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Abstract
Satellite-based remote sensing provides a unique opportunity to monitor air quality from space at
global, continental, national and regional scales. Most current research focused on developing
empirical models using ground measurements of the ambient particulate. However, the application
of satellite-based exposure assessment in environmental health is still limited, especially for acute
effects, because the development of satellite PM2.5 model depends on the availability of ground
measurements. We tested the hypothesis that MODIS AOD (aerosol optical depth) exposure
estimates, obtained from NASA satellites, are directly associated with daily health outcomes.
Three independent healthcare databases were used: unscheduled outpatient visits, hospital
admissions, and mortality collected in Beijing metropolitan area, China during 2006. We use
generalized linear models to compare the short-term effects of air pollution assessed by ground
monitoring (PM10) with adjustment of absolute humidity (AH) and AH-calibrated AOD. Across
all databases we found that both AH-calibrated AOD and PM10 (adjusted by AH) were
consistently associated with elevated daily events on the current day and/or lag days for
cardiovascular diseases, ischemic heart diseases, and COPD. The relative risks estimated by AH-
calibrated AOD and PM10 (adjusted by AH) were similar. Additionally, compared to ground
PM10, we found that AH-calibrated AOD had narrower confidence intervals for all models and
was more robust in estimating the current day and lag day effects. Our preliminary findings
suggested that, with proper adjustment of meteorological factors, satellite AOD can be used
directly to estimate the acute health impacts of ambient particles without prior calibrating to the
sparse ground monitoring networks.
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1. Introduction
Environmental epidemiology studies have established a robust association between acute
and chronic exposure to airborne fine particulate matter with diameter <2.5 µm (PM2.5) and
adverse health effects such as increased overall mortality, as well as cause-specific
mortality, cardiovascular and pulmonary diseases, asthma, and lung cancer (Dockery et al.,
1993; Laden et al., 2006; Pope and Dockery, 2006). In contrast to chronic health effect
studies of PM which primarily rely on spatial heterogeneity in mean PM concentrations to
estimate the effects (Yanosky et al., 2008), day-to-day variations of PM levels are much
more important in short-term health effect studies (Dominici et al., 2006; Samet et al.,
2000). Many previous studies relied on central monitors to assign uniform exposure to
population living within a certain distance to the monitor. Besides the exposure
misclassification related to this approach, its application is limited to the spatial and
temporal availability of ground measurements from a monitoring network. For example,
most U.S. PM2.5 monitors are operated on an every-3-day or every-6-day sampling
schedule. In addition, most monitors are located in urban area with sparse or no coverage in
suburban and rural areas even in the U.S. Lack of routine ground monitoring is a major
factor limiting both chronic and acute PM2.5 health effects research in developing countries.

Various modeling approaches have been explored to improve the spatial and temporal
coverage of PM2.5 concentrations. For example, land use regression models have been
developed to provide spatially resolved PM2.5 levels to support chronic health effect studies
(Jerrett et al., 2005). Model simulated PM2.5 levels have been evaluated as exposure
estimates (Bravo et al., 2012). Given its broad spatial coverage, satellite-based monitoring
data can greatly supplement and expand ground monitoring networks to study the spatial and
temporal variations of PM, particularly in suburban and rural areas far from ground
monitoring sites. Satellite-derived aerosol optical depth (AOD), retrieved at visible
wavelengths such as the green bands (550 nm), is more sensitive to PM2.5 and can be used
as a quantitative measure of PM2.5 abundance in the atmospheric column (Gupta et al.,
2006; Koelemeijer et al., 2006; Liu et al., 2005; Liu et al., 2007a; Paciorek et al., 2008).
Although satellite-derived AOD has been successfully used to document pollution episodes
(Al-Saadi et al., 2005; Wang and Christopher, 2003), the application of satellite-based
exposure assessment in environmental health is in its infant stage. Most research focuses on
a pre-calibration approach of developing simple empirical models of AOD based on ground
PM2.5 measurements, and then evaluates the health effects of built models (Kloog et al.,
2012). However, the success of model building is limited by temporal mismatch between
24-h average PM2.5 and daytime (often single snapshot) AOD and various factors impacting
on the measurement accuracy from ground or space. To date, there are only a few studies
that have examined the relationships between pre-calibrated AOD and long-term health
effect (Hu, 2009; Hu and Rao, 2009).

