness penalty PW, therefore, must be handled

with some care, so as to enforce the resulting hierarchical constraint

among coefficients. In addition, we would like our penalty to allow for

the use of biological knowledge (e.g. biological pathways, gene functional

classes, etc.) in fitting the model. We address these two goals by defining

a penalty of the form

PWð�Þ ¼ �1
Xp
j¼1

w2
jjjjXj�jjj

2 þ
X
k6¼j

w2
jkjjXjk�jkjj

2

 !1=2

þ �2
Xp
j¼1

X
k4j

wjkjjXjk�jkjj

ð3Þ

where the wjk � 0 are non-negative weights provided by the investigator,

and W ¼ ½wjk� is used to denote the matrix of weights over all SNP pairs

i, j. The values �1, �240 are tuning parameters.

Our penalty is a generalization of that proposed by Radchenko and

James (2010) for the purpose of fitting general types of interaction models

(in Radchenko and James (2010), wjk � 1 for all j, k). Note that, following

those authors, we express the penalty in un-normalized form (standard

lasso algorithms, for example, without interactions, assume jjXjjj ¼ 1 and

hence jjXj�jjj
2 ¼ �2j ). It can be shown that the penalty automatically en-

forces the hierarchical constraint (i.e. inclusion of main effects before

interactions). Main effects and interactions can be treated differently by

varying �2 with respect to �1. The elements of the matrix W are generic

and allow for the possibility of including biological information a priori

into the model selection process. We next describe a manner for doing so,

in which network principles are used in a natural way.

2.2 A network-based penalty

Here we describe how we construct the matrix W, using information on

biological pathways. Similar constructions may be had generally using

other common resources (e.g., databases of genes and their biological

function, such as Gene Ontology). Note that W acts as a dissimilarity

matrix in PW. Under our construction, W is defined in association with a

graph showing relationships among SNPs, which in turn derives from a

bipartite graph relating SNPs to pathways. The intuition underlying our

construction is to (i) allow interactions only among SNPs corresponding

to genes that are common to at least one pathway, and (ii) to encourage

interactions more among those SNP pairs that are common to more

pathways.
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Let S1 , . . . ,Sp denote our p SNPs, and P1 , . . . ,Pm, our m pathways.

We define G to be a bipartite graph, with one set of nodes representing

SNPs, and the other, pathways. An edge in G connects an SNP Si to a

pathway P‘ if that SNP maps sufficiently close to a gene found in the

pathway. We then define GSNP to be the one-mode projection of G onto

the set of SNPs. Figures 1 and 2 show three toy examples of graphs G and

GSNP, for p ¼ 3 SNPs and m ¼ 2 pathways.

An equivalent representation of the relationship between SNPs and

pathways in the network GSNP is a p�m incidence matrix M, describing

which SNPs are linked to which pathways. For the three examples in

Figure 1, the corresponding incidence matrices are

M1 ¼

1 0
1 1
0 1

2
4

3
5 M2 ¼

1 0
1 1
1 1

2
4

3
5 M3 ¼

1 0
0 1
0 1

2
4

3
5 ð4Þ

Similarly, the analogous m�m (weighted) adjacency matrix is the stand-

ard representation of the one-mode projection GSNP. Calling this matrix

A, it is related to the incidence matrix M of the original graph G through

the expression A ¼MMT. For the three examples shown in Figure 1 and

Figure 2, the adjacency matrices are

A1 ¼

1 1 0
1 2 1
0 1 1

2
4

3
5 A2 ¼

1 1 1
1 2 2
1 2 2

2
4

3
5 A3 ¼

1 0 0
0 1 1
0 1 1

2
4

3
5 ð5Þ

Finally, we define the dissimilarity matrix W element-wise by setting

wjk ¼ 1=ajk. In the case where ajk ¼ 0, we set wjk ¼ 1 by convention.

