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Efficient cell migration is central to 
the normal development of tissues 

and organs and is involved in a wide 
range of human diseases, including can-
cer metastasis, immune responses, and 
cardiovascular disorders. Mesenchymal 
migration is modulated by focal- 
adhesion proteins, which organize into 
large integrin-rich protein complexes 
at the basal surface of adherent cells. 
Whether the extent of clustering of focal-
adhesion proteins is actually required 
for effective migration is unclear. We 
recently demonstrated that the depletion 
of major focal-adhesion proteins, as well 
as modulation of matrix compliance, 
actin assembly, mitochondrial activity, 
and DNA recombination, all converged 
into highly predictable, inter-related, 
biphasic changes in focal adhesion size 
and cell migration. Herein, we further 
discuss the role of focal adhesions in 
controlling cell spreading and test their 
potential role in cell migration.

Introduction

A myriad of proteins play a role in cell 
migration, including cytoskeletal, motor, 
mechanosensing, and scaffolding proteins 
as well as regulatory kinases and phospha-
tases. In particular, a defined subset of 
cytoplasmic and membrane-bound pro-
teins that cluster into focal adhesions at 
the basal surface of adherent cells regu-
late cell migration, sensation of mechani-
cal stimuli, signal transduction through 
the cell membrane, and cell adhesion.1-3 
Morphology and dynamics of focal 
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adhesions, such as size, shape, molecu-
lar density and activity, turnover rate, 
and spatial distribution, strongly depend 
on the cell type and matrix properties 
such as dimensionality, topology, and 
compliance.3-7 Here a systems-biological 
approach uncovers a universal bipha-
sic relationship between focal adhesion 
size and cell migration speed.8 Based on 
this data, we found that focal adhesion 
size uniquely predicts cell adhesion and 
morphology.9-11

Recapitulation of Biphasic  
Relationship Between  
Focal Adhesion Size  

and Cell Migration Speed

Fast-moving fish keratocytes, human leu-
kocytes, and Dictyostelium discoideum cells 
display small focal adhesions at their basal 
surface, while slow-moving fibroblasts and 
endothelial cells display large focal adhe-
sions.12-14 Therefore, a superficial compari-
son among migratory cells suggests that 
cells that feature small focal adhesions 
migrate more rapidly than cells that fea-
ture large focal adhesions. This disparate 
data suggests that the extent of clustering 
of focal-adhesion proteins into basal adhe-
sion plaques would inversely correlate with 
cell migration. However, a rigorous assess-
ment of the role of focal-adhesion cluster-
ing in the migration of isotypic cells has 
been lacking.

To assess the potential interplay 
between focal adhesion formation and 
cell migration, we measured the speed 
and persistence of migration of control 
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manipulated the expression and activity 
of proteins that were (spatially and func-
tionally) progressively further away from 
focal adhesion complexes. For instance, 
disassembly of actin filaments to block 
actomyosin-mediating force relay25 and 
depletion of the F-actin-crosslinking pro-
tein α-actinin, which is functionally asso-
ciated with force transduction between 
adhesion site and cytoskeleton,26,27 induce 
changes in cell speed that are robustly 
predicted by corresponding changes in 
focal adhesion size. Deactivation of mito-
chondria and DNA recombination, which 

cell migration speed were biphasically 
related (Fig. 1D), i.e., as focal adhesion 
size increased, cell moved more rapidly; 
past a maximum threshold speed, cell 
migration decreased for increasing focal 
adhesion size. Importantly, neither the 
shape of focal adhesions, nor their num-
ber or the relative cell surface occupied by 
focal adhesions, nor the molecular com-
position of focal adhesions seems to pre-
dict cell migration.8

To test the predictive power of this 
biphasic relation between focal adhe-
sion size and cell migration speed, we 

mouse embryonic fibroblasts (MEFs) 
and MEFs depleted of major focal adhe-
sion proteins (focal adhesion kinase, pax-
illin, talin, and zyxin), spontaneously 
migrating on flat substrates of controlled 
mechanical compliance, and determined 
these cells’ ability to form focal adhesions. 
These proteins and mechanical stimuli 
were chosen because they were known 
to affect the organization of focal adhe-
sions and/or modulate cell migration15-24 
(Fig. 1A–C). High-throughput quantita-
tive live-cell microscopy revealed that the 
mean size of focal adhesions and mean 

Figure 1. Focal adhesion size is a unique predictor of cell migration speed. (A–C) effect of changes in substrate compliance—rigid glass (black), stiff 
(gray), and soft (white) polyacrylamide gels coated with collagen I, and depletion of focal adhesion proteins (FAK, paxillin, talin, and zyxin) on focal 
adhesion size (A), cell size (B), and cell migration speed (C). At least 30 cells per condition were analyzed to assess focal-adhesion and cell morphol-
ogy and >50 cells per condition were tracked to assess cell motility. error bars represent SeM. Multiple comparison to the control (i.e., Wt cells on stiff 
substrates) was performed by 1-way analysis of variance (AnoVA) using the Dunnett post test. Significant statistical difference are shown as follows,  
***P < 0.001, **P < 0.005, *P < 0.01. (D–F) Assessment of regression among focal adhesion size, cell size, and cell speed. Mean size of focal adhesion is 
biphasically and linearly correlated with cell speed (D) and cell size (E), respectively, while cell size is weakly correlated with cell speed either biphasi-
cally (r2 = 0.51) or linearly (r2 = 0.32). Gaussian (nonlinear) and linear models were tested to the data set ranged between 0 and 1 after normalization as 
(x − xmin)/(xmax − xmin). error bars represent SeM. note that cell size is not statistically related to cell speed. (G) Schematic of prediction of cell speed by 
focal adhesion size. Cell speed is predicted by the mean size of focal adhesion not through regulation of cell size. Panels (A, C, and D) were reprinted 
from ref. 8.
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establish the relation between cell spread-
ing and cell-adhesion strength.

Conclusions

Through a validated correlative analy-
sis between descriptors of focal adhesion 
morphology (size, shape, and density) 
and descriptors of cell migration, we have 
addressed a long-standing question in cell 
biology: whether morphology of focal 
adhesions is functionally related to cell 
migration. The power of such analysis is 
increased substantially by using a com-
bination of genetic and mechanical per-
turbations as well as blind tests. Results 
from this analysis show that: (1) the mean 
size of focal adhesions—not their shape 
or their number per cell—predicts cell 
migration across cell types and (2) the 
mean size of focal adhesions predicts cell 
spreading, while cell spreading does not 
predict cell migration.

These results may have important 
implications in biomedical research: 
defects in organ and tissue development 
or disease resulting from the onset of 
or defects in cell migration may occur 
through misregulated changes in focal 
adhesion size. This provides for a concep-
tually new pharmacological target of dis-
ease: not a specific molecular target, but 
a morphological descriptor of an organ-
elle—focal adhesion size.
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