Considering the limited success in model building using pre-calibration approach, we tested
the hypothesis that AOD is directly associated with acute and/or chronic health effects
without pre-calibration, as observed using ground data, under the condition that AOD is an
indicator of ground-level PM concentrations. In this exploratory study, we tested this
hypothesis using a healthcare database of hospital admissions collected from the entire
geographic region of Beijing in 2006, and further evaluated using two independent
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healthcare databases, including unscheduled outpatients visits and mortality, from sub-
geographic regions of Beijing. We focused on daily health outcomes extracted from these
databases to evaluate the acute effects associated with PM exposure. Our main objective was
to compare air pollution-associated health effects monitored from space (by AOD) and
ground (by PM), thus, ground measurement of PM10 particles was used as reference to
evaluate the AOD application in environmental health research even though there was no
PM2.5 data available in Beijing. To our knowledge, this study was the first quantitative
application of satellite aerosol remote sensing data to estimate air pollution-health effects.

2. Methods
2.1. Healthcare datasets

Three databases covering different geographic regions of Beijing (Fig. 1) were used to
compare the effects of air pollution assessed using ground PM10 and AOD, including
unscheduled outpatient visits, hospital admissions, and mortality. The daily events were
extracted according to the disease categories in Table 1. Strongly influenced by weekday/
weekend schedule, major national holidays, and administrative interruptions, the daily
events of unscheduled outpatient visits and hospital admissions had regular patterns of
weekly fluctuations (Fig. 2). The days at the weekends, holidays, and administrative
interruptions had the lowest daily events, and the days immediately followed the weekends,
holidays, and administrative interruptions had the highest daily events. Using a 7-day
moving average, we were able to completely remove weekly fluctuations resulting in a few
major gaps corresponding to holidays and administrative interruptions longer than five
weekdays. In these two databases, we investigated lag effects of air pollution within one-
week period by using 7-day moving average of daily events starting from the current day or
the next day.

2.2. Ground air quality monitoring data and meteorological data
Air Quality Index (AQI) is a color-coded reporting system commonly used by government
agencies to characterize the air quality for a number of pollutants. It is a piecewise linear
function to convert air pollutant concentration into AQI, which is divided into ranges with a
descriptor and a color code assigned to each range. China implemented a modified AQI
system, according to the guideline issued by the US Environmental Protection Agency
(http://www.epa.gov/ttn/oarpg/t1/memoranda/rg701.pdf).

Chinese AQI level is based on the levels of 5 atmospheric pollutants, including sulfur
dioxide (SO2), nitrogen dioxide (NO2), particulates (PM10), carbon monoxide (CO), and
ozone (O3). A daily AQI score is assigned to the level of each pollutant and the final daily
AQI is the highest of those 5 scores. The type of pollutant is only specified for the day with
AQI> 50.

Daily AQI covering Beijing area was obtained from the Beijing Environmental Protection
Bureau. In 2006, PM10 was considered as the major air pollutant because PM10 had the
highest concentrations among all monitored pollutants for all of the days with AQI above
50, which accounted for over 92% of the days in 2006. Daily AQI values at all 35 ground
monitors in Beijing were converted to PM10 concentrations, and geometric means of PM10
were used in this study. For those days without pollutant specified (AQI<50), we treated
PM10 as the major air pollutant. To convert from concentration to AQI the equation:
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was used, where: I=AQI value, C=the PM10 concentration, Clow =the lower limit of PM10
concentration of corresponding range of C, Chigh = the higher limit of PM10 concentration of
corresponding range of C, Ilow=the lower limit of AQI corresponding to Clow, Ihigh=the
lower limit of AQI corresponding to Chigh.

Local meteorological parameters collected at one station located at Beijing International
Airport (32 km northeast of city center) were extracted from Worldwide Surface
Observations Database (DS3505, integrated surface hourly) at National Climatic Data
Center. Daily averages of meteorological parameters were calculated from hourly values,
including temperature, relative humidity (RH), precipitation, air pressure, wind, and
visibility. Absolute humidity (AH) was calculated from RH and temperature data as
described previously (Shaman and Kohn, 2009).

