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Dexras1, a small G-protein localized predominantly to the brain, is transcriptionally upregulated by the synthetic glucocorticoid dexa-
methasone. It has close homology to the Ras subfamily but differs in that Dexras1 contains an extended 7 kDa C-terminal tail. Previous
studies in our laboratory showed that NMDA receptor activation, via NO and Dexras1, physiologically stimulates DMT1, the major iron
importer. A membrane-permeable iron chelator substantially reduces NMDA excitotoxicity, suggesting that Dexras1-mediated iron
influx plays a crucial role in NMDA/NO-mediated cell death. We here report that iron influx is elicited by nitric oxide but not by other
proapoptotic stimuli, such as H2O2 or staurosporine. Deletion of Dexras1 in mice attenuates NO-mediated cell death in dissociated
primary cortical neurons and retinal ganglion cells in vivo. Thus, Dexras1 appears to mediate NMDA-elicited neurotoxicity via NO and
iron influx.

Introduction
The neurotransmitter glutamate acting via NMDA receptors elic-
its a variety of cellular alterations that are mediated by nitric oxide
(NO). NO, in turn, can signal by activating guanylyl cyclase. Ad-
ditionally, S-nitrosylation of cysteines in diverse proteins is in-
creasingly appreciated as a major vehicle for NO actions (Kim et
al., 2005; Hara and Snyder, 2007; Foster et al., 2009). One mode
whereby NO is conveyed to its targets involves the binding of
neuronal NO synthase (nNOS) to CAPON, a 55 kDa scaffold
protein with a C-terminal domain that binds to the PDZ domain
of nNOS (Jaffrey et al., 1998). CAPON then binds to Dexras1, a
small GTPase that is a member of the Ras family and was discov-
ered on the basis of selective induction by dexamethasone
(Kemppainen and Behrend, 1998; Fang et al., 2000).

Dexras1 displays �35% homology with the Ras family of pro-
teins but differs in incorporating a 7 kDa C-terminal extension,

which it shares with Rhes (Ras Homolog Enriched in Striatum), a
G-protein highly enriched in the corpus striatum and involved in
the neurotoxicity associated with Huntington’s disease (Blumer
et al., 2005; Subramaniam et al., 2009). Dexras1 plays a role in
synchronizing circadian rhythms, as its deletion impairs circa-
dian entrainment to light cycles and alters phase shifts to light
(Cheng et al., 2004). A variety of influences upon adenylyl cyclase
and G-protein-linked neurotransmitter influences have been re-
ported for Dexras1. Also, Dexras1 can interact with FE65, an
adaptor protein that occurs in a complex with the intracellular
domain of the amyloid precursor protein (Cismowski et al., 2000;
Nguyen and Watts, 2005; Lau et al., 2008).

NMDA receptor-mediated neurotransmission, via stimula-
tion of nNOS, enhances Dexras1 activity. Thus, NMDA trans-
mission leads to the binding of nNOS to CAPON, which in turn
binds to Dexras1 with the ternary complex of proteins facilitating
the S-nitrosylation of Dexras1 to activate its GTP binding activity
(Fang et al., 2000).

Recently, we discovered a signaling cascade wherein Dexras1
binds to the peripheral benzodiazepine receptor-associated pro-
tein (PAP7), which in turn binds to the divalent metal transporter
(DMT1), an iron import channel (Cheah et al., 2006). Stimula-
tion of NMDA receptors activates nNOS, leading to nitrosylation
and activation of Dexras1, which, through linkage to PAP7 and
DMT1, physiologically enhances iron uptake. As iron is a poten-
tially toxic substance, we wondered whether, following cell stress,
Dexras1 might mediate neurotoxicity via an excitotoxic pathway
elicited by NMDA neurotransmission and iron entry. In the pres-
ent study, we have developed mice with targeted deletion of the
gene for Dexras1. We demonstrate that deletion of Dexras1
markedly impairs iron uptake elicited by neurotoxic concentra-
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tions of NMDA and virtually abolishes NMDA neurotoxicity in
cortical cultures. In intact mice, NMDA destruction of retinal
ganglion cells is abolished in Dexras1 knock-out (KO) mice.

Materials and Methods
Cells and reagents. HEK 293T cells were maintained in DMEM with 10%
FBS, 2 mM L-glutamine and 100 U/ml penicillin-streptomycin at 37°C
with 5% CO2 atmosphere in a humidified incubator. PC12 cells were
maintained in DMEM with 10% FBS, 5% horse serum, 2 mM

L-glutamine, and 100 U/ml penicillin-streptomycin in the same envi-
ronment. All chemicals were purchased from Sigma, unless otherwise
indicated.

