
Vol. 29 no. 15 2013, pages 1890–1892
BIOINFORMATICS APPLICATIONS NOTE doi:10.1093/bioinformatics/btt294

Genome analysis Advance Access publication June 6, 2013

SVGenes: a library for rendering genomic features in scalable

vector graphic format
Graham J. Etherington and Daniel MacLean*
The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, UK

Associate Editor: Alfonso Valencia

ABSTRACT

Motivation: Drawing genomic features in attractive and informative

ways is a key task in visualization of genomics data. Scalable Vector

Graphics (SVG) format is a modern and flexible open standard that

provides advanced features including modular graphic design,

advanced web interactivity and animation within a suitable client.

SVGs do not suffer from loss of image quality on re-scaling and pro-

vide the ability to edit individual elements of a graphic on the whole

object level independent of the whole image. These features make

SVG a potentially useful format for the preparation of publication qual-

ity figures including genomic objects such as genes or sequencing

coverage and for web applications that require rich user-interaction

with the graphical elements.

Results: SVGenes is a Ruby-language library that uses SVG primi-

tives to render typical genomic glyphs through a simple and flexible

Ruby interface. The library implements a simple Page object that

spaces and contains horizontal Track objects that in turn style,

colour and positions features within them. Tracks are the level at

which visual information is supplied providing the full styling capabil-

ity of the SVG standard. Genomic entities like genes, transcripts

and histograms are modelled in Glyph objects that are attached

to a track and take advantage of SVG primitives to render the gen-

omic features in a track as any of a selection of defined glyphs.

The feature model within SVGenes is simple but flexible and not

dependent on particular existing gene feature formats meaning

graphics for any existing datasets can easily be created without

need for conversion.

Availability: The library is provided as a Ruby Gem from https://ruby-

gems.org/gems/bio-svgenes under the MIT license, and open source

code is available at https://github.com/danmaclean/bioruby-svgenes

also under the MIT License.

Contact: dan.maclean@tsl.ac.uk

Received on March 7, 2013; revised on April 19, 2013; accepted on

May 20, 2013

1 INTRODUCTION

Visualization, analysis and communication of genome data is

an important task in genomics. Numerous desktop computer

programs exist for rendering images of genomic data, usually

in analytic pipelines including Artemis (Carver et al., 2008).

Genome browsers such as Gbrowse (Stein et al., 2002),

JBrowse (Skinner et al., 2009), Savant (Fiume et al., 2010)

and IGV (Thorvaldsdóttir et al., 2013) provide interactive visu-

alization of the data for whole genomes and draft assemblies.

Output from these is typically limited to an exported bitmap or

screen grab in the program’s particular fixed style. Graphics

libraries such as GD and ImageMagick have been used in

projects like BioPerl (Stajich et al., 2002) and BioRuby

(Goto et al., 2010) to create uniquely styled bitmap images

like PNG and JPEG programmatically. BioRubys bio-graphics

package has similar functionality to bio-svgenes and relies on

external libraries such as Cairo, Pango and ImageMagick. The

Bio.Graphics module in Biopython (Cock et al., 2009) also

supports output in SVG through the use of third-party soft-

ware [ReportLab (http://www.reportlab.com/)]. Bitmap images

are limited in that they are not easy to re-annotate, re-scale

and often cannot be reproduced for publication or presentation

with high-fidelity because of limitations of the original bitmaps.

Bitmaps can be difficult to manipulate and are not easily

amenable to the addition of interactive features. Interactive

graphics can be provided in web-browsers through JavaScript

libraries such as D3.js but there are no such libraries available

specifically for easy rendering of genomic data. Scalable Vector

Graphics (SVG) is an XML-based graphic standard under de-

velopment by the World Wide Web Consortium that provides

many advantages for those seeking to produce rich, attractive

images. SVG is a vector format so does not suffer image qual-
ity degradation on rescaling, has advanced image features such

as alpha masks and filter effects, web-interactivity and can be

styled with Cascading Style Sheets. Furthermore, as a text-

based format, SVG is well suited for searching and indexing

in databases and is amenable to lossless compression. SVG can

be rendered by modern web-browsers and graphics software

including Adobe’s Illustrator and the open source Inkscape

programs. SVG output is available from some applications.

CGView (Grant et al., 2012) and Circos (Krzywinski et al.,

2009) are good tools for viewing circular genomes in particular.

GenomeDiagram (Pritchard et al., 2006) is designed to dis-

play large amounts of comparative genomics data. MGV

(Kerkhoven et al., 2004) is a database-driven web application

designed specifically for microbial data and AnnotationSketch

(Steinbiss et al., 2009), which is dependant on third-party soft-

ware. SVGenes is a pure Ruby language library that allows a

user to set styles for tracks of genomic features and will auto-

matically layout and generate SVG images composed of several

pre-defined genomics glyphs, including genes, transcripts, data

and single-nucleotide features.*To whom correspondence should be addressed.

� The Author 2013. Published by Oxford University Press.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0/), which

permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.



2 APPROACH

SVGenes uses a simple feature Page-Track-Feature model to
organize the genomic data and to apply style information

provided to it.