2.3. Satellite AOD
The Moderate Resolution Imaging Spectroradiometer (MODIS) instruments, aboard on the
EOS Terra (since February 2000) and Aqua (since June 2002) satellites, cross the equator at
approximately 10:30 a.m. and 1:30 p.m. local time, respectively (Remer et al., 2005). Both
MODIS instruments provide AOD retrievals at a spatial resolution of 10 km every 1–2 days
at mid-latitudes. AOD values of Collection 5 MODIS data in 2006 covering northern China
including Beijing were downloaded from the Goddard Space Flight Center MODIS Level 1
and Atmosphere Archive and Distribution System (http://ladsweb.nascom.nasa.gov). Daily
AODs were retrieved as described previously (Liu et al., 2009). Briefly, we first selected
MODIS pixels whose centroids fall within Beijing city boundaries, then calculated city-
average Terra MODIS AOD and Aqua MODIS AOD respectively, and finally took the
average of two satellite AOD values as daily mean AOD. Given our single-city study
domain and the relatively coarse resolution of MODIS AOD, satellite data in our analysis is
used to improve the temporal coverage of fine particle exposure estimates only.

2.4. Statistical analysis
To relate short-term effects of air pollution to the daily health outcome, we used the time
series procedures. Because daily counts of health events typically follow a Poisson
distribution with large dispersion, we implemented generalized linear models (GLM) with
negative binomial distribution as described previously (Dominici et al., 2000; Katsouyanni
et al., 1996; Schwartz et al., 1996). The effects on the same day or lagged days of PM
exposure (daily PM10 or AOD) were investigated for each health outcome. Since AOD is
dimensionless, we used log2-transformed values in modeling to obtain uniformed
comparison of the PM-related health effects assessed by ground and space monitoring. To
accommodate weekly fluctuations in hospital admission and unscheduled outpatient visit,
we created a categorical variable to represent weekdays or weekends/holidays, and
incorporate this variable in analysis. This variable was not included in mortality analyses.
Since the data structure is relatively simple, which were collected with-in one calendar year
and one geographic region, we did not use smoothing function for seasonality and weather
control. Instead, a parametric season variable and meteorological variables were included in
the models. We also conducted several sensitivity analyses to assess the impacts of different
meteorological variables. Model selection, as well as evaluation between health effect
models of AOD and PM exposure, was based on likelihood test, Akaike Information
Criterion, and residual predictions. In order to reduce weekly fluctuation we also used the 7-
day moving average of daily health events in the analysis of hospital admission and
unscheduled outpatient visit, without categorical variable representing weekdays or
weekends/holidays. All statistical analyses were performed using the SAS package (version
9.1, SAS Inc., Cary, NC). Relative risks were calculated, and all statistical tests were two-
sided and values of P<0.05 were considered significant.
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3. Results
3.1. Calibration of AOD by absolute humidity

In 2006, PM10 daily average was 161 µg/m3 with the 25th percentile at 94 µg/m3 and the
75th percentile at 196 µg/m3. There were 265 days (73%) with valid AOD measurements,
and the missing days were not significantly clustered in any season (χ2 test, p=0.082). The
correlation between ground PM10 and AOD was low (Pearson correlation coefficient, 0.22;
p=0.0003). Compared with PM10, the weather condition had more effects on the AOD as
there were stronger correlations between AOD and meteorological factors (Supplemental
material, Table 1). In contrast to higher levels of air pollution observed normally in winter
and spring, AOD tended to be higher in summer (data not shown).

