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Obstructive sleep apnea syndrome (OSAS) is a highly prevalent sleep disorder, characterized by repeated disruptions of breathing
during sleep. This disease has many potential consequences including excessive daytime sleepiness, neurocognitive deterioration,
endocrinologic and metabolic effects, and decreased quality of life. Patients with OSAS experience repetitive episodes of hypoxia
and reoxygenation during transient cessation of breathing that provoke systemic effects. Furthermore, theremay be increased levels
of biomarkers linked to endocrine-metabolic and cardiovascular alterations. Epidemiological studies have identified OSAS as an
independent comorbid factor in cardiovascular and cerebrovascular diseases, and physiopathological linksmay exist with onset and
progression of heart failure. In addition, OSAS is associated with other disorders and comorbidities which worsen cardiovascular
consequences, such as obesity, diabetes, and metabolic syndrome. Metabolic syndrome is an emerging public health problem
that represents a constellation of cardiovascular risk factors. Both OSAS and metabolic syndrome may exert negative synergistic
effects on the cardiovascular system throughmultiple mechanisms (e.g., hypoxemia, sleep disruption, activation of the sympathetic
nervous system, and inflammatory activation). It has been found that CPAP therapy for OSAS provides an objective improvement
in symptoms and cardiac function, decreases cardiovascular risk, improves insulin sensitivity, and normalises biomarkers. OSAS
contributes to the pathogenesis of cardiovascular disease independently and by interaction with comorbidities. The present review
focuses on indirect and direct evidence regarding mechanisms implicated in cardiovascular disease among OSAS patients.

1. Introduction

Obstructive sleep apnea syndrome (OSAS) is a common dis-
order characterized by recurrent upper airway collapse dur-
ing sleep [1].This results in a reduction or complete cessation
of airflow despite ongoing inspiratory efforts and leads to
arousals, sleep fragmentation, and oxyhemoglobin desatura-
tion [2].

A spectrumof sleep related obstructed breathing has been
described in the literature [3]. This ranges from snoring [4],
and upper airway resistance syndrome [5] to obesity hypov-
entilation syndrome [6]. The focus of the current review is
OSAS, which lies in between these two extremes.

Though clinically recognized since the 1960s [7], general
awareness of OSAS has been slow to develop. OSAS has

been associated with cardiovascular disease [8], automo-
bile accidents [9], chronic obstructive pulmonary disease
(COPD) [10], heart failure [11] and health related quality of
life deterioration [12].

Another emerging public health problem is metabolic
syndrome, which represents a constellation of cardiovascular
risk factors. OSAS often coexists with obesity and has been
shown to be independently associated with insulin resistance,
which is an important component of metabolic syndrome
[1, 13]. Given the current obesity epidemic, the prevalence of
both metabolic syndrome and OSAS is on the rise.

The present review analyzes the relation between OSAS
and cardiovascular disease and how it may be affected by
OSAS-associated disorders and comorbidities.
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Table 1: Prevalence studies on obstructive sleep apnea syndrome.

Study Population Age Method Criteria SDB prevalence OSAS

Durán et al.
2001 [14]

2148 subjects
from the electoral
census

30–70

(1) Questionnaire
(2) Validated portable
instrument in 442 subjects
(3) PSG in 555 subjects

AHI ≥ 5 26.3% (M) and 28% (F)
AHI ≥ 10 19% (M) and 14.9% (F)
AHI ≥ 15 14.2% (M) and 8.6% (F)
AHI ≥ 20 9.6% (M) and 6% (F)
AHI ≥ 30 6.8% (M) and 4.3% (F)
OSAS = AHI ≥ 10 plus
Symptoms

3.4% M
3% F

Udwadia et al.,
2004 [15]

658 healthy urban
Indian subjects 35–65

(1) Questionnaire
(2) PSG on subgroup in 250
subjects

AHI ≥ 5 19.5% 7.5%
AHI ≥ 10 11.1% 6.1%
AHI ≥ 15 8.4% 5.4%
OSAS = AHI plus
Symptoms

Sharma et al.,
2006 [16]

2150 semiurban
community in
Delhi

30–60
(1) Questionnaire
(2) PSG on subgroup in 150
subjects

AHI ≥ 5 13.7%
OSAS = AHI ≥ 5 plus
Symptoms 3.6%

Pływaczewski
et al., 2008
[17]

1503 from
Warsaw electoral
registers

Over 30
years of
age

(1) Questionnaire
(2) PSG on subgroup in 676
subjects

AHI ≥ 10 14.3%
OSAS = AHI ≥ 10 plus
Symptoms 7.5%

Abbreviations: AHI: apnea hypopnea index; PSG: polysomnography; SDB: sleep disordered breathing; M: male; F: female.

