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Abstract
Recent experiments suggest that membranes of living cells are tuned close to a miscibility critical
point in the two-dimensional Ising universality class. We propose that one role for this proximity
to criticality in live cells is to provide a conduit for relatively long-range critical Casimir forces.
Using techniques from conformal field theory we calculate potentials of mean force between
membrane bound inclusions mediated by their local interactions with the composition order
parameter. We verify these calculations using Monte Carlo simulations where we also compare
critical and off-critical results. Our findings suggest that membrane bound proteins experience
weak yet long-range forces mediated by critical composition fluctuations in the plasma
membranes of living cells.

Cellular membranes are two-dimensional (2D) liquids composed of thousands of different
lipids and membrane bound proteins. Though once thought of as uniform solvents for
embedded proteins, a wide array of biochemical and biophysical evidence suggests that
cellular membranes are quite heterogeneous (reviewed in Refs. [1,2]). Putative membrane
structures, often termed ‘rafts,’ are thought to range in size from 10–100 nm, much larger
than the α ~ 1 nm size of the individual lipids and proteins of which they are composed.
This discrepancy in scale presents a thermodynamic puzzle: naive estimates predict
enormous energetic costs associated with maintaining heterogeneity in a fluid membrane
[3].

Parallel work in giant plasma membrane vesicles (GPMVs) isolated from living mammalian
cells presents a compelling explanation for the physical basis of these proposed structures.
When cooled below a transition temperature around 25 °C, GPMVs phase separate into two
2D liquid phases [4] which can be observed by conventional fluorescence microscopy. Quite
surprisingly, they pass very near to a critical point in the Ising universality class at the
transition temperature [5]. Near a miscibility critical point, the small free energy differences
between clustered and unclustered states could allow the cell to more easily control the
spatial organization of the membrane, lending energetic plausibility to the proposed
structures. Although analogous critical points can be found in synthetic membranes [6–8]
these systems require the careful experimental tuning of two thermodynamic parameters, as
in the Ising liquid-gas transition where pressure (equivalent to the Ising magnetization) and
temperature must both be tuned. Although it has been suggested that biological systems
frequently tune themselves towards dynamical and other statistical critical points [9], so far
as we know membranes are the clearest example of a biological system which appears to be
tuned to the proximity of a thermal critical point.

Other plausible theoretical models have focused on 2D microemulsions (stabilized by
surfactants [10], coupling to membrane curvature [11], or topological defects in orientational
order [12]), but none has emerged from direct, quantitative experiments on membranes from
living cells. It has been argued that Ising fluctuations should have vanishing contrast
between the two phases [11]. While this is true of macroscopic regions, a region of radius R
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of lipids of size α ~ 1 nm should have contrast ~(R/α)−β/ν = (R/α)−1/8, leading to predicted
composition differences of 0.7 at the physiologically relevant 20 nm scale, and differences
of 0.5 at the R = 400 nm scale of fluorescence imaging [5]; on the length scales of interest
there is plenty of contrast. Indeed, our calculations of Ising-induced forces take place at and
above the critical point, where the macroscopic contrast is of course zero.

How might a cell benefit by tuning its membrane near to criticality? Presuming that
functional outcomes are carried out by proteins embedded in the membrane, we focus on the
effects that criticality might have on them. For embedded proteins, proximity to a critical
point is distinguished by the presence of large, fluctuating entropic forces known as critical
Casimir forces. Three-dimensional critical Casimir forces have a rich history of theoretical
study [13]. In more recent experimental work [14] colloidal particles clustered and
precipitated out of suspension when the surrounding medium was brought to the vicinity of
the liquid-liquid miscibility critical point in their surrounding medium. Two-dimensional
Casimir forces like the ones studied here have been investigated for the Ising model using
numerical transfer matrix techniques [15] for a demixing transition using Monte Carlo
simulations [16] and for shape fluctuations using perturbative analytical methods [17,18].
Here we estimate the magnitude of composition mediated Casimir forces arising from
proximity to a critical point, both in Monte Carlo simulations on a lattice Ising model, and
analytically, making use of recent developments in boundary conformal field theory (CFT)
[19–21]. Our motivation is biological: in a cellular membrane, these long-range critical
Casimir forces could have profound implications. More familiar electrostatic interactions are
screened over around 1 nm in the cellular environment, whereas we find the composition
mediated potential can be large over tens of nanometers.

