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Abstract
We present an efficient and accurate algorithm for principal component analysis (PCA) of a large
set of two-dimensional images and, for each image, the set of its uniform rotations in the plane and
its reflection. The algorithm starts by expanding each image, originally given on a Cartesian grid,
in the Fourier–Bessel basis for the disk. Because the images are essentially band limited in the
Fourier domain, we use a sampling criterion to truncate the Fourier–Bessel expansion such that the
maximum amount of information is preserved without the effect of aliasing. The constructed
covariance matrix is invariant to rotation and reflection and has a special block diagonal structure.
PCA is efficiently done for each block separately. This Fourier–Bessel-based PCA detects more
meaningful eigenimages and has improved denoising capability compared to traditional PCA for a
finite number of noisy images.

1. INTRODUCTION
Principal component analysis (PCA) is a classical method for dimensionality reduction,
compression, and denoising. The principal components are the eigenvectors of the sample
covariance matrix. In image analysis, the principal components are often referred to as
“eigenimages” and they form a basis adaptive to the image set. In some applications,
including all planar rotations of the input images, PCA is advantageous. For example, in
single particle reconstruction (SPR) using cryoelectron microscopy (cryo-EM) [1], the 3D
structure of a molecule needs to be determined from many noisy 2D projection images taken
at unknown viewing directions. PCA, known in this field as multivariate statistical analysis,
is often a first step in SPR [2]. Inclusion of the rotated images for PCA is desirable because
such images are just as likely to be obtained in the experiment by in-plane rotating either the
specimen or the detector. When all rotated images are included for PCA, then the
eigenimages have a special separation of variables form in polar coordinates in terms of
radial functions and angular Fourier modes [3–5]. It is easy to steer the eigenimages by a
simple phase shift, hence the name “steerable PCA.” Computing the steerable PCA
efficiently and accurately is, however, challenging.

The first challenge is to mitigate the increased computational cost associated with
replicating each image multiple times. Efficient algorithms for steerable PCA were
introduced in [6,7] with computational complexity almost similar to that of traditional PCA
on the original images without their rotations. Current efficient algorithms for steerable PCA
first map the images from a Cartesian grid to a polar grid using, e.g., interpolation. Because
the transformation from Cartesian to polar is not unitary, the eigenimages corresponding to
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images mapped to a polar grid are not equivalent to transforming the original eigenimages
from Cartesian to polar.

The second challenge is associated with noise. The nonunitary transformation from
Cartesian to polar changes the noise statistics. Interpolation transforms additive white noise
to correlated (i.e., colored) noise. As a consequence, spurious eigenimages and eigenvalues
corresponding to colored noise may arise in the eigen-analysis. The naïve algorithm for
steerable PCA that replicates each image multiple times also mistreats the noise. While the
realization of noise is independent between the original images, the realization of noise
among duplicated images is dependent. This in turn can lead to noise-induced spurious
eigenimages and to artifacts in the leading eigenimages.

We present a new efficient and accurate algorithm for computing the steerable PCA that
meets these challenges. This is achieved by combining into the steerable PCA framework a
sampling criterion similar to the criterion proposed by Klug and Crowther [8] in a different
context of reconstructing a 2D image from its 1D projections. We represent the images in a
truncated Fourier–Bessel basis in which the number of radial components is decreasing with
the angular frequency. Our sampling criterion implies that the covariance matrix of the
images has a block diagonal structure where the block size decreases as a function of the
angular frequency. The block diagonal structure of the covariance matrix was observed and
utilized in previous works on steerable PCA. However, while in all existing methods for
steerable PCA the block size is constant, here the block size shrinks with the angular
frequency. The incorporation of the sampling criterion into the steerable PCA framework is
the main contribution of this paper.

2. SAMPLING CRITERION
We assume that the set of images correspond to spatially limited objects. By appropriate
scaling of the pixel size, we can assume that the images vanish outside a disk of radius 1.
The eigenfunctions of the Laplacian in the unit disk with vanishing Dirichlet boundary
condition are the Fourier–Bessel functions. Hence, they form an orthogonal basis to the
space of squared-integrable functions over the unit disk, and it is natural to expand the
images in that basis. The Fourier–Bessel functions are given by

(1)

where Nkq is a normalization factor; Jk is the Bessel function of integer order k, and Rkq is
the qth root of the equation

(2)

The functions ψkq are normalized to unity, that is

(3)

The normalization factors are given by
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(4)

We use here the following convention for the 2D Fourier transform of a function f in polar
coordinates

(5)