Note that the resulting implication for the optimization in (2) is that �jk
is set to zero, i.e. the term Xjk cannot enter the model. Hence, only those

pairs of SNPs j, k that share at least one pathway (i.e. wjk51) may po-

tentially enter the model. As a result, it is possible to substantially reduce

the number of interaction terms considered for entry into the model, thus

making the simultaneous search for main effects and interactions easier to

perform. For example, in the application presented in Section 4, 17 025

SNPs were used, nominally corresponding to �145 million interactions.

However, in using the 186 pathways from the Kyoto Encyclopeida of

Genes and Genomes (KEGG) database to construct our matrix W, this

number was reduced to less than 480 000 potential interactions.

Wenote that there are certainlyotherways of constructing thematrixW.

For example, a variation on the procedure described above would be to

definewjk ¼ 1 if ajk40, and infinity otherwise. This is equivalent to equip-

ping the graphGSNP with a binary adjacencymatrix and lettingwjk ¼ 1=ajk
as before, and results in the equal treatment of all interactions that are

allowed to enter the model, regardless of how many pathways are shared

by pairs j, k. In addition, of course, other types of outside information—if

judged relevant—can be used in place of pathways, as mentioned above.

2.3 Model selection and fitting

To perform the optimization in (2), we use cyclic coordinate descent, a

now-standard choice for problems such as ours (e.g. Friedman et al.,

2007; Wu and Lange, 2008; Wu et al., 2009). As the name indicates,

the cyclic coordinate descent algorithm updates one element of � at a

time using coordinate descent principles, while holding all others fixed,

and cycles through all elements until convergence. In our context, the

details of the resulting algorithm parallel those of Radchenko and James

(2010). We, therefore, present only a sketch of the algorithm and relevant

formulas here. Detailed derivation can be found in Supplementary

Material, Section 1.

Consider the estimation of �j. We note that, with respect to this par-

ameter, the objective function in (2) can be written as

1

2
~Yj � Xj�j
� �T ~Yj � Xj�j

� �

þ �1 w2
jjjjXj�jjj

2 þ
X
k 6¼j

w2
jkjjXjk�jkjj

2

 !1=2

þCj

ð6Þ

where ~Yj ¼ Y�
P

‘6¼j X‘
~�‘ �

Pp
‘¼1

P
k4‘ X‘k

~�‘k. Here ~�‘ is the current

value of �‘ at this stage of our iterative algorithm, and similarly for
~�‘k, while Cj is all of the rest of the penalty term PWð�Þ that does not

involve �j.

The updates to the estimates ~�j of the main effects �j take the form of

a shrinkage estimate, ~�j ¼ �j�̂j, for �j 2 ½0, 1�. Here �̂j ¼ XT
j
~Yj is the

solution to the problem of fitting a regression-through-the-origin for ~Yj

on Xj, and the shrinkage parameter �j is the solution to the equation

�j 1þ
�1w

2
jj

ðw2
jjX

T
j Xj�2j �̂

2
j þ cjÞ

1=2

 !
¼ 1 ð7Þ

where cj ¼
P

k6¼j w
2
jkjjXjk�jkjj

2. The value �j can be obtained using

the Newton–Raphson method. In the special case where cj ¼ 0, which

must be the case when wjk ¼ 0 for all k 6¼ j (i.e. SNP j is not allowed to

participate in any interactions), Equation (7) can be solved in closed

form, yielding �j ¼ ð1� �1wjj=½ðX
T
j XjÞ

1=2
j�̂jj�Þþ.