Critical Casimir forces are likely utilized by cells in the early steps of signal transduction
where lipid mediated lateral heterogeneity has been shown to play vital roles. Many
membrane bound proteins segregate into one of two membrane phases when biochemically
extracted with detergents at low temperatures [22], or when proteins are localized in phase
separated GPMVs [5]. Furthermore, there is evidence that some receptors change their
partitioning behavior in response to ligand binding or downstream signaling events [23].
Modeling this as a change in the coupling between the receptor protein and the Ising order
parameter predicts that these bound receptors will see a change in their interaction partners.
Supporting this view, ligand binding to receptors is often accompanied by spatial
reorganization in which receptors and downstream molecules move into close proximity of
one another [1,24], perhaps because they now share a preference for the same Ising phase.
Perturbations to the lipid composition of the membrane, like cholesterol depletion [25],
typically disrupt this spatial reorganization [24] and have dramatic effects on the final
outcomes of signaling [26–28], in our view by taking the membrane away from its critical
point and interfering with the resulting long-range forces.

We take three approaches to estimating the form of these potentials. We first consider two
point-like proteins which interact with the local order parameter like local insertions of
magnetic fields h1 and h2 at x = 0 and x = d. To calculate the resulting potential we write a
Hamiltonian for the combined system of the Ising model with order parameter φ(x) plus
proteins as H([φ(x)], d) = HIsing ([φ(x)]) + h1 φ(0) + h2φ(d). We then write a partition
function for the combined system Z(d) = ∫ D[φ(x)]e−βH [(φ(x),d)] and solve to lowest order
in h giving the potential Ueff (d) = − log[Z(d)] + log[Z(∞)] = − h1 h2 C(d), with C(d) =
〈φ(0)φ(d)〉 the correlation function. C(d) ~ d−η when d ≪ ξ with η = ¼ in the Ising model
and C(d) ~ d−1/2 exp(−d/ξ) for d ≫ ξ. The potential is attractive for like, and repulsive for
unlike, field insertions, in agreement with the scaling of the CFT result as we will show
below. A protein which does not couple to the order parameter can still feel a long-range
force if it couples to the local energy density. The energy density is also correlated with a
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d−2 dependance. However, the magnitude of both of these potentials, as well as their shape
at distances d ~ r require the Monte Carlo and CFT approaches described below.

Secondly, we numerically calculated potentials using Monte Carlo simulations on the lattice
Ising model for like and unlike disk-shaped inclusions. Although absolute free energies are
difficult to obtain from Monte Carlo techniques, differences between the free energies of
two ensembles, δ F, conditioned on a subset of the degrees of freedom, are readily available
provided the degrees of freedom in the two ‘macrostates’ can be mapped onto each other
and have substantial overlap. This information is implicitly used in a Monte Carlo scheme
where both ‘macrostates’ are treated as members of a larger ensemble and are switched
between so as to satisfy a detailed balance. The Bennett method [29,30] uses this
information more explicitly, noting that exp(−βδF) = 〈e−βδE〉 can be estimated without bias
from either distribution.

Our ‘macrostates’ are the location of two blocky ‘disks’ as shown in Fig. 1(c). All spins
either contained in or sharing a bond with these disks are constrained to be either all up or
all down. We map the degrees of freedom in one macrostate to a neighboring one by moving
all of the spin values one lattice spacing to the right or left of the fixed spin region onto fixed
spins on the other side. By integrating our measured βδF = − log〈exp(−βδE)〉 over many
sites outwards to infinity, we can in principle measure this potential to arbitrary distance.
However, because the potential is long-range at Tc, we integrate it out to 50 lattice spacings
and add the CFT prediction for the potential at that distance as described below. We perform
simulations using the Wolff algorithm on 500 × 500 lattices under the constraint that any
cluster which intersects a disk is rejected, enforcing our fixed boundary conditions. We
supplement these with individual spin flips near the inclusions where almost all Wolff
moves are rejected. The resulting potentials are plotted in Fig. 1(a). We collapse the Monte
Carlo curves by using the effective radius given by the farthest point from the origin
contained in the blocky lattice inclusion as the effective radius.