AOD values can be inversely affected by atmospheric water content. Relative humidity
(RH) is the most frequently used meteorological factor for measuring the atmospheric water
content, contrary to that the absolute humidity (AH, absolute measure of water vapor in the
air) was seldom used in previous studies. Although there was a strong correlation between
the two measurements (Supplemental material, Table 1), their daily average showed
significantly different patterns (Fig. 3A and B). RH tended to have large day-to-day
variations and was more variable in winter, spring, and fall, because high values could be
found in all seasons but low RH was seldom observed in summer. AH had much smaller
day-to-day variation (mean daily changes, 1.4±1.3 g/m3), with an annual daily average of
8.2 g/m3 (median: 5.9 g/m3; range, 0.4–25.9 g/m3). Annual distribution of daily AH had a
distinct bell-shaped pattern and fitted well with the seasonality (Fig. 3A). Driven by low
ambient temperature, winter in Beijing had very low AH. AH started to increase gradually in
the spring, peaked in the summer, decreased gradually in the fall, and returned to low levels
in the next winter. Compared with AH, daily RH seemed to overestimate the atmospheric
water content (Fig. 3B) and less coped with seasonal variations (Fig. 3A). Moreover, AH
had a strong but non-linear correlation with daily dew point (Fig. 3C), another
meteorological measure of atmospheric moisture. Furthermore, the impacts of AH on AOD
was supported by a moderate positive correlation (Pearson correlation coefficient, 0.454;
p<0.0001), contrary to a small negative correlation between PM10 and AH (Pearson
correlation coefficient, −0.225; p<0.0001). Therefore, we calibrated daily AOD values by
simply dividing them by corresponding daily average AH, named. The AH-calibrated AOD
had an annual trend which agreed well with that of PM10 (Fig. 3D). The correlation
coefficient between the AH-calibrated AOD and the PM10 was 0.323 (p<0.0001),
considerably higher to that estimated for the uncalibrated AOD.

3.2. Seasonal variations of air quality and health outcomes
Certain disease categories, especially cardiovascular and respiratory diseases, demonstrated
a clear seasonal trend, with summer having fewer daily events but winter having more
events (Fig. 3E and Supplemental material, Fig. 1). Annual patterns of PM10 and AOD were
similar (Fig. 3D), and aligned well with health outcomes (Fig. 3F). Thus, seasonality had
clear impacts on both air pollution and health outcomes in Beijing. Major meteorological
factors, such as temperature, atmospheric pressure, dew point, and humidity, were highly
correlated (Supplemental material, Table 1). Except RH, all meteorological factors had
seasonal variations with either bell-shaped (AH, temperature, and dew point) or inverted
bell-shaped (atmospheric pressure) patterns (data not shown). Since the atmospheric water
content as measured by AH is determined by both ambient temperature and pressure, and
had direct effects on the AOD, we selected AH as the representative variable of seasonality
in this study.
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3.3. Comparison of health effects of air pollution assessed by ground and space remote
monitoring

Since AH was used to calibrated AOD, we did not adjusted AH or other meteorological
factor as an independent covariate of seasonality in GLM analysis as we did for PM10. In the
hospital admission database, both AH-calibrated AOD and PM10 were associated with
significantly increased daily admissions of cardiovascular diseases including ischemic heart
diseases and heart failure, as well as respiratory tract infections, but not associated with
heart rhythm disturbances, strokes, neoplasm, and gastrointestinal disorders (Fig. 4A). AH-
calibrated AOD was also significantly associated with higher daily admissions related to
peripheral vascular disease, COPD, diabetes, and hypertension. Furthermore, AH-calibrated
AOD was associated with decreased daily admissions caused by injury, whereas, the PM10
did not have significant associations with them. In GLM models, all relative risks predicted
by PM10 had wider confidence intervals. When we examined the lag effects using 7-day
moving average, AH-calibrated AOD had robust predictions on all disease categories except
heart rhythm disturbances (Supplemental material, Fig. 2A). Instead of having no immediate
effects, AH-calibrated AOD seemed to have significant lag effects on heart rhythm
disturbances. In contrast, PM10 predictions on the current day effects and the lag effects
were not consistent (Supplemental material, Fig. 2B).

We did not observe any immediate effects by the current day exposure in the database of
daily unscheduled outpatient visits. Instead, we found significant lag effects during a 7-day
period on cardiovascular diseases, ischemic heart diseases, COPD, and respiratory tract
infections by both AH-calibrated AOD and PM10 (Fig. 5A). In contrast to the PM10, AH-
calibrated AOD was not significantly associated with strokes.