Now consider the estimation of �jk. Similar arguments show that the

iterations in the cyclic coordinate descent algorithm involve updates

of the form ~�jk ¼ �jk�̂jk, for �jk 2 ½0, 1�. Here �̂jk ¼ XT
jk
~Yjk=X

T
jkXjk is

the solution to the problem of fitting a regression-through-the-origin

for ~Yjk on Xjk, where

~Yjk ¼ Y�
Xp
‘¼1

X‘ ~�‘ �
X
m4‘

X
ð‘,mÞ6¼ðj, kÞ

X‘m ~�‘m

The shrinkage parameter �jk for interaction terms is the solution to the

equation

�jk�̂jk 1þ �1w
2
jk

1

ðw2
jkX

T
jkXjk�2jk�̂

2
jk þ cjk1 Þ

1=2

"(

þ
1

ðw2
kjX

T
kjXkj�2jk�̂

2
jk þ cjk2 Þ

1=2

#)

¼ signð�̂jkÞ j�̂jkj � �2wjkðX
T
jkXjkÞ

�1=2
h i

þ

ð8Þ

where

cjk1 ¼ w2
jjX

T
j Xj�

2
j þ

X
n6¼j, k

w2
jnX

T
jnXjn�

2
jn

and

cjk2 ¼ w2
kkX

T
kXk�

2
k þ

X
n6¼k, j

w2
knX

T
knXkn�

2
kn

which again can be computed using the Newton–Raphson method. When

cjk1 and cjk2 are both zero, �jk can be solved in closed form, yielding

�jk ¼ 1� ½ð2�1 þ �2Þwjk�=½ðX
T
jkXjkÞ

1=2
j�̂jkj�

n o
þ

The shrunken estimates of coefficients of predictors and interactions

are updated in the iterative process described above until convergence

Fig. 1. Simple illustration of network representations between SNPs (S1,

S2, S3) and pathways (P1, P2)

Fig. 2. One-mode projection of the three examples in Figure 1
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is achieved. Following standard practice, on termination of our cyclic

coordinate descent algorithm, we generate a final estimate of coefficients

for those variables Xj and Xjk that were allowed to enter the model, using

ordinary least squares. All corresponding effect-size estimates and

P-values produced by our methodology result from this final step.

For datasets with a small number of predictors fXjg, the algorithm can

be easily fit as described. However, for larger numbers of predictors, we

use a ‘swindle’, in analogy to that proposed by Wu et al. (2009) and

implemented in MENDEL (Lange et al., 2001). The basic idea is to

apply the algorithm to a much smaller number, say k, of pre-screened

predictors, and to choose the smoothing parameter(s) such that only a

desired number, say s5k, of predictors Xj enters the model. The Karush–

Kuhn–Tucker (KKT) conditions for our optimization problem are then

checked for the estimate ~� resulting from our algorithm (augmented with

zeros for coefficients of all predictors eliminated at the pre-screening

stage). If the KKT conditions are satisfied, we are done; if not, we

double k and repeat the process. Following Wu et al. (2009), we let

our initial choice of k be a multiple of s, i.e. k ¼ 10� s in the applications

we show. Pre-screening consists of sorting the t statistics of fitting ordin-

ary least-square regression of Y on each predictor Xj separately (i.e. trad-

itional GWAS) and extracting those predictors with the k largest

t statistics. Details can be found in Supplementary Material, Section 2.

2.4 Choice of tuning parameters

In the penalty function PW defined in (3), the tuning parameters �1, �2
directly influence the number of variables that enter the final model.

In principle, these two parameters may be allowed to vary freely and a

cross-validation strategy used to select the best values. However, this

strategy is unrealistic for GWAS, where the number of SNPs may

range into millions. Instead, we use a strategy that allows investigators

some control in dictating how many variables enter the model, and

thereby specify the tuning parameters implicitly.

First, we impose a linear relation between the two tuning parameters,

i.e. �2 ¼ c�1. Because �2 is directly involved only in the selection of inter-

action terms, specifying the constant c may be interpreted as ‘tuning’ the

number of interactions relative to main effects. The tuning parameter �1
is responsible for the number of main effects in the model. Because �1 is

essentially a decreasing function of the number of main effects entered in

the model and often investigators have at least some rough expectation

of how many SNPs they feel are likely to be associated with their pheno-

type, we set �1 by pre-specifying the number of main effects to include in

the final model (i.e. denoted s above).