Finally, we use conformal field theory to make an analytical prediction for the form of these
potentials. Our calculation makes extensive use of the conformal invariance of the free
energy which emerges at the critical point. An element from the global conformal group can
take us from the configuration in Fig. 2(a) to that shown in Fig. 2(b) where the two disks are
concentric with spatial infinity in Fig. 2(a) now lying between the two cylinders on the real
axis. The radius of the outer circle R(d, r1, r2) is now given by

(1)

The much larger local conformal group, particular to two dimensions, is the set of all

analytic functions. We use the transformation  gluing together the boundaries at x =
1 and x = 0 to give the cylinder shown in Fig. 2(c) with a circumference of 1 and length

(2)

This transformation breaks global conformal invariance and so increases the free energy by
c log(R) / 12 [20], where c = 1/2 in the Ising model. Defining a 1 + 1 dimensional quantum
theory on the cylinder (see Ref. [20]) with ‘time’ t running down its length, our Hamiltonian

for t translation is , where L0 + L ̄0 is the generator of dilation in the
plane.
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Partition functions in this geometry are linear sums of characters of the conformal group.
The representations of the conformal group particular to the Ising universality class have
characters given by [20,31]

(3)

where q = exp(i πτ), with η(τ) the Dedekind η function and with θ(τ) the Jacobi, or elliptic.
theta functions.

Conformally invariant boundary conditions (BCs) can be deduced by demanding
consistency between two parametrizations of the cylinder [31]. In one, time moves from one
BC to the other across the cylinder with the usual Ising Hamiltonian. Alternatively, time can
move around the cylinder with the BCs now entering into the Hamiltonian. There are three
allowed BCs [31], which by considering symmetry can be associated with ‘up’, ‘down,’ and
‘free.’ These three BCs have four nontrivial potentials between them: a repulsive ‘unlike’
interaction between ‘up’ and ‘down’ BCs, an attractive ‘like’ interaction between ‘ups’ and
‘ups’ or ‘downs’ and ‘downs’, an attractive ‘free-free’ interaction between two ‘free’ BCs,
and a repulsive ‘free-fixed’ interaction between a ‘free’ BC and either an ‘up’ or a ‘down.’

The free energy in the configuration shown in Fig. 2(a) can be interpreted as a potential of
mean force between the bound inclusions. Choosing the convention that the potentials go to
0 as d → ∞, the potential is given by U(d) = FAB (τ) = FAB (∞). After undoing the
mapping which changes the free energy by a central charge dependent factor so that FAB (τ)
= − logZAB (τ) + cπτ/6 (with kBT = 1) the potentials are given by

(4)

with χh as defined in Eq. (3), and τ as defined in Eqs. (1) and (2). These potentials are
plotted on regular and log-log graphs in Fig. 1. Their form is in agreement with the
numerical results obtained using the transfer matrix methods in Ref. [15].

At large d, we can examine the asymptotics of the potentials using the form of each potential
in Eq. (4) and the series expansion of the characters as shown in Eq. (3). For fixed BCs, the

leading contribution to the potential of mean force is equal to , with a
sign which differs depending on whether the two BCs are like or unlike, in agreement with
the point like approximation. For potentials that involve at least one ‘free’ BC, similar
analysis shows that the leading contribution is proportional to d−2. All four potentials
diverge at short distances like ± d−1/2 where in all cases the sign is positive unless both BCs
are identical. We note that the origins of the two techniques leading to the curves shown in
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Fig. 1 are very different, arguably as different from each other as each are from a lipid
bilayer. The very close agreement, even at lengths comparable to the lattice spacing, speaks
to the power of universality.

We also compare the form of the potential with Monte Carlo results obtained at
temperatures away from the critical point where the potential has a range given roughly by
ξ. In each case the resulting potential is a one-dimensional cut through a four-dimensional
scaling function which could depend nontrivially on d/r1, d/r2,d/ξ and the ‘polar’ coordinate
h/tβδ [32] describing the proximity to criticality. The dashed lines show the CFT prediction
for T = Tc, with numerical results at 1.05, 1.1 and 1.2Tc, all for the 2 × 2 block sphere
shown at the right in Fig. 3. The repulsive potential is both deepest and sharpest at Tc, while
the attractive force is sharpest slightly above Tc, with the final potential of very similar
magnitude.