2. OSAS Epidemiology

A variety of epidemiological studies have demonstrated the
high prevalence of OSAS and its relation to cardiovascular
risk factors (Table 1).Durán et al. in 2001, performed 555 com-
plete polysomnographies and found sleep disordered breath-
ing, defined as AHI > 5, in 26.3% of men and 28% of women.
AHI was associated with hypertension after adjusting for age,
sex, BMI, neck circumference, alcohol use, and smoking habit
[14]. In India, Udwadia et al. found a 19.5% prevalence of
sleep disordered breathing, defined as AHI > 5, and 7.5%
prevalence ofOSAS, defined asAHI> 5with symptoms. BMI,
neck circumference and diabetes mellitus were found to be
associated with sleep disordered breathing [15]. Sharma et al.
reported a 13.7% overall prevalence of sleep disordered
breathing and 3.6%prevalence ofOSAS.Multivariate analysis
revealed that male gender, age, obesity, and waist/hip ratio
were significant risk factors for OSAS [16].

Pływaczewski et al. found a 7.5% prevalence of OSAS.
OSAS was found to be an independent predictor of coronary
artery disease after adjusting for age, sex, BMI, neck circum-
ference, and smoking habit [17].

As age advances, sleep breathing related difficulties be-
come increasingly common. Several OSAS studies in older
populations report little or no association of OSAS with
sleepiness, hypertension, or decrements in cognitive function
[18, 19].

3. OSAS and Cardiovascular
Diseases Mechanisms

The mechanisms involved in the association between OSAS
and vascular diseases are complex and diverse. Patients

with OSAS experience repetitive episodes of hypoxia and
reoxygenation during transient cessation of breathing that
may provoke systemic effects. These patients also present
increased levels of biomarkers linked to endocrine-metabolic
and cardiovascular alterations. The relation between OSAS
and cardiovascular disease involves a number of mechanisms
such as the following (Figure 1).

3.1. Sleep Fragmentation. The importance of sleep to health
and cardiovascular disease has become increasingly apparent.
Percentage time in slow wave sleep has been inversely associ-
ated with incident hypertension (regardless of sleep duration
and fragmentation) and sleep-disordered breathing. In fact,
selective deprivation of slow wave sleep may contribute to
adverse blood pressure in older men [20]. Bekci et al. found
that total antioxidant capacities were decreased in the higher
arousal index, suggesting that patients with higher arousal
index may be more prone to vascular events [21].

In OSAS, severe sleep fragmentation disturbs nocturnal
renin and aldosterone secretion profiles and increases night-
time urine excretion. CPAP treatment has been reported to
improve sleep, restore plasma renin activity and aldosterone
oscillations, and lower nocturnal urine natriuresis and diure-
sis [22].Møller et al. found that long-termCPAP (Continuous
positive airway pressure) reduced blood pressure, which was
correlated with reductions in plasma renin and angiotensin II
levels [23].

Extreme sleep habits can affect health and have been asso-
ciated with increased inflammation. Significant changes in
habitual sleep duration can lead to chronic low-grade sys-
temic inflammation [24] and activation of proinflammatory
pathways may represent a mechanism. In a study involving
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Figure 1: A schematic summary of the proposed sequence of events in obstructive sleep apnea syndrome starting from episodic hypoxia and
sleep fragmentation.

pediatric OSAS patients, increased TNF-𝛼 levels were pri-
marily driven by sleep fragmentation and BMI. These levels
were closely associated with the degree of sleepiness. Surgical
treatment of OSAS resulted in significant reductions in TNF-
𝛼 levels and reduction in sleepiness [25].

3.2. Enhanced Sympathetic Traffic. In OSAS, there is en-
hanced sympathetic traffic through a tonic activation of
chemoreflex activity that normalizes with CPAP treatment
[26, 27]. OSAS-associated disturbances, especially chronic
intermittent hypoxia and enhanced sympathetic activity,
lead to upregulation of the renin-angiotensin system and
downregulation of nitric oxide synthases [28]. When an
obstructive apnea occurs, it is terminated by a sudden arousal,
that is, lightening of sleep or awakening from sleep [29]. The
cyclic intermittent hypoxia provides the causal link between
upper airway obstruction during sleep and sympathetic acti-
vation during awakening. Cyclic intermittent hypoxia may
lead to sympathoexcitation via two mechanisms: first, aug-
mentation of peripheral chemoreflex sensitivity (hypoxic
acclimatization) and, second, direct effects on sites of central
sympathetic regulation.

In a study in healthy humans, intermittent hypoxia sig-
nificantly increased sympathetic activity and daytime blood
pressure after a single night of exposure. The baroreflex con-
trol of sympathetic outflow declined [30]. Surges in sympa-
thetic nervous system activity associated with apneic events
have also been related to antifibrinolytic activity reflected by
elevations in PAI-1 [31].

Increased sympathetic activity and intermittent hypoxia
associated with apneic episodes has been proposed as a
possible mechanism behind the association between OSAS,
systemic inflammation and cardiovascular disease. CPAP

reduces sympathetic nerve activity [32], increases arterial
baroreflex sensitivity [33], and decreases vascular risk [34].