Second, calculations show that the relation c 	
ffiffiffiffiffiffiffi
�j�k
p

r holds, where

�2j ¼ 2pjð1� pjÞ is the variance of SNP j coded as the number of minor

alleles under the assumption of Hardy–Weinberg equilibrium; the

variance is defined here in terms of the minor allele frequency (MAF)

pj, and r is the ratio of the thresholds for main effects and interactions

to enter the model within the cyclic coordinate descent algorithm. See

Supplementary Material, Section 3, for details. We recommend that

c be chosen by the user through (i) specifying a desired ratio r and

(ii) knowledge of the distribution of SNP MAFs.

By setting the desired number of main effects and the value c, we

implicitly specify the values of the tuning parameters �1, �2. A smaller

value of c (corresponding to a larger value of r) means more interactions

may enter the model, for a fixed number of main effects.

3 SIMULATION

3.1 Simulation study design

We carried out a simulation study to assess (i) the performance

of our method under various interaction scenarios and (ii) the
effect of different choices of the W matrix in our penalty on our
ability to detect interaction. We also compared our method with

the stage-wise selection method proposed by Wu et al. (2009),

which restricts interaction search to SNPs first declared to have

main effects. In each simulated dataset, there are 1000 subjects

and 1000 SNPs as predictors. The SNPs are coded additively

(0, 1, 2), simulated with a MAF of 50%, and drawn from

a binomial distribution with two trials. Lower MAFs were also

investigated (MAF� 10%, see Supplementary Material, Section

4.5). The quantitative trait Y is then simulated using the effect

SNPs and interactions specified under assumed models. The

effect sizes are set for 80% power under standard single-SNP

additive models. Among the 1000 SNPs, 20 (SNPs 1–20) have

true main effects on the simulated trait, and the remaining 980

SNPs have no effect.

To test our method in various interaction situations, we evalu-

ate three different models:


 Model 1: only 20 main effects with no interaction,


 Model 2: 20 main effectsþ all two way interactions among

SNPs 1–5, and


 Model 3: 20 main effectsþ SNP1� SNP2þSNP3�

SNP4þ SNP5�SNP6þ . . .þ SNP19� SNP20.

Model 1 has no interactions involved. Models 2 and 3 both

have 10 interaction terms involved, and the interactions are all

among true main effects. However, in Model 2, there is one

cluster with 5 interacting SNPs, while in Model 3 there are

10 clusters, each with two interacting SNPs.
In addition, we explore six different ways to construct the

W matrix used in the penalty. In each case, we allow all SNPs

to be evaluated as possible main effects, by having all ones down

the diagonal of W. For the possible interaction terms, coded by

the off-diagonal elements of W, we consider the following

additions:


 W1: þ true interactions in models,


 W2: þ two-way interactions among all true main effects

(SNPs 1–20),


 W3: þ true interactions þ random ‘noise’ interactions,


 W4: þ two-way interactions among all true main effects þ

random ‘noise’ interactions,


 W5: þ two-way interactions among SNPs 1–40 (all true

main effects and 20 non-active SNPs), and


 W6: þ two-way interactions among SNPs 1–10 and 21–30 þ

two-way interactions among SNPs 11–20 and 31–40.

The matrixW1 is an ideal case. It only allows true interactions

built in the model to enter that model. Note that W1 is different

for each of Models 1, 2 and 3. The matrix W2 introduces some

‘noise’ interactions by allowing all interactions among true main

effects. It is equivalent to a single pathway of SNPs 1–20 and is

the same for all models. The matrix W3 adds random ‘noise’

interactions to W1, while W4 adds random ‘noise’ interactions

to W2. Note that W3 and W4 both vary across models. The

random ‘noise’ interactions are introduced in a manner aimed

at mimicking the interaction structure corresponding to the

KEGG database, only some subset of which will likely be rele-

vant to any given study (and the rest, ‘noise’). Specifically,

an additional set of ‘pathways’ (i.e. gene sets) were defined, in
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addition to those defined by the models themselves, until 20 path-
ways were formed. To these 20, we then randomly allocated 160

additional SNPs so that the average number of SNPs per path-
way roughly mimicked what is observed in KEGG. W5 repre-

sents a single pathway of SNPs 1–40, similar to W2 but with

more SNPs (20 non-active SNPs) involved. W6 then represents
two pathways with each having 10 active and 10 non-active

SNPs. It is similar to W5 in the sense that the allowed inter-

actions involve SNPs 1–40, but W6 has smaller amount of
non-active interactions.