The 2D Fourier transform of the Fourier–Bessel functions denoted (ψkq), is given in polar
coordinates as

(6)

This result is typically derived using the Jacobi–Anger identity

(7)

Notice that the Fourier transform (ψkq)(k0, φ0) vanishes on concentric rings of radii k0 =
(Rkq′/2π) with q′ ≠ q. The maximum of | (ψkq)(k0, φ0)| is obtained near the ring k0 =
(Rkq/2π), as can be verified from the asymptotic behavior of the Bessel functions [cf. Eq.
(9)]. For images that are sampled on a squared Cartesian grid of size 2L × 2L pixels, with
grid size 1/L (corresponding to the square [−1, 1] × [−1, 1]) the sampling rate is L and the
corresponding Nyquist frequency (the band limit) is (L/2). Because of the Nyquist criterion,
the Fourier–Bessel expansion requires components for which

(8)

because other components represent features beyond the resolution and their inclusion
would result in aliasing. The asymptotic behavior of the Bessel functions

(9)

for Rkqr ≫ |k2 − (1/4)|, suggests that the roots are asymptotically

(10)

which is indeed the first term of the asymptotic expansion for the roots (see [9]). Equations
(8) and (10) lead to the sampling criterion
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(11)

In practice, we do not rely on the asymptotic formula, Eq. (10). Instead, we find the roots of
the Bessel functions numerically, and check directly which components satisfy the criterion
Rkq ≤ πL. The number of components satisfying |k| + 2q ≤ 2L + (1/2) is approximately 2L2,
which is smaller than πL2 (the number of pixels inside the unit disk) by a factor of 2/π. We
remark that the cutoff criterion, Eq. (11), is similar to the criterion in [8] but is not identical
to it. Specifically, the criterion in [8] has a different cutoff value for k + 2q. The difference
stems from the fact that [8] studies a different problem, namely the 2D reconstruction
problem of an image from its 1D line projections.

3. FOURIER–BESSEL EXPANSION OF IMAGES SAMPLED ON A
CARTESIAN GRID

Suppose I1, …, In are n images sampled on a Cartesian grid. We denote by Ĩi the continuous
approximation of the ith image in terms of a truncated Fourier–Bessel expansion including
only components satisfying the sampling criterion, namely

(12)

where for each k, pk denotes the number of components satisfying Rkq ≤ πL. We choose the

expansion coefficients  that minimize the squared distance between Ii and Ĩi, with the

latter restricted to the grid points; that is,  are the least squares solution to the
overdetermined linear system obtained from Eq. (12) by evaluating the images and the
Fourier–Bessel functions at the grid points. More specifically, let Ψ be the matrix whose
entries are evaluations of the Fourier–Bessel functions at the grid points, with rows indexed
by the grid points and columns indexed by angular and radial frequencies. Then, the
coefficient vector ai of the ith image is the solution of minai ||Ψai − Ii||2, given by

(13)

The orthogonality of the Fourier–Bessel functions on the disk does not necessarily imply
that their discretized counterparts are orthogonal. That is, the matrix Ψ†Ψ may differ from
the identity matrix. The columns of the matrix Ψ are guaranteed to approach orthogonality
only as the grid is indefinitely refined (e.g., as L → ∞). In practice, we have numerically
observed that the columns of Ψ are approximately orthogonal already for moderate values
of L. In particular, white noise remains approximately white after the transformation, since
the eigenvalues of (Ψ†Ψ)−1 are close to 1 (see Fig. 1). Indeed, for white noise images, the

mean and covariance satisfy [Ii] = 0 and , where σ2 is the noise variance and I
is the identity matrix. Therefore, Eq. (13) and the linearity of expectation yield [ai] = 0 and

[aiai†] = σ2(Ψ†Ψ)−1.

In the previous work [7] on fast computation of steerable principal components for a large
data set, images are re-sampled on a polar grid by the polar Fourier transform. The polar
Fourier transform is nonunitary and therefore causes artifacts in the eigenimages. Suppose
the linear transformation is described by the matrix A. The sample covariance matrix CA of
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the transformed images is related to the sample covariance matrix C of the original images
by

(14)

Unless A is unitary, there is no simple way to transform the eigenvectors of ACA† to the
eigenvectors of C. The advantage of using the Fourier–Bessel transform with the sampling
criterion that adapts to the band limit of the images is that such transform is approximately
unitary (Fig. 1).