Because daily mortalities did not have weekly fluctuations, we could investigate lag effects
on single day instead of in the 7-day period. As showed in Fig. 6, both AH-calibrated AOD
and PM10 performed well in GLM models. The most robust associations were observed with
one lag day for daily mortalities. AH-calibrated AOD appeared more sensitive in detecting
lag effects.

Across all databases, we found that both AH-calibrated AOD and PM10 were consistently
associated with the elevated daily events for cardiovascular diseases, ischemic heart
diseases, and COPD. The relative risks estimated by AH-calibrated AOD and PM10 were
similar, with the largest effects associated with COPD related outcomes. Overall, AH-
calibrated AOD had narrower confidence intervals and was more sensitive in detecting
adverse outcomes due to short-term exposure.

3.4. Health effects associated with AH and other meteorological factors
We also tested AH as a stand-alone risk factor for daily health outcomes (Figs. 4A, 5A, and
6). In all databases, AH demonstrated protective effects at compatible levels for all
categories of cardiovascular and respiratory diseases. Additionally, it had protective effects
on diabetes and hypertension, but had increased risk for injury, in the databases of hospital
admissions and unscheduled outpatient visits. AH had no effects on daily events related to
neoplasm. To address the question whether AH-calibrated AOD associated effects were
solely driven by AH component, we further conducted the analyses using uncalibrated AOD
and AH in the same GLM models, as in the analyses of PM10. We observed some
discrepancies between AH-calibrated AOD and uncalibrated AOD mostly among the
disease categories with small number of daily events (Figs. 4B, 5B, and 6). However, we
still observed that uncalibrated AOD had significant increased risks associated with
cardiovascular diseases, ischemic heart diseases, and COPD. Relative risks estimated for
these diseases were compatible to those from AH-calibrated AOD, as well as from PM10. In
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an additional set of analyses, we calculated residual AOD after linear regression by AH, and
applied residual AOD and AH in the same models. Since AH only accounted for a small
portion of AOD variations (adjusted R2=0.203, p<0.0001), the results of residual AOD were
very similar to the results of uncalibrated AOD (data not shown).

Because of high degree of correlations, other meteorological factors were also associated
with daily health outcomes in all databases (Supplemental material, Fig. 3). Further, using
other meteorological factors to replace AH, we obtained similar results for PM10 (data not
shown). Among all meteorological factors, AH always gave the best models. However, we
could not substitute AH with other meteorological factors in uncalibrated AOD models.

4. Discussion
In this study, we observed that AH-calibrated AOD were consistently associated with
elevated daily events on the current day and/or lag days for cardiovascular diseases,
ischemic heart diseases, and COPD. The results were robust across three independent
databases. The associated disease patterns and overall effects estimated by relative risks
were similar to ground monitoring by PM10. Additionally, compared to ground PM10, we
found that AH-calibrated AOD had narrower confidence intervals for all models and was
more robust in estimating the current day and lag day effects. The short-term effects
associated with AOD were also consistent with previous studies using ground PM2.5 on the
acute health effects of unscheduled outpatient visit, hospital admission and mortalities
(Chang et al., 2005; Dominici et al., 2006; Fung et al., 2005; Ostro et al., 2006), including
studies in Beijing (Xu et al., 1994, 1995b).

Water absorption can increase the size of hydrophilic particles containing sulfate, nitrate,
ammonium, and certain species of organic carbon (Tang and Munkelwitz, 1994). The
atmospheric water content has direct but inverse impacts on the optical measurement of PM
from space, as AOD is a measure of particle light extinction (Malm and Day, 2001).
Compare to RH, AH is a specific and direct measure of water vapor density, and is more
relevant to the physical characteristics of the optical measurement. Thus, AH-calibrated
AOD could provide a more accurate assessment of fine PM-related effects. Our findings
suggest that adjusting AOD with other meteorological measures of water vapor content,
such as RH and dew point, did not result in robust associations were consistent this (data not
shown). We had also tried various ways to adjust AOD using AH, including square or
square root of AH, cube or cube root of AH, or log transformed AH, and found that the
simple dividing AOD by AH gave the best and most robust models (data not shown).