We chose �1 by setting the desired number of main effects
selected as 25, the value of �1 is automatically determined by

our program once the value 25 is provided. This is a natural
choice because there are 1000 SNPs in our data and 20 true

main effects in the models. This choice will affect type I error

because at least 5 of the 25 predictors selected as main effects will
be false, but this number is modest compared with the total of

1000 SNPs and can be easily adjusted by resetting �1 according

to investigator preference. The parameter c is set to 0.5 (i.e.
r ¼ 1:0 under our model). The selected predictors are then

ranked by their absolute t-values resulting from the ordinary
least-square fit on the selected predictors for the final model.

By setting a threshold on the rank, we choose the number of

interactions to be reported and compare the performance of
interaction selection under various W matrix specifications

across a range of thresholds.

3.2 Simulation results

In Figure 3, we compare the results under various W matrix

specifications, for Models 2 and 3. We assess the ability to find
true interactions by computing the average FDR of interactions

over 100 trials and plotting 1�FDR against the rank threshold

for selected interactions. As the threshold increases, more inter-
actions get selected, and thus FDR increases and the curves have

a downward trend. Examining the results, we see thatW1 clearly

has the best performance, as it reflects the truth about the inter-
actions in the model; all false interactions are excluded a priori,

and thus the 1�FDR curve for W1 is a straight line at 1. Recall

that W3 is equivalent to W1 plus random ‘noise’. Importantly,

therefore, we note that pure ‘noise’ among non-active SNPs does

not appear to impact much the selection of true interactions, as

W3 has the second best performance afterW1. This conclusion is

reinforced by the results for W2 and W4, where the 1�FDR

curves are nearly identical. In contrast, the results in Figure 3

also suggest that selection of interactions is to some extent ad-

versely affected when allowing ‘noise’ interactions among active

SNPs, as W6 has better performance than W2 and W5, while W2

and W5 have similar performance.
In comparing our method with that of Wu et al. (2009), as

implemented in Mendel, we can see in Figure 3 that our method

outperforms stage-wise selection for all choices considered for

the matrix W. This observation is significant in showing that

using accurate prior information, even with moderate ‘noise’

(i.e. specifying non-existent interactions), it is possible to outper-

form the stage-wise approach by over 10–20% on the 1�FDR

scale. Note that we used the default option in Mendel that tests

interactions among selected main effects. There are other options

in Mendel one can choose that may perform somewhat better.
With respect to the detection of main effects, the performance

of our methodology is shown in Table 1. The average power of

main effects are grouped into three categories: the true SNPs

involved in interaction, true SNPs not involved in interaction

and the SNPs that have no effect on the simulated trait. Recall

that there is no interaction in Model 1, and all true SNPs in

Model 3 are involved in interaction, so they have only two rele-

vant groups of SNPs. As we can see from the Model 2 result,

SNPs involved in interactions are detected more easily than

SNPs not involved in interactions. Comparing Table 1 with

Table 2, we can also see that our method has the same or

higher average power for detecting true main effects than the

stage-wise approach of Wu et al. (2009), as implemented in

Mendel. In both approaches, the non-active SNPs have a small

chance of being declared as main effects.