3.3. Oxidative Stress. In OSAS patients, increased production
of superoxide by neutrophils [35], increased biomarkers of
lipid peroxidation [36], and increased levels of 8-isoprostanes
[37] have been observed.There is an emerging consensus that
OSAS is an oxidative stress disorder.

Apnea produces a decline in oxygen levels followed by
reoxygenation when breathing resumes. Cyclical episodes
of hypoxia-reoxygenation, which are analogous to cardiac
ischemia/reoxygenation injury,may causeATPdepletion and
xanthine oxidase activation and increases the generation of
oxygen-derived free radicals. CPAP therapy decreases the
levels of oxidative stress in OSAS patients [38, 39].

In a study involving children with OSAS, Malakasioti
et al. found increased hydrogen peroxide levels in exhaled
breath condensate, which is an indirect index of altered redox
status in the respiratory tract [40].

Oxidative stress can profoundly regulate the cellular tran-
scriptome through activation of transcription factors, includ-
ing specificity protein-1, hypoxia-inducible factor-1, c-jun,
and possibly NF𝜅𝛽. Activation of redox-sensitive gene
expression is suggested by the increase in some protein prod-
ucts of these genes, including vascular endothelial growth
factor [41], erythropoietin [42], and endothelin-1 [43]. Low
oxygen tension is a trigger for activation of polymorphonu-
clear neutrophils, which adhere to the endothelium [44].

Increased oxidative stress has been associated with devel-
opment of cardiovascular diseases and can be promoted by
the chronic intermittent hypoxia characteristic of OSAS [45].
A variety of studies suggest that oxidative stress is present
in OSAS at levels relevant to tissues such as the arterial
wall [46, 47]. This process enhances lipid uptake into human
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macrophages and may contribute to atherosclerosis in OSAS
patients [48]. Furthermore, OSAS decreases blood antioxi-
dant status in high-BMI subjects and may change the rela-
tionship between oxidative stress markers [49]. After CPAP,
expression of eNOS and phosphorylated eNOS was found to
be significantly increased, whereas expression of nitrotyro-
sine and nuclear factor-kappaB was significantly decreased
[50]. However, other studies have shown that CPAP may not
affect antioxidant defense [51]. Nair reported that oxidative
stress is mediated, at least in part, by excessive NADPH
oxidase activity. This author suggests that pharmacological
agents targeting NADPH oxidase may provide a therapeutic
strategy in OSAS [52].

3.4. Systemic Inflammation. In OSAS, intense local and
systemic inflammations are present. Insofar as local inflam-
mation, bronchial and nasal changes are especially relevant
[53]. In a study by Carpagnano et al., OSAS patients showed a
significant increase in IL-8 and ICAM concentrations in both
plasma and exhaled condensate. In addition, they showed a
higher neutrophil percentage in induced sputum.These find-
ings were significantly and positively correlated to AHI [54].
In a recent study of 80 nonsmoking males, Cofta et al., found
a progressive increase in the concentrations of three selectins
with the severity of OSAS [55].

Adhesion of circulating leukocytes to the endothelial
cells is considered one of the initial steps in the pathogenesis
of atherosclerosis. The repetitive hypoxia-reoxygenation
episodes associated with apneas and hypopneas in OSAS up-
regulate the production of inflammatory mediators and the
expression of adhesion molecules. Different studies have
reported changes in circulating levels of adhesion molecules
in OSAS patients [56, 57]. Dyugovskaya et al. analysed
polymorphonuclear apoptosis and expression of adhesion
molecules in vitro in patients with moderate to severe OSAS.
Decreased apoptosis and increased expression of adhesion
molecules were observed. Although adhesion molecules may
facilitate increased polymorphonuclear-endothelium inter-
actions, decreased apoptosis may further augment these
interactions and facilitate free radical and proteolytic
enzymes [58].

OSAS patients present increased levels of inflammatory
mediators such as TNF𝛼 and IL-6 [59, 60] that decrease with
CPAP treatment [61, 62].

Systemic inflammation is increasingly being recognized
as a risk factor for a number of complications including ath-
erosclerosis [63] and is a well-established factor in the
pathogenesis of cardiovascular disease [64]. Serum amyloid
A is a major acute-phase protein in humans that has been
associated with cardiovascular disease [65]. Levels of this
protein are chronically elevated in patients with OSAS [66]
and improve with CPAP [67].

C-reactive protein is an important serum marker of
inflammation with major implications for cardiovascular
morbidity and atherogenesis [68]. C-reactive protein levels
are increased in OSAS in accordance with disease severity
[69–71] and are decreased after CPAP treatment [72, 73].

The mechanisms by which inflammation contributes
to OSAS-induced vascular dysfunction are not known.