Since AOD dimensionless, we used log2-transformed values to obtain uniformed
comparison of PM-related health effects assessed by ground and space monitoring. Our
results can be interpreted as the levels of increased health risks when the ambient PM level
is doubled. Beijing is a highly polluted megacity with PM to be the most severe air pollution
issue (Okuda et al., 2004; Song et al., 2006). Besides high daily levels, Beijing also had
large day-to-day PM variations, as we observed 40 occasions (~every 10 days) that daily
PM10 increases were above 2 folds throughout 2006. In addition, the significant linear
relationships between log2-transformed PM values and the adverse health effects suggested
a nonlinear exposure-response with larger effects at low PM exposure, consistent with
previous studies in Beijing (Xu et al., 1995a) and other regions (Pope et al., 2009).

Daily PM10 can be substantially reduced by occasional precipitation and strong wind, but it
was less influenced by temperature and humidity. Without adjusting meteorological factor,
we found PM10 still had significant associations with cardiovascular and respiratory diseases
with similar estimated risks (data not shown). Daily averages of meteorological factors were
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highly correlated, and were independently associated with daily health outcomes. Similar
observations were previously reported in Beijing (Xu et al., 1994), as well as in other
countries (Braga et al., 2001; Morabito et al., 2005; Sharovsky et al., 2004). Among
meteorological factors, AH seemed to have a robust performance in estimating weather-
related health effects, attributing to its inseparable physical characters with atmospheric
temperature and pressure. For most of disease categories, AH caused less than 2% changes
on daily health events with one unit change (g/m3). Mechanisms leading to the possible
influence of weather are most likely multifactorial, with a complex relationship between
seasons and pathophysiological exogenous and endogenous factors (Abrignani et al., 2009).
Shaman et al. recently reported that AH had stronger effects than RH on influenza virus
survival within aerosolized droplets (Shaman and Kohn, 2009), and was a major determinant
for seasonal variations of virus transmission and associated with influenza-related mortality
in the United States (Shaman et al., 2010). Furthermore, a previous study reported that
influenza infection was a major cause of winter increase of all-cause and cardiovascular
diseases mortality in the United States over a 40-year period (Reichert et al., 2004).
Therefore, the weather-related health effects might be indirectly caused by the increased
burden of infections in cold seasons.

Several factors might account for a poor correlation between PM10 and AOD. Firstly, they
are measuring different categories of particles between PM10 and AOD (Engel-Cox et al.,
2004; Liu et al., 2007b). One limitation of this study was the lack of ground PM2.5 data.
Secondly, the sampling periods are different with PM10 representing 24-h average, whereas,
AOD corresponding to a snap-shot of daytime PM level. Thirdly, ground monitoring
stations have insufficient coverage of PM and meteorology over the entire metropolitan area
of Beijing. Finally, various factors have different impacts on the measurement accuracy
from ground or space. Being aware of these potential impacts, all of previous studies
focused on developing empirical models of AOD by calibrating with ground measurement
and local meteorological information (Koelemeijer et al., 2006; Liu et al., 2005). This
approach, depending on the available ground data, worked well for long-term average of PM
over a large geographic region (Al-Saadi et al., 2005; van Donkelaar et al., 2010; Wang and
Christopher, 2003). Currently, there are limited studies that adopt empirical AOD models in
environmental health research. By merging AOD with ground measurements using
geographically weighted regression, the standardized county-level biennial mortality rates
(2003–2004) of chronic heart diseases in the United States were associated with two-year
average re-calculated PM2.5 levels (Hu, 2009), or with two-year average satellite-derived
AOD raster data (Hu and Rao, 2009). It is worth to note that, in these studies, data for cold
seasons (October to March) were not used in the two-year average calculation and model
analysis.

The intrinsic differences of healthcare data and associated quality attributed to the variations
of PM and/or weather related effects. Since the admission database covered the entire
metropolitan area with large daily events and more accurate diagnosis, models for both
PM10 and AOD performed best in this database. The mortality data was limited to eight
districts of downtown Beijing with small daily events and a lower quality on diagnosis. In
contrast, cohort outpatient data was collected from a small, older (mean age±SD: 60±15),
and female dominant (67%) population. Although it had large daily events, the quality was
affected by large amounts of regular visits for medicine refill and less accuracy on diagnosis.