We also tested two more cases where main-effect sizes were

moderate and weak, corresponding to 50% power and 20%

power, respectively, under standard single-SNP additive
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models. To assess the performance of our method in finding

interactions under these various strengths of main effects, we

reverse the direction of interactions so that there are no marginal

SNP effects. The W matrix we used is W2, as described before,

to make a fair comparison with respect to the inclusion

of noise interactions. The results under such models are shown

in Figure 4. As we can see from the figure, the approach imple-

mented using Mendel could not find true interactions under

any of the models [the regular (Mendel), the moderate
(Mendel.moderate) and the weak (Mendel.weak) main-effect
models], as it only searches for interactions among main effects

selected in the first stage. In contrast, our proposed approach is
able to find some of the true interactions because it incorporates

information from the W matrix, the network of interactions
built from outside knowledge. Not surprisingly, the model

with stronger main effect (M2W2, M3W2) performs better in
finding true interactions than moderate (M2W2.moderate,

M3W2.moderate) or weak (M2W2.weak, M3W2.weak) main-
effect models.
There are a number of other important questions that one

can explore in simulations. We further checked four of them
and found that (i) our approach outperforms simple association

tests; (ii) scaling up data size by adding more ‘noise’ SNPs makes
it harder to find true main effects but does not adversely affect
the selection of interactions’ (iii) besides the obvious advantage

of decreasing computing time, using network information in our
penalty yields advantages in detecting interactions beyond that

deriving from the hierarchical nature of the penalty; and (iv) our
approach is robust to modest linkage disequilibrium among

SNPs. A detailed description of these results can be found in
Supplementary Material, Section 4.

4 APPLICATION TO IGE CONCENTRATION

We applied our algorithm to evaluate G�G interactions for log

plasma IgE concentration, a biomarker that is often elevated in
individuals with allergy to environmental allergens. An elevated

plasma IgE concentration is associated with allergic diseases,
including asthma, allergic rhinoconjunctivitis, atopic dermatitis
and food allergy. Although several genes influencing IgE concen-

trations have been identified to date, the interactions among
these genes or others yet to be identified to be important players

have not been studied (Granada et al., 2012).
We sought to investigate G�G effects on log IgE concentra-

tion in the FHS cohorts. Participants from the town of
Framingham, Massachusetts, have been recruited in these studies
starting in 1948, and have been followed over the years for the
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Table 1. Simulation results for detection of main effects

Main effects W1 W2 W3 W4 W5 W6

Model 1

SNPs with interaction — — — — — —

SNPs without interaction 0.618 0.645 0.616 0.645 0.645 0.636

Non-active SNPs 0.013 0.012 0.013 0.012 0.012 0.012

Model 2

SNPs with interaction 1.000 1.000 1.000 1.000 1.000 1.000

SNPs without interaction 0.565 0.607 0.565 0.607 0.606 0.595

Non-active SNPs 0.011 0.011 0.012 0.011 0.011 0.011

Model 3

SNPs with interaction 1.000 1.000 1.000 1.000 1.000 1.000

SNPs without interaction — — — — — —

Non-active SNPs 0.005 0.005 0.005 0.005 0.005 0.005

Table 2. Detection of main effects by stage-wise competitor

Main effects Model 2 Model 3

SNPs with interaction 1.000 1.000

SNPs without interaction 0.557 —

Non-active SNPs 0.012 0.005
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development of heart disease and related traits, including pulmon-

ary function and allergic response measured by IgE concentra-

tion. Our analyses include 6975 participants, 441 from the original

cohort recruited in 1948, an additional 2848 from the Offspring

cohort recruited in 1971 and finally 3686 participants from the

Third Generation cohort initiated in 2002. A recent GWAS on

Framingham participants identified new genetic loci associated

with plasma total IgE concentrations (Granada et al., 2012).

We are interested in looking at G�G interactions associated

with IgE concentration, as an illustration of our methodology.