Reoxygenation after a brief period of hypoxia as experi-
enced repetitively and systematically by OSAS patients may
predispose to cell stress, possibly because of mitochondrial
dysfunction. It has been suggested that such events favor
the activation of a proinflammatory response as mediated
through the transcription factor nuclear NF𝜅𝛽, a master
regulator of inflammatory gene expression. The downstream
effects of this activation include increased expression of
inflammatory cytokines which may contribute to endothelial
dysfunction and subsequently cardiovascular complications
[74].

Inflammation may be an important link between
increased sympathetic nervous system activity and vascular
dysfunction in OSAS. Chronically elevated sympathetic
activity produced an inflammatory response in several
organs and vascular beds [75].

Some authors point to the role of the T lymphocyte.
This cell is known to play an important role in angiotensin
II-induced hypertension and endothelial dysfunction via
NADPH oxidase-induced superoxide production [76].

Increased expression of inflammatory cytokines may
contribute to endothelial dysfunction and subsequent car-
diovascular complications. Currently, some studies suggest
that pentraxin 3, an acute phase response protein, is rapidly
produced and released by several cell types, especially
mononuclear phagocytes and endothelial cells in response
to primary inflammatory signals. Pentraxin 3 may play a
significant role in OSAS-associated vascular damage [77].
Arnaud et al. reported that some inhibition ofmolecules such
as RANTES/CCL5, a cytokine that selectively attracts mem-
ory T lymphocytes andmonocytes,may play a significant role
in athesrosclerosis remodeling andOSAS-associated vascular
damage [78].

However, mesenchymal stem cells triggered an early
anti-inflammatory response in rats subjected to recurrent
obstructive apneas, suggesting that these stem cells could play
a role in the physiological response to counterbalance inflam-
mation in OSAS [79].

In healthy human males, Querido et al. analysed the
effect over 10 days of nightly intermittent hypoxia in the fol-
lowing systemic inflammatory markers: serum granulocyte
macrophage colony-stimulating factor, interferon-𝛾, inter-
leukin 1𝛽, interleukin 6, interleukin 8, leptin, monocyte
chemotactic protein-1, vascular endothelial growth factor,
intracellular adhesion molecule-1, and vascular cell adhesion
molecule-1. There was no significant change in any of the
markers. These findings suggest that a more substantial or
a different pattern of hypoxemia might be necessary to
activate systemic inflammation, that the system may need
to be primed before hypoxic exposure, or that increases in
inflammatory markers in OSAS patients may be more related
to other factors such as obesity or nocturnal arousal [80].

3.5. Hypercoagulability. Hypercoagulability resulting from
increased coagulation or inhibited fibrinolysis is associated
with an increased risk for cardiovascular disease [81, 82].
This is another factor implicated in its association with OSAS
[83, 84].
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A variety of findings support the existence of a rela-
tion between hypercoagulability, OSAS, and cardiovascular
disease. Firstly, patients with OSAS present higher plasma
levels of several procoagulant factors such as fibrinogen [85],
activated clotting factor FVII (FVIIa), FXIIa, and throm-
bin/antithrombin III complexes [86], platelet activity [87],
and the fibrinolysis-inhibiting enzyme plasminogen activa-
tor inhibitor (PAI-1) [88, 89]. Secondly, increased D-dimer
levels in untreated OSAS have been correlated with severity
of nocturnal hypoxemia, characteristic of OSAS [90]. Von
Känel et al., found that OSAS patients showed lower mesor
(mean) and amplitude (difference between maximum and
minimum activity) of D-dimer. However, there were no sig-
nificant differences in changes of periodic pattern and in day/
night rhythm parameters of prothrombotic markers pre- to
posttreatment between the CPAP and placebo condition [91].

Thirdly, sleep fragmentation and sleep efficiency data
have been associated with increased levels of vonWillebrand
factor and soluble tissue factor, two markers of a prothrom-
botic state [92].

3.6. Endothelial Dysfunction. Endothelial dysfunction is an
early marker of vascular abnormality preceding clinically
overt cardiovascular disease [93–95]. It is known from years
ago that endothelial dysfunction identified in the peripheral
vasculature strongly predicts coronary disease [96].

The intact endothelium regulates vascular tone and repair
capacity, maintaining proinflammatory, anti-inflammatory,
and coagulation homeostasis. Alteration of these homeostatic
pathways results in endothelial dysfunction before structural
changes in the vasculature. The hypoxia, hypercapnia, and
pressor surges accompanying obstructive apneic events may
serve as potent stimuli for the release of vasoactive sub-
stances. Levels of nitric oxide, a major vasodilator substance
released by the endothelium, have been found to be decreased
in OSAS patients, and these levels normalize with CPAP
therapy [97].

In OSAS, endothelial dysfunction could be caused by
both hypoxia-reoxygenation cycles and chronic sleep frag-
mentation produced by repetitive arousals. A causal rela-
tionship between OSAS and endothelial dysfunction was
demonstrated by a study in which flow-mediated dilation in
the forearmwas improved byCPAP treatment [98, 99]. Levels
of nitric oxide, a major vasodilator substance released by the
endothelium, have been found to be decreased in OSAS
patients, and these levels normalize with CPAP therapy [100].