Generation and maintenance of Dexras1/RASD1 KO mice. The gene-
encoding mouse Dexras1, Rasd1, is located on chromosome 17 and con-
sists of two exons. Rasd1 �/� mice were generated at Ozgene. The
targeting construct was based on the sequence of the C57BL/6 strain
Rasd1 gene (GenBank accession number AF239157). The PGK-neo se-
lection cassette was inserted downstream of exon 2. The PGK-neo cas-
sette was flanked by flippase recognition target sites and can be deleted
with enhanced flippase recombinase. All the exons were flanked by loxP
sites and can be deleted with Cre recombinase. All mice were maintained
on a C57BL/6 background. Mice were housed in a 12 h light/dark cycle at
an ambient temperature of 22°C and fed standard rodent chow. Animal

protocols, approved by the Institutional Animal Care and Use Commit-
tee of University of Pennsylvania, were used in accordance with the Na-
tional Institutes of Health Guidelines for the Care and Use of Laboratory
Animals.

Genotyping and RT-PCR analysis. Mice were genotyped by PCR anal-
ysis of genomic DNA from tail biopsies. Primer sets P1 (CGATCCGCG-
GCGAAGTCTAC) and P2 (GCGGTGCAAGTCGGGGCTCATCT)
yielded a 579 bp product from the wild-type (RASD1 �) allele. RT-PCR
analysis was used to assess whether the RASD1 transcript was missing in
the KO mice. RNA was prepared from brain tissues obtained from
RASD1 KO mice and their wild-type littermates by using TRIZOL re-
agent (Invitrogen). cDNA was prepared by using Oligo(dT) primers (In-
vitrogen) and the Omniscript reverse transcriptase kit (QIAGEN). PCR
was performed by using cDNA templates and primers P1 and P2 as
above.

Quantification of mRNA and iron in retina. qPCR was performed as we
have published previously (Hadziahmetovic et al., 2011), as was retinal
iron quantification using bathophenanthroline sulfate.

Iron uptake assay. Primary cortical neurons were dissected out of E16-
E18 wild-type or Dexras KO mice and plated in 6-well plates at 3 � 10 6

cells per well. Cells were maintained in Primary Neuron Media (Neuro-
basal media supplemented with B27 serum, 2 mM L-glutamine, and 100
U/ml penicillin-streptomycin) at 37°C with 5% CO2 atmosphere in a
humidified incubator. Neurons were aged 14 –20 d after plating before
being used for iron uptake assays. Cells were treated with various con-
centration of NMDA for 10 min. Cells were then washed once with warm
PBS. Iron uptake was measured as described previously (Cheah et al.,
2006).

Measurement of cell death. A 5 mg/ml stock of MTT (thiazolyl blue
tetrazolium bromide; Sigma) was diluted to a final concentration of 0.25
mg/ml in HBSS buffer and added to cells after various treatments. Cells
were incubated at 37°C for 2– 4 h; then the MTT reagent was removed
and the cells were washed one time in HBSS. The samples were read in a
spectrophotometer at OD 580 nm and OD 630 nm. The OD 580 nm/OD

Figure 1. Dexras selectively mediates NO-associated toxicity. A, PC12 cells were treated with
the indicated reagents for 2 h, and nontransferrin iron uptake was measured. *p � 0.05. B,
PC12 cells were transfected with either scrambled control RNAi or Dexras1 RNAi plasmids and
treated with indicated reagent for 24 h. Cell viability was measured by MTT assay. *p � 0.05. C,
Western blotting was performed with Dexras antibody after Dexras RNAi transfection. Experi-
ments were repeated three times, each sample in triplicate.

Figure 2. Generation and characterization of Dexras1 KO mice. A, Schematic representation
of the mouse Dexras1 gene (rasd1) with coding regions shaded black and the exon number
indicated on top. The KO allele loses the whole coding regions. B, Genotyping. C, RT-PCR anal-
ysis from brain and liver tissues. D, Western blotting from the brain tissue was performed.
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630 nm reading was normalized to control and
expressed as a percentage of cell viability.

Propidium iodide (PI) staining. The media
was removed and the cells were rinsed once
with PBS. PI was diluted into full media at a
final concentration of 1 �g/ml and then incu-
bated with cells at 37°C for 10 min. Cells were
washed once with PBS and then fixed with 4%
paraformaldehyde in PBS for 30 min. To iden-
tify cells, the nuclei were stained with Hoechst
stain at 1:15,000 for 5 min. PI selectively stains
dying cells nuclei (red), whereas Hoechst stains
all cells (blue).