4. SAMPLE COVARIANCE MATRIX
It is easy to “steer” the continuous approximation Ĩi of Ii [Eq. (12)]. If  denotes the rotation
of the i′ th image by an angle α, then

(15)

Because J−k(x) = (−1)kJk(x), for real valued images . Also, under reflection

 changes to , and the reflected image, denoted , is given by

(16)

(17)

The sample mean, denoted Ĩmean, is the continuous image obtained by averaging the
continuous images and all their possible rotations and reflections:

(18)

Substituting Eqs. (15) and (17) into (18) we obtain

(19)

As expected, the sample mean image is radially symmetric, because ψ0q is only a function
of r but not of θ.

The sample covariance matrix built from the continuous images and all possible rotations
and reflections is formally
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(20)

When written in terms of the Fourier–Bessel basis, the covariance matrix C can be directly

computed from the expansion coefficients . Subtracting the mean image is equivalent to

subtracting the coefficients  with , while keeping other coefficients
unchanged. That is, we update

(21)

In the Fourier–Bessel basis the covariance matrix C is given by

(22)

(23)

The nonzero entries of C correspond to k = k′, rendering its block diagonal structure (see
Fig. 2). Also, it suffices to consider k ≥ 0, because C(k,q),(k,q′) = C(−k,q),(−k,q′). Thus, the
covariance matrix can be written as the direct sum

(24)

where  is by itself a sample covariance matrix of size pk × pk.
The block size pk decreases as the angular frequency k increases (see Fig. 2). We remark
that the block structure of the covariance matrix in steerable PCA is well known; however,
in previous works the block size is constant (i.e., independent of the angular frequency k).
Our main observation is that the block size must reduce as the angular frequency increases
in order to avoid aliasing. Moreover, if the images are corrupted by independent additive
white (uncorrelated) noise, then each block C(k) is also affected by independent additive
white noise because the Fourier–Bessel transform is unitary (up to grid discretization).

5. ALGORITHM AND COMPUTATIONAL COMPLEXITY
We refer to the resulting algorithm as Fourier–Bessel steerable PCA (FBsPCA). The steps of
FBsPCA are summarized in Algorithm 1. The computational complexity of FBsPCA
(excluding pre-computation) is O(nL4 + L5), whereas the computational complexity of the
traditional PCA (applied on the original images without their rotational copies) is O(nL4 +
L6). The different steps of FBsPCA have the following computational cost. The cost for
precomputing the Fourier–Bessel functions on the discrete Cartesian grid is O(L4), because
the number of basis functions satisfying the sampling criterion is O(L2) and the number of
grid points is also O(L2). The complexity of computing the pseudoinverse of Ψ†Ψ is
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dominated by computing the singular value decomposition of Ψ in O(L6). Computing the
pseudoinverse of Ψ†Ψ is a precomputation that does not depend on the images.
Alternatively, since the eigenvalues of Ψ†Ψ are almost equal to one it can be approximated

by the identity matrix. It takes O(nL4) to compute the expansion coefficients . The
computational complexity of constructing the block diagonal covariance matrix is O(nL3).
Since the covariance matrix has a special block diagonal structure, its eigen decomposition
takes O(L4). Constructing the steerable basis takes O(L5). Therefore, the total computational
complexity for FBsPCA without the precomputation is O(nL4 + L5). For traditional PCA,
computing the covariance matrix takes O(nL4) and its eigen decomposition takes O(L6).
Overall, the computational cost of FBsPCA is lower than that of the traditional rotational
variant PCA.

6. RESULTS
In the first experiment, we simulated n = 104 clean projection images of E. coli 70S
ribosome. The images are of size 129 × 129 pixels, but the molecule is confined to a disk of
radius L = 55 pixels. We corrupted the clean images with additive white Gaussian noise at
different levels of signal-to-noise ratio (SNR) (Fig. 3). The running time of traditional PCA
was 695 s, compared to 85 s (including precomputation) for FBsPCA, both implemented in
MATLAB on a machine with 2 Intel(R) Xeon(R) CPUs X5570, each with 4 cores, running
at 2.93 GHz. The top 5 eigenimages for noisy images agree with the eigenimages from clean
projection images [Figs. 4(a) and 4(d)]. The eigenimages generated by FBsPCA are much
cleaner than the eigenimages from the traditional PCA [Figs. 4(d) and 4(e)]. We also see that
the eigenimages generated by steerable PCA with polar transform (PTsPCA) are consistent
with the eigenvectors from the traditional PCA [see Figs. 4(c) and 4(f)].