We expect our results to apply, with a few caveats, to proteins embedded in real cell
membranes. Proteins couple to their surrounding composition through the height of their
hydrophobic regions, through the interactions of their membrane-proximal amino acids with
their closest lipid shell, and by the covalent attachment to certain lipids which themselves
strongly segregate into one of the two low temperature phases. In simulation our proteins
couple strongly to their nearest neighbor lipids leading to potentials in excellent agreement
with CFT predictions that are very different in origin. These are expected to describe any
uniform boundary condition in an Ising liquid, in the limit where all lengths are large
compared to the lattice spacing. When separated by lengths on the order of a lipid spacing (1
nm) we might expect additional corrections to this form, and in particular, a weakly coupled
protein may have a behavior intermediate between a ‘free’ and a ‘fixed’ BC. In addition, a
protein that couples nonuniformly around its boundary might have interesting behavior not
addressed here. We note that our boundary conditions couple to two long-range scaling
fields—the magnetization field which falls off with the a power of −1/4 and the energy
density which falls off with a power of −2, both of which must be present in membranes or
any other system near an Ising critical point.

It is interesting to compare this composition mediated force to other forces that could act
between membrane bound proteins. Electrostatic interactions are screened over around 1 nm
in the cellular environment, making them essentially a contact interaction from the
perspective of the cell. There is an analogous shape fluctuation mediated Casimir force that
falls off like d−6 [17,18], and that is therefore also very short range. Membrane curvature
can also mediate forces with a leading attractive term that falls off like d−2 and a leading
repulsive term that falls off like d−4. Although they decay with a much larger power than the
critical Casimir forces described above, curvature mediated potentials depend on elastic
constants and are not bound to be of order kBT, allowing them to become quite large at
shorter distances. Using typical values [33] the potentials are comparable at lengths −5–10
nm to the composition mediated potential we find here [34]. There are numerous examples
of biology using these relatively short range but many kBT potentials for coordinating
energetically expensive and highly irreversible events like vesiculation [33]. We propose
that critical Casimir forces could mediate long-range and reversible interactions useful for
regulating a protein’s binding partners. More generally, this work demonstrates that the
hypothesis of criticality enables a quantitative understanding of the broad range of
phenomena frequently associated with ‘raft’ heterogeneity in cell membranes.
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FIG. 1.
(color online). (A–B) Effective potentials between bound inclusions are plotted on linear (A)
and log-log (B) graphs, for inclusions where r1 = r2 = r. We measure these potentials using
Bennet method simulations for like and unlike BCs at Tc as described in the text for each of
the blocky disks shown in (C) [thin lines, colors as in (C)]. Each curve is plotted collapsed
by using r as the distance to the farthest point from its center, with no free parameters,
although the value of the potential is fit at the farthest accessible simulation point, where we
add the CFT prediction. The full CFT predictions (thick dashed lines) are in excellent
agreement with simulation data even for very small inclusions. The power law predictions
(thin dashed line) agree with the CFT predictions for large d/r.
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FIG. 2.
(color online). We consider potentials of mean force in configuration (A), with disks of
radius r1 and r2 separated by a distance d with boundary conditions A and B. We
conformally map this to configuration (B), where both disks are centered on the origin, with
the first at radius 1 and the second at radius R(d, r1, r2). We then map this to a cylinder
shown in (C) of circumference 1 and length −iτ = log(R)/2π where we associate restricted
partition functions in an imaginary time 1 + 1 dimensional quantum model with potentials of
mean force in the original configuration.
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FIG. 3.
(color online). We compare our critical results with potentials obtained from Monte Carlo
simulations away from the critical point along the temperature axis. As can be seen, the
potentials have the longest range at the critical point. The repulsive interaction is also
steepest at the critical point, though the attractive one has a larger force at short distances
slightly away from the critical point.
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