Retinal ganglion cell (RGC) labeling. Retro-
grade labeling of RGCs was performed as de-
scribed previously (Shindler et al., 2006). Briefly,
Dexras KO male mice and wild-type male mice
were anesthetized by intraperitoneal injection
with 2 mg of ketamine (Sigma) and 0.2 mg of
xylazine (Sigma). Holes were drilled through the
skull above each superior colliculus through a
midsagittal skin incision; 2.5 �l of 1.25% hydrox-
ystilbamidine (Fluorogold; Invitrogen) in sterile
water was injected stereotactically into each supe-
rior colliculus 1 week before NMDA injection.

Intravitreal injections. The method for intra-
vitreal injections was adapted from previous
studies (Liang et al., 2001). Dexras KO and
wild-type mice were anesthetized with ket-
amine/xylazine, and eyes were visualized under
a dissecting microscope. The conjunctiva was
lifted with forceps and cut from the sclera with
Vannas scissors along the corneal limbus.
Sclera was penetrated with a 30-gauge needle
passed into the vitreous just posterior to the
lens. NMDA (0.8 �l, 1.2 �M; Sigma) in PBS was
then injected into the vitreous using a 10 �l
Hamilton syringe with a 32-gauge blunt tip
needle. PBS alone was injected in the contralat-
eral eye of each mouse. After injection, antib-
ioitic ointment (Polysporin; Pfizer,) was
applied to each eye. The final NMDA concen-
tration in the eye is estimated to be 200 nM, one
sixth the concentration of the solution injected
based on the volume injected and the average
size of the vitreal space.

Quantification of RGC numbers. RGC num-
bers were counted as described previously
(Shindler et al., 2006). Briefly, after death, each
eye was removed and fixed in 4% paraformal-
dehyde. Dissected retinas were flat mounted on glass slides, viewed by
fluorescence microscopy (Eclipse 80i; Nikon), and photographed at 20�
magnification in 12 standard fields: 1/6, 3/6, and 5/6 of the retinal radius
from the center of the retina in each quadrant. RGC numbers shown in
each experiment represent the total number of RGCs counted in 12 fields
per eye. RGCs were counted by a blinded investigator using image anal-
ysis software (Image-Pro Plus 5.0; Media Cybernetics). Statistical com-
parisons of RGC numbers were performed by ANOVA.

Results
PC12 cells display many neuronal properties and possess endog-
enous Dexras1 as well as PAP7 and DMT1 (Cheah et al., 2006).
Accordingly, we selected these cells for studies of a possible role of
Dexras1 in mediating the effects of neurotoxic levels of NO upon
iron uptake and cell viability (Fig. 1). We exposed cells to the NO
donor GSNO (1 mM), H2O2 (200 �M) or staurosporine (1 �M).
The concentrations at which we administered these agents are
cytotoxic with 50% cell death 24 h after treatment (data not

shown). At 2 h, when cell viability is normal, GSNO treatment
doubles iron uptake, whereas H2O2 and staurosporine did not
change uptake (Fig. 1A). To assess a role for Dexras1 in the neu-
rotoxic actions of these substances, we developed an shRNA con-
struct that provides almost complete elimination of Dexras1
protein in PC12 cells (Fig. 1B,C). Depletion of Dexras1 abolishes
the cytotoxic actions of GSNO. Strikingly, loss of Dexras1 does
not impair the cytotoxic actions of staurosporine or H2O2.

To evaluate the impact of Dexras1 on neurotoxicity in intact
rodents, we developed mice with targeted deletion of Dexras1
(Fig. 2). We used a targeting vector to delete the complete open
reading frame of Dexras1 (Fig. 2A). PCR genotyping and RT-
PCR confirm the complete genomic deletion of Dexras and the
absence of Dexras mRNA in brain and liver (Fig. 2B,C). The
mutant mice appear grossly normal. There was no difference
from wild-type in body size, weight, or locomotor activity at the
age of 8 weeks. Mice lived up to 16 –18 months, and gross ana-