In another experiment, we simulated images consisting entirely of white Gaussian noise with
mean 0 and variance 1 and computed the Fourier–Bessel expansion coefficients. The
distribution of the eigenvalues for the rotational invariant covariance matrix with different
angular frequencies k are well predicted by the Marčenko–Pastur distribution (see Fig. 5).
This property allows us to use the method described in [10] to estimate the noise variance
and the number of principal components to choose.

We compared the eigenvalues in the previous experiment of the ribosome projection images
with different SNRs (Fig. 6). As the noise variance (σ2) increases, the number of signal
components that we are able to discriminate decreases. We use the method in [10] to
automatically estimate the noise variance and the number of components beyond the noise
level. With the estimated noise variance σ̂2, components with eigenvalues

, where γ0 = (p0/n) and γk = (pk/2n) for k > 0, are chosen (the case k = 0

is special because the expansion coefficients a0,q are purely real, since .

We compared the effects of denoising with FBsPCA, PTsPCA, and traditional PCA. The
asymptotically optimal Wiener filters [11] designed with the eigenvalues and eigenimages
from FBsPCA (PTsPCA, PCA, resp.) are applied to the noisy images. The number of signal
components determined with PCA is 62, whereas the total number of eigenimages for
FBsPCA is 430 for 104 noisy images with SNR = (1/20) and L = 55 pixels. For PTsPCA,
due to the nonunitary nature of the interpolation from Catersian to polar, we do not have a
simple rule for choosing the number of eigenimages. Instead, we applied denoising multiple
times corresponding to different number of eigenimages, and present here the denoising
result with the smallest mean squared error (MSE). The optimal number of eigenimages for
PTsPCA was 348. Of course, in practice the clean image is not available and such a
procedure cannot be used. Still, the optimal denoising result by PTsPCA is inferior to that
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obtained by FBsPCA, where the number of components is chosen automatically. Even if we
allow PTsPCA to use more components than FBsPCA, the denoising result does not
improve. Figure 7 shows that FBsPCA gives the best denoised image. We computed the
MSE, peak SNR (PSNR), and the mean structural similarity (MSSIM ) index [12] to show
the effectiveness of the denoising effect using FBsPCA compared with traditional rotational
variant PCA and PTsPCA (see Table 1).

7. SUMMARY AND DISCUSSION
In this paper we adapted a sampling criterion that was originally proposed in [8] into the
framework of steerable PCA. The Fourier–Bessel transform with the modified cutoff
criterion Rkq ≤ πL is approximately unitary and keeps the statistics of white noise
approximately unchanged. This sampling criterion obtains maximum information from a set
of images and their rotated and reflected copies while preventing aliasing. Instead of
constructing the invariant covariance matrix from the original images and their rotated and
reflected copies, we compute the covariance matrix from the truncated Fourier–Bessel
expansion coefficients. The covariance matrix has a special block diagonal structure that
allows us to perform PCA on different angular frequencies separately. The block diagonal
structure was also observed and utilized in previous algorithms for steerable PCA. However,
we show here that the block size must shrink as the angular frequency increases in order to
avoid aliasing and spurious eigenimages.

While steerable PCA has found applications in computer vision and pattern recognition, this
work has been mostly motivated by its application to cryo-EM. Besides compression and
denoising of the experimental images, it is worth mentioning that under the assumption that
the viewing directions of the images are uniformly distributed over the sphere, Kam has
previously demonstrated [13] that the covariance matrix of the images is related to the
expansion coefficients of the molecule in spherical harmonics. Our FBsPCA can therefore
be applied in conjunction to Kam’s approach.

When applying PCA to cryo-EM images, one has to take into account the fact that cryo-EM
images are not perfectly centered. It is well known that the unknown translational shifts can
be estimated experimentally using the double exposure technique. Specifically, the images
that are analyzed by PCA are obtained from an initial low-dose exposure, while the centers
of the images are determined from a second exposure with higher dose. Furthermore, image
acquisition is typically followed by an iterative global translational alignment procedure in
which images are translationally aligned with their sample mean, which was noted earlier to
be radially symmetric. It has been observed that such translational alignment measures
produce images whose centers are off by only a few pixels from their true centers. Such
small translational misalignments mainly impact the high frequencies of the eigenimages.
The general problem of performing PCA for a set of images and their rotations and
translations, or other noncompact groups of transformations, is beyond the scope of this
paper.