A number of studies involving OSAS patients indicate an
associated endothelial dysfunction [101–103] that improves
after CPAP [104, 105]. In addition to the fact that OSAS
comorbidities (e.g., hypertension, diabetes, hyperlipidaemia,
and smoking) may result in endothelial dysfunction, OSAS
itself may be an independent risk factor.

Among the most important vasoconstrictive substances
is endothelin-1, a peptide hormone secreted under the influ-
ence of hypoxia [106]. Several studies have reported higher
endothelin-1 levels in OSAS patients [107, 108]; however,
Grimpen et al. report conflicting findings [109]. This diver-
gence might be explained by differences in study design. The
groups studied by Phillips and Saarelainen had more severe

disease and, thus, underwent more severe oxygen desatu-
rations that acted as a trigger for endothelin-1 secretion.
Gjørup et al. showed that hypertensive OSAS patients had
greater nocturnal and diurnal endothelin-1 plasma levels than
healthy controls, suggesting that OSAS does not affect plasma
endothelin-1 levels in the absence of coexistent cardiovascular
diseases [110].

The inconsistency of the above endothelin-1 levels likely
reflects the predominantly abluminal release of endothelin.
Using rat models of arterial hypertension, several authors
have reported elevated vascular production of endothelin-1,
while circulating levels remained similar to controls [111, 112].
This demonstrates that circulating levels of endothelin-1 do
not exclude elevated vascular production in OSAS.

In recent years, endothelial progenitor cells have gained a
central role in vascular regeneration and endothelial repair
capacity through angiogenesis and restoring endothelial
function of injured blood vessels. Endothelial dysfunction is
frequently present in OSAS [113] and may have a potential
role in the pathogenesis of vascular diseases that is pertinent
to OSAS [114].

Furthermore, It has been reported that microvascular
endothelial function is affected by OSAS predominantly
through increased oxidative stress, and treatment of OSAS
may improve endothelial functionmainly by reducing oxida-
tive stress [115, 116].

3.7. Vibration Resulting from Snoring. Snoring associated
vibration energy transmission from the upper airway to the
carotid artery has been hypothesized as a potential
atherosclerotic plaque initiating and rupturing event that
may provide a pathogenic mechanism linking snoring and
embolic stroke. The vibration produced by snoring could
lead to vessel wall damage in the carotid arteries [117, 118].

In animals models, Howitt et al. demonstrated the trans-
mission of oscillatory pressure waves from the upper airway
lumen to the peripharyngeal tissues and across the carotid
artery wall to the lumen [119]. Cho et al. found carotid
arteries subjected to continuous pericarotid tissue vibration
displayed endothelial dysfunction, suggesting a direct plau-
sible mechanism linking heavy snoring to the development
of carotid atherosclerosis [120]. Although intriguing, this
concept requires further study.

4. Obesity

OSAS often coexists with obesity and many epidemiological
studies have demonstrated the existence of an association.
Significant OSAS is present in approximately 40% of obese
individuals, and about 70% of OSAS patients are obese [121].
Young et al. estimated that the majority of severe OSAS
cases (58%) were due to obesity [122]. In fact, obesity
parameters such as BMI, neck circumference, and visceral
fat accumulation have been identified as the most important
predictors of OSAS [123, 124].

Obesity is one of the major cardiovascular risk factors
associated with OSAS. The OSAS-obesity association may
have an influence on other disorders, such as cardiovascular
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diseases. Vgontzas et al. found a strong independent associa-
tion between OSAS, visceral obesity, and insulin resistance.
This author demonstrated that male obese patients with
OSAS had a greater amount of computerised tomography-
determined visceral adipose tissue in the abdomen than a
group of BMI-matched men without OSAS [125]. Moreover,
increased abdominal fat accumulation has been singled out as
an independent risk factor for cardiovascular diseases [126].
It has been suggested that upper abdominal obesity is more
insulin resistant and releases metabolically active products
into the portal circulation.

The mechanism by which obesity can favor the onset
of OSAS is not well known, but it could be that central
obesity precipitates or exacerbates OSAS because fat deposits
in the upper airway affect distensibility [127]. The increased
volume of abdominal fat could predispose to hypoventilation
during sleep and/or reduce the oxygen reserve, favoring
oxygen desaturation during sleep [128]. In recent years,
much attention has been focused on the interaction between
OSAS and products released by adipose tissue such as leptin,
adiponectin, resistin, and ghrelin [129].

4.1. Leptin. Leptin is an adipocyte-derived hormone that
regulates body weight through control of appetite and energy
expenditure [130]. Furthermore, leptin is a cytokine and is
therefore also involved in the inflammatory process. Several
studies have shown increased levels of leptin in OSAS
suggesting its role in the disease [131–133]. The mechanisms
underlying the relation between leptin and OSAS are very
diverse and may involve overnight changes in apnea levels
[134, 135], sleep hypoxemia [136], and hypercapnia [137].