Figure 3. Iron uptake and neurotoxicity mediated by glutamate–NMDA neurotransmission are abolished in Dexras KO mice. A, NMDA
stimulation increases NTBI uptake (15 min) in primary cortical neurons in a concentration-dependent manner. No increase is seen in
neurons from Dexras KO mice. All NTBI uptake experiments were repeated three times, each sample in triplicate. Error bars indicate SEM.
*p � 0.05, **p � 0.005 (two-tailed Student’s t test). B, Primary cortical neurons were treated with NTBI as performed in A. Cells were
washed with PBS and incubated normal growth media for different time periods, and then the amount of iron retained in the cells was
measured. C,PrimarycorticalneuronsfromeitherWTorDexras �/�miceweretreatedwith300�M NMDAfor10minandharvestedatthe
different time points. Western blotting was performed. D, Primary cortical neurons were treated with 300 �M NMDA for 10 min, and
neuronal cell death was examined at the indicated time points using PI staining (red) with DAPI (nucleus). A representative image is shown.
E, Quantification of three independent experiments of neurotoxicity assays. *p � 0.005.
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tomic dissection of 16-month-old mice
reveals no apparent abnormalities in or-
gans of the adult mutant mice. The ab-
sence of major aberrations in the mice
corresponds to results from another
group that also developed Dexras1 KOs
(Cheng et al., 2004).

To determine whether Dexras1 influ-
ences iron uptake associated with neuro-
toxicity, we exposed cortical cultures to
various concentrations of NMDA, includ-
ing cytotoxic levels (100 –300 �M) for 10
min and measured iron uptake. At the cy-
totoxic concentrations of NMDA, we ob-
serve substantial increases in iron uptake
with 300 �M NMDA eliciting a doubling
of iron uptake (Fig. 3A). No increase
of iron uptake is apparent in Dexras1-
deleted brain cultures. On the other hand,
iron efflux was not affected in primary
neurons from Dexras�/� mice (Fig 3B).
Moreover, we found that the expression
levels of proteins involved in iron homeo-
stasis, such as amyloid precursor protein,
TfR, DMT1, and ferritin, are similar in
neuronal cultures between WT and
Dexras�/� mice (Fig. 3C). Thus, these
findings establish a role for Dexras1 in me-
diating iron uptake in NMDA-mediated
neurotoxic insults. These findings confirm
and extend our previous observations in
PC12 cells that the stimulation of iron up-
take by GSNO (100 �M) is prevented by de-
pletion of Dexras1 using RNA interference
(Cheah et al., 2006).

We also examined cytotoxic actions of
NMDA in the same cortical cultures (Fig.
3D,E). We used the well-characterized
regimen of NMDA treatment that elicits
delayed neurotoxicity, thought to mimic
events in vascular strokes (Koh and Choi,
1988; Dawson et al., 1991). Cortical cul-
tures were exposed to 300 �M NMDA for
10 min and then examined after 8 and
24 h. As has been reported by numerous
investigators, no loss of cell viability is ev-
ident at 8 h, whereas at 24 h viability is
decreased by �90%. Dexras1 deletion
provides dramatic protection against this
toxicity, with no evident loss of viability.

To extend these findings to intact ani-
mals, we evaluated retinal toxicity elicited
by NMDA injection into the eyes of mice,
a procedure known to selectively destroy
retinal ganglion cells (Sucher et al., 1997).
First, we examined various genes involved
in iron trafficking as well as markers for
retinal cells. The qPCR cycle threshhold
for Dexras1 in wild-type neural retinas
was 29 (mid-range, of40 cycles) but was
undetectable in Dexras1 KOs. There were
no significant differences for wild-type
versus KO for transferrin receptor, rhodop-

Figure 4. Effect of Dexras KO on mRNAs and proteins involved in iron homeostasis or iron levels in the retina. A, RT-PCR of
various genes involved in iron homeostasis and retina cell markers. B, C, Western analysis was performed to detect DMT1, Tfrc
(transferrin receptor), and ferritin-L. ** p � 0.01. D, Retinal nonheme iron content.
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sin (rod photoreceptor-specific), Thy1
(ganglion cell-specific), or any of the
DMT1 isoforms. These results are further
confirmed by Western blotting examining
the levels of protein expression for ferritin
and DMT1 (Fig. 4B,C). Interestingly, the
protein level of TfR is slightly higher in
Dexras�/�, and it may be a reflection of
slightly lower levels of iron. We measured
retinal iron levels directly, but the levels
were variable and there was no statistically
significant (Fig. 4D) difference between
the genotypes. Thus, Dexras1 KO does
not notably affect baseline iron levels or
ganglion cell or rod photoreceptor num-
bers in the normal retina.

Five days after NMDA administration,
we observed a 60% reduction in numbers
of retinal ganglion cells (Fig. 5A,B). The
Dexras1-deleted mice are completely pro-
tected from this neurotoxicity. Detailed
histologic examination reveals no differ-
ence in the morphology of retinal gan-
glion cells or any other cell type of the
retina between wild-type mice and
Dexras1-deleted mice in the absence of
NMDA administration (data not shown).