4.1 Preliminaries

Genotypes were from Affymetrix 500K and MIPS 50K arrays,

with imputation performed using HapMap 2 European reference

panel (Li et al., 2010). Dosage genotypes (expected number of

minor alleles) were used in our analysis, although the software

implementation of the Wu et al. (2009) approach (Mendel)

required genotypes to be coded as 0, 1 or 2 and could not

handle dosage. Therefore, in our analysis using Mendel, for

each individual, we used the genotype with the highest posterior

probability at each SNP. We analyze the natural logarithm of

plasma total IgE concentrations as our phenotype (i.e. Y),

adjusted for smoking status (current, former and amount of life

time smoking in terms of pack-years), age, sex and cohort of

origin. A total of 6975 participants (3209 men and 3766 women)

aged 19 years and older had good-quality genotypes and were

included in our analysis. Familial relationship was ignored when

applying our algorithm and theWu et al. (2009) approach, but we

subsequently applied linear mixed-effect models to account for

familial correlation to obtain estimates of effect sizes.
Some pre-processing was used to select a set of SNPs to

include in our analysis. First, we attempted to map each of the

2 411 590 genotyped and imputed SNPs in the dataset to a refer-

ence gene containing it. If no such gene was available, then we

mapped the SNP to the closest reference gene within 60 kb of the

SNP, if available. Otherwise, the SNP was excluded. After estab-

lishing this mapping between genes and SNPs, some genes were

found to include multiple SNPs. We kept only one SNP for

each gene, selecting in each case that SNP most significantly

associated with the phenotype, based on a linear mixed-effect

regression. As a result, the SNPs in the final dataset have low

linkage disequilibrium (correlation) and a unique SNP-to-gene

correspondence (additional analyses suggest that our results, re-

ported below, are fairly robust to modest amounts of disequilib-

rium in these data. See Supplementary Materials, Section 4.4).
The final dataset has 17 025 SNPs/genes. We used the KEGG

pathway database to build our W matrix, following the steps

described in Section 2. The KEGG pathway database has a

total of 72 354 genes and 5268 unique genes, resulting in

479066 interactions allowed in our W matrix.

4.2 Results

For our analysis on 17 025 SNPs, we chose to look for 10 main

effects, although we allowed the algorithm to terminate after

selecting 10� 1 main effects, resulting in 9 main effects selected

in the current analysis. The parameter c was set to 0.1, which,

based on an average estimated SNP variance of 0.27 for these

data, corresponds to r 	 2:7. Nine interactions were found in our

approach, yielding a model with 15 ¼ 9þ 6 variables. To cali-

brate our results with those from the stage-wise procedure of Wu

et al. (2009), as implemented in Mendel, the latter was run to

select 9 variables in the first stage (i.e. fitting only main effects),

and then 15 variables in the second stage (i.e. fitting both main

effects and interactions, selected from among the 9 SNPs result-

ing from the first stage). This process produced a final model

with nine main effects and six interactions. In terms of comput-

ing time, our analysis ran in �5 min on our cluster Linga,

equipped with two Intel Xeon CPUs E5345 @ 2.33GHz, with

Table 3. Results of application to IgE concentration data

Network-guided sparse regression Mendel analysis

Gene 1 Gene 2 t-value Found Gene 1 Gene 2 t-value Found

FCER1A �5.6441 a LRP1 4.7084

MPP6 4.4184 SNF1LK2 4.3969

STAT6 �4.2453 a EMID2 �4.1795

IL-13 4.0073 a RAB3C 3.8585

LRP1 3.7072 HLA-DQA2 3.6883 a

HLA-DPB1 HLA-DQA2 1.6314 FCER1A �2.8098 a

FCER1A HLA-DQA2 1.4193 HLA-DPB1 2.1346

HLA-G 1.3657 a LOC441108 1.9687

HLA-DPB1 1.1655 LOC441108 DDX1 1.7449

HLA-A 0.8442 a LRP1 DDX1 �1.6417

FCER1A IL-13 0.6318 FCER1A SNF1LK2 �1.5967

HLA-DQA2 0.4590 a DDX1 SNF1LK2 �1.4047

HLA-A HLA-DPB1 0.4318 DDX1 �1.1802

HLA-G HLA-A �0.2813 HLA-DPB1 EMID2 0.8505

HLA-G HLA-DQA2 0.0678 HLA-DPB1 LOC441108 �0.8076

Note: Terms are ranked based on absolute t-value. aThe genes that were found in publication.
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four cores each, and 16 GB/32 GB of RAM for each node (the
job was submitted to one node and used one core), while the
analysis in Mendel ran in �2 min. Given that our method evalu-