A direct relationship between OSAS and leptin is sup-
ported by the fact that effective OSAS treatment with CPAP
also influences leptin levels [138, 139]. Although the precise
mechanism explaining the effect of CPAP has not yet been
elucidated, it can be inferred that reduction in sympathetic
activity [140] and improvement in insulin sensitivity play a
role [141].

Leptin levels have been proposed as a prognostic marker
for OSAS [142, 143] and have been implicated in the patho-
genesis of OSAS and related cardiovascular disease [132,
144, 145]. Leptin’s role had been recently extended into that
of participant to oxidative stress, although its exact role
in this process is yet to be defined. Elevated leptin levels
correlate significantly with several indices of OSAS disease
severity such as nocturnal hypoxemia. Leptin may be a
counteractive mechanism against chronic intermittent hyp-
oxia-related oxidative stress and may also be a marker for
atherosclerosis risk [146].

4.2. Adiponectin. Adiponectin is an adipocyte-derived
cytokine with regulatory functions in glucose and lipid
metabolism. It also has profound anti-inflammatory and
antiatherogenic effects. Levels of plasma adiponectin are
decreased in obesity and metabolic syndrome [147, 148].
OSAS has independently been associated with reduced levels
of adiponectin [149, 150] which may favour cardiovascular
disease development. The recurrent hypoxia-reoxygenation

attacks in OSAS patients may activate oxidative stress and
lead to low levels of adiponectin [151].

Some authors have observed that serum adiponectin
levels may be independent of the degree of OSAS [132].
Decreased adiponectin may result from increased sympa-
thetic activity [152] and higher levels of cytokines such as IL-
6 and TNF𝛼 [153]. In fact, there are conflicting reports as
to whether CPAP treatment of OSAS effectively normalizes
adiponectin levels [154, 155].

Obesity has been implicated in the relation between
OSAS and adiponectin [156]. In a study involving media
under hypoxic conditions in an ex vivo mouse model,
adiponectin secretion was measured. In obese mice, hypoxic
stress reduced adiponectin in the supernatant of mesenteric
fat tissue but not subcutaneous fat tissue. These findings
suggest that abdominal obesity, representing abundant
mesenteric fat tissue susceptible to hypoxic stress, partly
explains adiponectin levels in OSAS patients, and that reduc-
tion of visceral fat accumulation may combat OSAS-related
atherosclerotic cardiovascular diseases in abdominal obesity
[157].

4.3. Resistin. Resistin is a white adipose tissue hormone
whose function has yet to be established. Evidence suggests
that resistin is involved in pathological processes leading to
cardiovascular disease including inflammation, endothelial
dysfunction, thrombosis, angiogenesis, and smooth muscle
cell dysfunction [158]. In a study of 20 obese OSAS patients,
Harsch et al. found that CPAP treatment of OSAS had no
significant influence on resistin levels [159]. InOSAS patients,
hypoxic stress during sleep may enhance resistin produc-
tion, possibly mediating systemic inflammatory processes.
Through its effect on OSAS, CPAP therapy may help control
resistin production [160].

4.4. Ghrelin. Ghrelin is a hormone that influences appetite
and fat accumulation and its physiological effects are opposite
to those of leptin. Current experimental evidence suggests
that ghrelin may act centrally to decrease sympathetic ner-
vous system activity through peripheral afferent nerve [161].
Thus, administration of ghrelin might become a unique new
therapy for cardiovascular diseases [162].

In a study of 30 obese OSAS patients, Harsch et al. found
that plasma ghrelin levels were significantly higher in OSAS
patients than in controls. These elevated ghrelin levels could
not be explained by obesity alone, since they rapidly de-
creased with CPAP therapy [163]. In a study of 55 consecutive
OSAS patients, the study group presented significantly higher
serum ghrelin levels than controls. No significant difference
was noted in the levels of leptin, adiponectin, and resistin.
There was a significant positive correlation between ghrelin
and AHI [164].

Increased ghrelin levels have been found to support the
presence of increased appetite and caloric intake in obese
patients with OSAS, which in turn may further promote the
severity of the underlying conditions [165]. In obese children,
OSAS is associated with daytime sleepiness, elevation of
proinflammatory cytokines, increased leptin, and decreased
adiponectin [166]. However, in a recent study, OSAS patients
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with excessive daytime sleepiness were associated with
increased circulating hypocretin-1 and decreased circulating
ghrelin levels. This relationship is independent of AHI and
obesity [167].