Discussion
In the present study, we have established a
major role for Dexras1 in mediating both
iron uptake and cell viability under
NMDA-excitotoxic conditions. The link-
age between cell viability and iron uptake is selective for NO, as
cytotoxic concentrations of GSNO increase iron uptake, whereas
comparably toxic levels of H2O2 and staurosporine fail to do so.
Moreover, the neurotoxic actions of GSNO, but not those of
other agents, are prevented by Dexras1 depletion. Experiments
using Dexras1 KO mice provide compelling evidence for its im-
portance in iron uptake and neurotoxicity. In cortical cultures of
Dexras1 KOs, stimulation by NMDA both of iron uptake and of
neurotoxicity is abolished. In intact mice, the marked loss of
retinal ganglion cells elicited by NMDA is completely pre-
vented in the Dexras1 KOs. Our findings suggest that Dexras1
mediates NMDA neurotoxicity via its enhancement of iron
uptake, as Dexras1 deletion prevents both processes. Moreover,
previously we observed that NMDA neurotoxicity in cortical cul-
tures is prevented by iron chelator treatment (Cheah et al., 2006).

The use of Dexras1 mutant mice substantially strengthens ev-
idence for a signaling cascade wherein glutamate, acting via
NMDA receptors, activates nNOS to form NO, which nitrosy-
lates and activates Dexras1, which, through a link to PAP7, in-
creases iron uptake via DMT1. As reported previously (Cheah et
al., 2006), Dexras1 stimulation of iron uptake stems from its
GTPase activity, as constitutively active Dexras1 is associated
with enhanced stimulation of iron uptake.

Rhes (Dexras2) is the only Ras homolog that closely resembles
Dexras1, with �62% amino acid homology (Falk et al., 1999).
Whereas Dexras1 is induced by glucocorticoids, Rhes is selec-
tively stimulated by thyroid hormone (Vargiu et al., 2001). Most
strikingly, Rhes is uniquely concentrated in the corpus stria-
tum, where its binding to mutant huntingtin is thought to un-
derlie the selective damage to the corpus striatum in

Huntington’s disease (Subramaniam et al., 2009). Like Dexras1,
Rhes does bind to PAP7 (Cheah et al., 2006) and so might regu-
late striatal iron deposition, which might participate in Hunting-
ton’s disease pathophysiology. Consistent with this possibility,
iron levels in the striatum are increased in Huntington’s disease
patients (Dexter et al., 1991).

In our earlier study, we addressed physiologic regulation of
iron transport by Dexras1 in response to NMDA-NO activation.
Our present study focuses on the pathogenic actions of iron. Iron
is well known to be toxic in excess; and in the brain, iron accu-
mulation has been linked to numerous neurodegenerative dis-
eases (McCord, 1998; Thomas and Jankovic, 2004). In particular,
Salazar et al. (2008) showed that DMT1, which is modulated by
Dexras1, plays a critical role in iron-mediated neurodegeneration
of Parkinson’s disease (see also Snyder and Connor, 2009).

The dramatic protection from NMDA neurotoxicity elicited
by deletion of Dexras1 may have therapeutic implications. Glu-
tamate excitotoxicity has been implicated in the retinal ganglion
cell loss of numerous optic neuropathies, including glaucoma
(Dreyer, 1998; McCord, 1998) and dominant optic atrophy
(Nguyen et al., 2011), as well as neuronal loss in multiple sclerosis
models (Pitt et al., 2000), where significant ganglion cell loss
occurs secondary to optic neuritis (Shindler et al., 2008; Quinn et
al., 2011). Conceivably, drugs that selectively block Dexras1 may
be neuroprotective in these optic neuropathies, vascular stroke,
and other neurodegenerative diseases. Because Dexras1 differs
markedly in structure from other members of the Ras family and
other small G-proteins, it may be feasible to develop highly
selective and safe inhibitors of Dexras1 function with thera-
peutic potential.

Figure 5. Genetic deletion of Dexras1 blocks NMDA toxicity in vivo. A, NMDA (200 nM) was injected in the left eye of 6 wild-type
mice and 6 Dexras KO mice. An equal volume of PBS was injected in the right eye of each mouse as control. Mice were killed 5 d later.
One representative field/retina is shown. B, The number of RGCs was counted. Average numbers of RGCs/eye are significantly
decreased in NMDA-injected eyes compared with wild-type mice (***p � 0.0001), but little or no RGC loss occurs in Dexras KO
mouse eyes injected with NMDA.
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