5. Conclusion
To our knowledge, this is the first study of directly assessing PM-induced acute adverse
health effects by satellite remote sensing, without a prior calibration using ground
monitoring data. AH-calibrated AOD is an integrated measurement of satellite-based AOD
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and local weather conditions. By bypassing a pre-calibration step of empirical model
building, it avoids the problems caused by the lack of ground monitoring networks. In
contrast to ground monitoring data that often lack spatial and temporal coverage and suffer
unbalanced spatial distribution, the repetitive and broad-area coverage of satellites allows
atmospheric remote sensing to offer a unique opportunity to monitor air quality at global,
continental, national and regional scales. Satellite-based remote sensing could help fill
pervasive data gaps that impede efforts to study air pollution and protect public health. In
addition, the evidence of satellite-based environmental health research supports targeting of
policy interventions on high-risk regions to reduce pollution levels. Addition studies are
warranted to further explore the potential health benefits of satellite remote sensing.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.
Population and geographic locations of the healthcare databases used in this study.
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Fig. 2.
Distributions of daily and 7-day moving average for ischemic heart diseases. 7-day moving
average was calculated from the current day to the 6th lag day.
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Fig. 3.
Comparison of annual trends among meteorological factors, particulate matter assessed by
ground and space monitoring, and ischemic heart diseases in Beijing, China, 2006. A) Daily
average of relative humidity and absolute humidity. B) Plot of daily average of relative
humidity verses daily average of absolute humidity. C) Plot of daily average of dew point
verses daily average of absolute humidity. D) 3-day moving average of PM10 and AH-
calibrated 260 AOD. E) Daily average of absolute humidity and daily admission of ischemic
heart diseases (7-day moving average). F) Daily average of absolute humidity and 3-day
moving average of PM10. We used 3-day moving average of PM10 and AOD for better
visualizing the annual trend, which were calculated by the values of prior one day, current

Wang et al. Page 14

Environ Int. Author manuscript; available in PMC 2014 January 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



day, and post one day. 7-day moving average of healthcare outcome was calculated from the
current day to the 6th lag day.
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Fig. 4.
Effects of ground and satellite remote monitored air pollution and absolute humidity on
daily hospital admissions. In the analyses of AH-calibrated AOD and AH, day of week was
included as covariate; and in the analyses of AOD and PM10, absolute humidity and day of
week was used as covariates. Since there were significant drops of admission before 2007
New Year, we excluded the last week of 2006. The final hospital admission data included
257 days for AH-calibrated AOD and AOD model analyses, and 348 days for PM10 and AH
analyses. In all analyses, AH-calibrated AOD, AOD, PM10, and AH were log2-transformed
for easy comparison.
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Fig. 5.
Effects of ground and satellite remote monitored air pollution and absolute humidity on
daily unscheduled outpatient visits. In the analyses of AH-calibrated AOD and AH, season
was used as a covariate; and in the analyses of AOD and PM10, absolute humidity and
season was used as covariates. The analyses were limited on non-holiday/non-administrative
interruption days, with 202 days for AH-calibrated AOD and AOD model analyses, and 269
days for PM10 and AH analyses. Due to small number of daily events resulted in unstable
statistical estimations, we did not include the results for heart failure, heart rhythm
disturbances, and peripheral vascular diseases. In all analyses, AH-calibrated AOD, AOD,
PM10, and AH were log2-transformed for easy comparison.
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Fig. 6.
Heat maps showing the effects of ground and satellite remote monitored air pollution and
absolute humidity on daily mortality. A color coded cell represented a relative risk estimated
by generalized linear models, at a significant level of p<0.05. In the analyses of AH-
calibrated AOD and AH, season was used as a covariate; and in the analyses of AOD and
PM10, absolute humidity and season was used as covariates. In all analyses, AH-calibrated
AOD, AOD, PM10, and AH were log2-transformed for easy comparison.
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