2.1 The page and track object

The page object represents the area into which feature tracks
are drawn, it has straightforward width, height and background

attributes. Height is not fixed and is recalculated if more space is
required to render all the constituent features at the specified
sizes. The background attribute of the page can be styled, and

an automatically generated scale bar is created and added to the
top of the rendered page. Instantiating new track objects is the
main way that styling information is specified, the track attri-

butes set the final visual style of the genomic features and is
responsible for placing them within the track on the page.

2.2 Glyphs and feature objects

SVGenes can render genomic features using various glyphs

including gene, transcript and point features. Data tracks repre-
senting, e.g. sequence read coverage can be rendered as histo-

grams and the flexible styling options allow for a great deal of

variety of appearance (Fig. 1 shows some examples). Each glyph
takes style information from the track, and full SVG styling

syntax can be used for arbitrary styling information including

opacity settings. HTML colours and some pre-defined gradient

fills are available through keyword declaration, greatly simplify-

ing basic styling. The feature object represents genomic features

simply and flexibly. As a minimum, start and stop positions are

required for the basic glyphs. Grouped features such as tran-

scripts are represented by start and stop information for the

parent object and start and stops for the block elements

within, such as exons and untranslated regions. Data glyphs
are bars with start, width and height elements.

2.3 Workflow

SVGenes provides programmatic and configuration-based ren-

dering workflows. Within a Ruby script, a user may manually

instantiate a page object and attach tracks as required, then
create and add the feature objects to the appropriate tracks.

This workflow does not rely on any particular feature file

format. For input from the popular GFF format, a configur-

ation-based workflow is provided. In this, the user is able to

create a JSON configuration file that describes each track and

contains links to a file containing the features or data values to

be rendered in each track.

3 CONCLUSION

SVGenes is a useful and flexible library for creating easily

manipulated, high-quality, web-friendly images of genomic data

quickly and easily in SVG format without embedding a bitmap.

The library can be used for visualization at many levels; in high-

throughput pipelines and web applications, but individual users

preparing figures for publication will also find the library ex-

tremely useful, as the individual elements of the images can be

independently manipulated and annotated and composited.

ACKNOWLEDGEMENT

Thanks to Diane Saunders and Florian Jupe for feedback on the

use and development of the library.

Funding: Gatsby Charitable Foundation.

Conflict of Interest: none declared.

REFERENCES

Carver,T. et al. (2008) Artemis and act: viewing, annotating and comparing

sequences stored in a relational database. Bioinformatics, 24, 2672–2676.

Cock,P.J. et al. (2009) Biopython: freely available Python tools for computational

molecular biology and bioinformatics. Bioinformatics, 25, 1422–1423.

Fiume,M. et al. (2010) Savant: genome browser for high-throughput sequencing

data. Bioinformatics, 26, 1938–1944.

Goto,N. et al. (2010) BioRuby: bioinformatics software for the Ruby programming

language. Bioinformatics, 26, 2617–2619.

Grant,J.R. et al. (2012) Comparing thousands of circular genomes using the

CGView Comparison Tool. BMC Genomics, 13, 202.

Kerkhoven,R. et al. (2004) Visualization for genomics: the microbial genome

viewer. Bioinformatics, 20, 1812–1814.

Krzywinski,M. et al. (2009) Circos: an information aesthetic for comparative

genomics. Genome Res., 19, 1639–1645.

Fig. 1. Rendering of features from the TAIR 10 annotation of the

Arabidopsis genome (Lamesch et al., 2012). The region shown is

Chromosome 3: 19 597235–19 637 249. Tracks contain (from top to

bottom) (i) Genes with the ’directed’ glyph, (ii) mRNAs with the ‘tran-

script’ glyph, (iii) cDNA matches with the ‘directed’ glyph, (iv) micro-

array probes with the ‘generic’ glyph, (v) insertions with the ‘down

triangle’ glyph, (vi) deletions with the ‘up triangle’ glyph, (vii) TE inser-

tions with the ‘circle’ glyph, (viii) a data track showing simulated NGS

data (height calculated from a sine function of the genome position) and

(ix) a data track showing random bar heights

1891

SVGenes



Lamesch,P. et al. (2012) The arabidopsis information resource (TAIR): improved

gene annotation and new tools. Nucleic Acids Res., 40, D1202–D1210.

Pritchard,L. et al. (2006) GenomeDiagram: a python package for the visualization

of large-scale genomic data. Bioinformatics, 22, 616–617.

Skinner,M.E. et al. (2009) JBrowse: a next-generation genome browser. Genome

Res., 19, 1630–1638.

Stajich,J.E. et al. (2002) The bioperl toolkit: Perl modules for the life sciences.

Genome Res., 12, 1611–1618.

Stein,L.D. et al. (2002) The generic genome browser: a building block for a model

organism system database. Genome Res., 12, 1599–1610.

Steinbiss,S. et al. (2009) AnnotationSketch: a genome annotation drawing library.

Bioinformatics, 25, 533–534.

Thorvaldsdóttir,H. et al. (2013) Integrative genomics viewer (IGV): high-perform-

ance genomics data visualization and exploration. Brief. Bioinform., 14,

178–192.

1892

G.J.Etherington and D.MacLean