ates 479 066=55 	 8710 times more potential interactions than
Mendel, the observed trade-off between computing time and
number of possible interactions being evaluated appears to be

reasonable.
The results from our proposed method and from the stage-

wise procedure are shown in the left and right, respectively, of

Table 3. The estimates of effect size and the ranks are from the
linear mixed-effect model for the final model after variable selec-
tion procedure, for both methods. Genes previously found in a

GWAS of these FHS data (Granada et al., 2012) are indicated
with an asterisk in the table. In our approach, four of the six
interaction pairs involved human leukocyte antigen (HLA)

genes, which encode antigen-presenting cell-surface proteins
that are key regulators of the immune response. The other two

interactions identified were among genes both previously asso-
ciated with log IgE concentrations (Granada et al., 2012). In
contrast, Mendel did not detect any interactions among genes

in the HLA regions or among pairs of previously associated
genes.
From a biological perspective, a number of the interactions

discovered by our method are of non-trivial potential interest.
The major histocompatibility complex (MHC) class I antigens
HLA-A, -B and -C are involved with cell-mediated immunity

targeting cells expressing proteins produced intracellularly, for
example, by viruses, while the MHC class II antigens HLA-
DP, -DQ and -DR play key roles with humoral immunity,

including the production of IgE antibodies directed against en-
vironmental allergens (Klein and Sato, 2000). HLA-G is a non-
classical MHC class I antigen that may have immunomodulatory

effects through actions on natural killer cells, T lymphocytes and
antigen-presenting cells (Carosella et al., 2008). Genetic variants

in these different classes of HLA genes—each class influencing a
different but interconnected aspect of immune function—could
well interact to influence the risk of developing IgE dysregulation

and allergy. The observed interaction between SNPs in the alpha
chain of the high affinity receptor for IgE (FCER1A) and inter-
leukin (IL)-13 genes may reflect a number of mechanisms. For

example, a genetic variant causing increased expression of
Fc"RI� on mast cells would lead to increased antigen-induced
activation of these cells, which would consequently produce

more IL-13 (Burd et al., 1995), leading to more class-switch re-
combination and IgE production. Genetic variation of Fc"RI�
on classical antigen-presenting cells may also promote Th2 cell

activation (Potaczek et al., 2009) with consequent IL-13 release.
Thus, SNPs in these two genes in the same pathway leading to
increased IgE production could have synergistic effects. Overall,

identification of these interactions may help identify the children
at highest risk for developing allergy, possibly helping focus

interventions to prevent allergy, and may provide new insights
into the genetic basis and mechanisms of allergy.

5 DISCUSSION

There are many potential sources of missing hereditability.
G�G interactions is one such source. In turn, there are many

types of genetic interactions, including multiplicative and

non-multiplicative (Mukherjee et al. 2008, 2012). In this article,

we focus on investigating multiplicative interactions in the form

of a product between two variables. Our proposed methodology

provides a promising new approach to tapping this source, by

exploiting the wealth of biological knowledge accumulated in

various pathway databases.

The simulations reported here suggest that our approach per-

forms better in finding true interactions with a reasonable prior

biological knowledge incorporated, compared with the stage-

wise regression method that first fits a main-effect model and

then searches for interactions among selected main effects.

Furthermore, the real-data results are promising in suggesting

that better performance likely may be realized in real data

as well.
Future work to be done on this topic includes extending the

computational algorithm to account for linkage disequilibrium

among SNPs, and producing a software implementation that

uses standard formatted files such as genotype files from the

PLINK (Purcell et al. 2007) software package.
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