5. OSAS and Insulin Resistance

Dysglycemia and diabetes also increase the risk of developing
cardiovascular disease [168]. With respect to OSAS, Mondini
and Guilleminault found increased frequency of abnormal
breathing during sleep in both lean and obese diabetics [169].
Elmasry et al. studied 116 hypertensive men and found a 36%
prevalence of severe OSAS in diabetes patients compared to
15% in controls [170]. West et al. involving men with type
2 diabetes also reported a very high prevalence of OSAS
(23%) [171, 172]. Several studies have reported that diabetic
subjects with autonomic neuropathy, regardless of severity,
had a relatively high prevalence of OSAS (26% and 30%).
[153, 173].

OSAS might be a manifestation of an endocrine/
metabolic abnormality with a strong role played by insulin
resistance [174–176]. A variety of studies based on animal
models have shown that hypoxia can alter glucose home-
ostasis [177, 178]. Polotsky et al. described that long-term
exposure to intermittent hypoxia increased levels of insulin
and glucose intolerance in obese, leptin-deficient mice [179].
Humans exposed to hypoxia present worsened glucose toler-
ance [180].

Most studies involving OSAS and insulin resistance have
demonstrated an association between these two diseases,
regardless of obesity [181, 182]. In a large population-based
study involving normoglycemic hypertensive men, Resnick
et al. found that the severity of OSAS was associated with
increased insulin resistance [183]. Insulin resistance is associ-
ated with states of inflammation. Monocyte chemoattractant
protein-1 levels are elevated in OSAS and may be involved
in the pathogenesis of insulin resistance in these patients
[184, 185].

6. Metabolic Syndrome and OSAS

Metabolic syndrome is an emerging public health problem
that represents a constellation of cardiovascular risk factors
[186]. The association of metabolic syndrome with cardio-
vascular disease was already observed more than 40 years
ago [187]. In addition, Reaven confirmed that metabolic syn-
drome was a well-established risk factor for cardiovascular
disease [188].

The diagnosis ofmetabolic syndrome is based on a variety
of criteria. According to the National Cholesterol Education
Program (NCEP) guidelines, a diagnosis of metabolic syn-
drome requires three or more of the following risk factors:
waist circumference 102 cm, triglycerides 1.7mmol/L, HDL
cholesterol < 1.04mmol/L, blood pressure 130/85mmHg,
and fasting glucose 6.1mmol/L [189].

Theprevalence ofmetabolic syndrome ismarkedly higher
among OSAS patients. Ambrosetti et al. studied 89 consec-
utive OSAS patients and found metabolic syndrome in 53%
of them [190]. Obese OSAS patients may have an increased

rate of metabolic syndrome and higher levels of serum lipids,
fasting glucose, leptin, and fibrinogen than obese subjects
without OSAS. Thus, clinicians should be encouraged to sys-
tematically evaluate the presence of metabolic abnormalities
in OSAS and vice versa [191] (Figure 2).

A number of previous epidemiological studies have found
links between OSAS and metabolic syndrome. Vgontzas et
al. reported that fasting glucose and insulin levels were
significantly higher in OSAS patients compared to weight-
matched control subjects. They also found that OSAS led
to systemic inflammation and metabolic syndrome [192].
Gruber et al. prospectively studied 38 subjects with OSAS
and 41 controls. After adjusting for age, BMI, and smoking,
OSASpatientswere found to be nearly six timesmore likely to
have metabolic syndrome than control group [193]. In a 255-
subject study by Lam et al. a similar likelihood was reported
[194]. Shina et al. reported that C-reactive protein was higher
in patients with both OSAS and metabolic syndrome [195].
Bonsignore et al. conclude that the metabolic syndrome
occurs in about half of OSAS patients, irrespective of daytime
sleepiness, and is a reliable marker of insulin resistance [196].

Both OSAS and metabolic syndrome may exert negative
synergistic effects on the cardiovascular system throughmul-
tiple mechanisms [197, 198]. In a study by Su et al., metabolic
factors such as a higher BMI and fasting blood glucose and
a lower HDL-cholesterol level were more strongly associ-
ated with elevated cardiovascular disease than with OSAS
severity, suggesting that metabolic parameters are impor-
tant contributors to cardiovascular diseases and should be
corrected in patients with OSAS [199]. In a double-blind,
placebo-controlled trial in OSAS patients, 3 months of
CPAP therapy lowers blood pressure and partially reverses
metabolic abnormalities [200].

7. OSAS and COPD

COPD is a systemic disease with multiple effects on end-
organs including organs in the cardiovascular system [201].
Patients with diagnosed and treated COPD are at increased
risk for hospitalizations and deaths due to cardiovascular
diseases [202, 203]. Several studies have focused on the
relation between endothelial dysfunction and COPD [204–
206].

Systemic inflammation is the main atherothrombotic
abnormality in COPD, but hypoxia-related platelet activa-
tion, procoagulant status, and oxidative stress may play a
role [207, 208]. Mills et al. showed that patients with COPD
have increased arterial stiffness and blood pressure in com-
parison with controls matched for age and smoking status
[209]. Furthermore, there is evidence that COPD patients
have a perturbed neurohumoral regulatory system leading
to sympathovagal imbalance [210, 211]. This process may be
related to chronic respiratory or metabolic conditions that
manifest hypoxia, hypercapnia, and acidosis and elicit a
maladaptive autonomic and inflammatory response [212].