Another important consideration when applying PCA to cryo-EM images is the contrast
transfer function (CTF) of the microscope. The images are not simply projections of the
molecule, but are rather convolved with a CTF. The Fourier transform of the CTF is real
valued and oscillates between positive and negative values. The frequencies at which the
CTF vanishes are known as “zero crossings.” The images do not carry any information
about the molecule at zero crossing frequencies. The CTF depends on the defocus value, and
changing the defocus value changes the location of the zero crossings. Therefore, projection
images from several different defocus values are acquired. When performing PCA for the
images, one must take into account the fact that they belong to several defocus groups
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characterized by different CTFs. One possible way of circumventing this issue is to apply
CTF correction to the images prior to PCA. A popular CTF correction procedure is phase
flipping, which has the advantage of not altering the noise statistics. Alternatively, one can
estimate the sample covariance matrix corresponding to each defocus group separately, and
then combine these estimators using a least squares procedure in order to estimate the
covariance matrix of projection images that are unaffected by CTF. The optimal procedure
for performing PCA for images that belong to different defocus groups is a topic for future
research.

Finally, we remark that the Fourier–Bessel basis can be replaced in our framework with
other suitable bases. For example, the 2D prolate spheroidal wave functions (PSWFs) on a
disk [14] enjoy from many properties that make them attractive for steerable PCA. In
particular, among all band limited functions of a given band limit they are the mostly
spatially concentrated in the disk. They also have a separation of variables form which
makes them convenient for steerable PCA. However, an accurate numerical evaluation of
the PSWF requires more sophistication compared to the Bessel functions, which is the
reason why we have not applied PSWFs here.
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Fig. 1.
Eigenvalues of (Ψ†Ψ)−1, where Ψ is the truncated Fourier–Bessel transform for L = 6 and L
= 60 pixels respectively. This is also the spectrum of transformed white noise images (see
text). The eigenvalues are close to 1, indicating that the discretized Fourier–Bessel transform
is approximately unitary and that white noise remains approximately white. For L = 60,
among the eigenvalues, only 18 are above 1.05 and 34 are below 0.95. For L = 6, among the
eigenvalues, there are 6 below 0.95.
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Fig. 2.
Illustration of the block diagonal structure of the rotational invariant covariance matrix. The
block size shrinks as the angular frequency k increases.
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Fig. 3.
Simulated 70S ribosome projection images with different SNR.
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Fig. 4.
Eigenimages for 104 simulated 70S ribosome projection images. Clean images: (a) FBsPCA,
(b) traditional PCA, and (c) PTsPCA. Noisy images with SNR = (1/50): (d) FBsPCA, (e)
traditional PCA, and (f) PTsPCA. Image size is 129 × 129 pixels and L = 55 pixels.
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Fig. 5.
Histogram of eigenvalues of C(k) (with k = 0, 1, 20) for images consisting of white Gaussian
noise with mean 0 and variance 1. The dashed lines correspond to the Marčenko–Pastur
distribution. n = 104, L = 55 pixels and σ2 = 1.
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Fig. 6.
Eigenvalues for C(0) and C(10) for simulated projection images with different SNRs.
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Fig. 7.
Denoising by FBsPCA, PTsPCA, and PCA. n = 104 and L = 55 pixels. (a) clean image. (b)
noisy image (SNR = (1/20)). (c) FBsPCA denoised. (d) PTsPCA denoised. (e) PCA
denoised.
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Table 1

Denoising Effect: FBsPCA, PTsPCA, and PCA

MSE (10−5) PSNR (dB) 1-MSSIM (10−6)

FBsPCA 6.6 20.2 4.4

PTsPCA 7.7 19.5 5.9

PCA 10.1 18.3 5.9
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Algorithm 1

Fourier–Bessel Steerable PCA (FBsPCA)

Require: n pre-whitened images I1, …, In sampled on a Cartesian grid of size 2L × 2L.

1 (Precomputation) Compute ψkq for all Rkq ≤ πL.

2 (Precomputation) Compute the Moore–Penrose pseudoinverse of Ψ.

3
For each Ii compute  using Eq. (13).

4
Estimate the Ĩmean using Eq. (19). Subtract the mean image by changing  to .

5 For each k = 0, 1, …, 2L compute the covariance matrix C(k) of size pk × pk.

6 For each k compute the eigenvalues of C(k), in descending order  and the associated eigenvectors

.

7 The eigenimages Vkl (0 ≤ k ≤ 2L, 1 ≤ l ≤ pk) are linear combinations of the Fourier–Bessel functions, i.e., , where Ψ(k)

= [ψk1, …, ψkpk].

8 (optional) Use an algorithm such as [10] to estimate the number of components to choose for each C(k).

J Opt Soc Am A Opt Image Sci Vis. Author manuscript; available in PMC 2013 July 15.