OSAS may coexist with COPD and this combination
has been the focus of extensive study. Flenley referred to it
as “overlap syndrome” [213]. Overlap patients present more
nocturnal desaturation than patients with either OSAS or
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Figure 2: Obstructive sleep apnea syndrome and metabolic syndrome. Current perspective.

COPD alone [214]. Individuals with overlap syndrome are at
greater risk for pulmonary hypertension, right heart failure,
and hypercapnia than patients who have either COPD or
OSAS alone [215].

As inflammatory diseases, both OSAS and COPD are
associated with higher cardiovascular risk. The mecha-
nisms that may be involved include vascular inflammation,
endothelial dysfunction, and tonic elevation of sympathetic
neural activity. In sum, OSAS is one of the most frequent
COPD comorbidities and may bring on increased inflamma-
tion [216–218]. The overlap syndrome is associated with an
increased risk of death and hospitalization because of COPD
exacerbation. CPAP treatment was associated with improved
survival and decreased hospitalizations in patients with
overlap syndrome [219]. Treatment consists of CPAP or
noninvasive positive pressure ventilation, with or without
associated O2, for correction of the upper airway obstructive
episodes and hypoxemia during sleep [220, 221].

8. Conclusions

OSAS and intermittent hypoxia are associated with early
vascular changes. Animal and clinical data support a specific
role for intermittent hypoxia in promoting cellular changes at
the vascular wall level thus triggering atherosclerosis. Inde-
pendently, OSAS impairs endothelial function by altering
regulation of endothelial vasomotor tone and repair capacity
while promoting vascular inflammation and oxidative stress.

There is increasing evidence of a causal relationship
between OSAS and metabolic dysfunction. OSAS, by inter-
mittent hypoxia, may induce or exacerbate various aspects of
metabolic syndrome. Clinical studies show that OSAS can
affect glucose metabolism, cholesterol, and inflammatory
markers. Identification ofOSAS as a potential causative factor
inmetabolic syndromewould have significant clinical impact

and could improve the management and understanding of
both disorders.

The association of OSAS with endocrine-metabolic and
cardiovascular alterations indicates that, more than a local
abnormality, OSAS should be considered a systemic dis-
ease. A vicious cycle may also appear involving hypoxemia-
reoxygenation cycles, oxidative stress, and elaboration of
proinflammatory cytokines promoting a more generalized
inflammatory state.

Sleep apnea research is an intriguing field providing con-
siderable contributions to the cardiovascular literature with
exciting insights for clinicians, basic scientists, and epidemi-
ologists.
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[46] A. Barceló, F. Barbé, M. de la Peña et al., “Antioxidant status in
patients with sleep apnoea and impact of continuous positive
airway pressure treatment,” European Respiratory Journal, vol.
27, no. 4, pp. 756–760, 2006.

[47] M.Grebe,H. J. Eisele,N.Weissmann et al., “Antioxidant vitamin
C improves endothelial function in obstructive sleep apnea,”
TheAmerican Journal of Respiratory and Critical Care Medicine,
vol. 173, no. 8, pp. 897–901, 2006.

[48] J. L. Lattimore, I. Wilcox, S. Nakhla, M. Langenfeld, W. Jessup,
and D. S. Celermajer, “Repetitive hypoxia increases lipid load-
ing in human macrophages—a potentially atherogenic effect,”
Atherosclerosis, vol. 179, no. 2, pp. 255–259, 2005.

[49] E. Wysocka, S. Cofta, M. Cymerys, J. Gozdzik, L. Torlinski, and
H. Batura-Gabryel, “The impact of the sleep apnea syndrome
on oxidant-antioxidant balance in the blood of overweight and
obese patients,” Journal of Physiology and Pharmacology, vol. 59,
supplement 6, pp. 761–769, 2008.

[50] S. Jelic, D. J. Lederer, T. Adams et al., “Vascular inflammation
in obesity and sleep apnea,” Circulation, vol. 121, no. 8, pp. 1014–
1021, 2010.

[51] M.A.Alzoghaibi andA. S. BaHammam, “The effect of one night
of continuous positive airway pressure therapy on oxidative
stress and antioxidant defense in hypertensive patients with
severe obstructive sleep apnea,” Sleep and Breathing, vol. 16, no.
2, pp. 499–504, 2012.

[52] D. Nair, E. A. Dayyat, S. X. Zhang, Y. Wang, and D. Gozal,
“Intermittent hypoxia-induced cognitive deficits are mediated
by NADPH oxidase activity in a murine model of sleep apnea,”
PLoS ONE, vol. 6, no. 5, Article ID e19847, 2011.
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