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Oral administration is the most commonly used and readily accepted form of drug delivery; however, it is find that many drugs are
difficult to attain enough bioavailability when administered via this route. Polymericmicelles (PMs) can overcome some limitations
of the oral delivery acting as carriers able to enhance drug absorption, by providing (1) protection of the loaded drug from the harsh
environment of the GI tract, (2) release of the drug in a controlled manner at target sites, (3) prolongation of the residence time
in the gut by mucoadhesion, and (4) inhibition of efflux pumps to improve the drug accumulation. To explain the mechanisms
for enhancement of oral bioavailability, we discussed the special stability of PMs, the controlled release properties of pH-sensitive
PMs, the prolongation of residence time with mucoadhesive PMs, and the P-gp inhibitors commonly used in PMs, respectively.
The primary purpose of this paper is to illustrate the potential of PMs for delivery of poorly water-soluble drugs with bioavailability
being well maintained.

1. Introduction

Oral administration is the most commonly preferred route
for drug delivery because of its simplicity, convenience, and
patient acceptance, especially in the case of repeated dosing
for chronic therapy [1–3]. In contrast to the intravenous
administration, which probably results in toxic blood level
after injection and sometimes an under concentration of the
desired threshold towards the end of the dosing interval,
oral chemotherapy can provide a prolonged and continuous
exposure to a relatively lower and thus safer concentration
[2]. Now, more than 60% of marketed drugs are used as oral
products [4]. However, it is intricate to formulate a therapeu-
tic agent for oral administration. The bioavailability of oral
drugs is strongly influenced by two important parameters,
solubility and permeability [3]. Based on that, the Biophar-
maceutic Classification System (BCS) defines four categories
of drugs [5]. Many existing and new therapeutic entities are
characterized as BCS class II (low solubility and high perme-
ability) or BCS class IV (low solubility and low permeability).
Poorly water-soluble drug candidates encountered in drug

discovery cause increasing problems of poor and variable
bioavailability. It is estimated that approximately 70% of new
chemical entities are poorly soluble in aqueous medium and
many even in organic medium. Besides, approximately 40%
of currently marketed immediate-release oral drugs are con-
sidered practically insoluble (solubility less than 100 𝜇g/mL)
in water [6, 7]. Low solubility limits the drug dissolution
rate, frequently resulting in low bioavailability of the oral
drug [8]. To achieve the desired therapeutic concentration in
the target sites, dose escalation study of the drug was often
applied in clinic [9, 10]. However, it may be undesirable due
to the possibility of increased toxicity and therefore decreased
patient compliance. Meanwhile, the high drug loading of
pharmaceutical products often makes it difficult to complete
the study [11].

Nanotechnology brings some advantages to the drug
delivery, particular for oral drug. It allows (1) the delivery
of poorly water-soluble drugs; (2) the targeting of drugs
to specific parts of the gastrointestinal tract (GI); (3) the
transcytosis of drugs across the tight intestinal barrier;
and (4) the intracellular and transcellular delivery of large
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Figure 1: Schematic representation of the mechanisms involved in the absorption of exogenous drugs in the small intestine. (a) Transcellular
transport; (b) active transport; (c) facilitated diffusion; (d) receptor-mediated endocytosis; (e) paracellular transport; (f) pinocytosis [3].

macromolecules [12, 13]. In recent years, nanotechnology
has been widely focused on by numbers of researchers
throughout the world for its superiority in increasing efficacy,
specificity, tolerability, and therapeutic index of correspond-
ing drugs [14]. Several strategies have been proposed such
as micronization, complexation, formation of solid solu-
tions, microemulsification, and novel drug delivery systems,
including nanoparticles, lipid-based vesicles, and micelles
[15–18]. Among these approaches, polymeric micelles (PMs)
have gained considerable attention in the last two decades as
a multifunctional nanotechnology-based delivery system for
poorly water-soluble drugs. The application of PMs as drug
delivery systemwas pioneered by the groupofH.Ringsdorf in
1984 [19] and subsequently used by Kataoka in the early 1990s
through the development of doxorubicin-conjugated block
copolymer micelles [20]. Due to their nanoscopic size, ability
to solubilize hydrophobic drugs in large amounts and achieve
site-specific delivery, PMs hold promise to obtain desirable
biopharmaceutical and pharmacokinetic properties of drugs
[21] and enhance their bioavailability. In this review article,
we will discuss the development of the PMs and focus on the
mechanisms of various kinds of PMs for enhancement of oral
bioavailability.

2. Absorption of Oral Drugs in
the Gastrointestinal Tract

2.1. Pathways of Drug Absorption. A drug that is adminis-
tered orally must survive transit through the gastrointestinal
(GI) tract. Although part of the absorption process occurs
in the oral cavity and stomach due to the presence of
salivary amylase and gastric protease (pepsin), the small
intestine remains the major site for absorption [22]. There
exist many pathways for nutrient absorption in the small
intestine; however, the absorption of oral drugs is restricted to
either transport through the cells (transcellular pathway, see

Figure 1(a)) or between adjacent cells (paracellular pathway,
see Figure 1(e)) [3]. Generally, the low-molecular weight
hydrophobic entities which are able to diffuse through the
membrane are absorbed by the transcellular pathway, and the
absorption rate is determined by the concentration gradient
across the intestinal membrane (Figure 1(c)). On the con-
trary, hydrophilicmolecules cannot freely diffuse through the
intestinal membrane, due to their low affinity for the lipidic
constituents [23]. Therefore, in the absence of an appropriate
membrane transporter, the paracellular pathway is the only
available route for their absorption (Figure 1(e)). In some
particular instances, drugs may be absorbed by fluid-phase
endocytosis (pinocytosis), an energy-dependent saturable
process in which the molecule travels inside membrane
vesicles (Figure 1(f)).

2.2. Barriers for Absorption of Oral Drugs. Although oral
administration is the preferred route for drug delivery, and
themechanisms of drug absorption have beenwidely studied,
there still exists the serious problem of low bioavailability
which has severely impeded the development of oral ther-
apy. The bioavailability of a drug strongly depends on its
intrinsic properties and physiological conditions. A drug
that is administered orally must survive transit through the
chemical and enzymatic GI liquids, cross the mucus layer
and the epithelium before being absorbed [24, 25]. Intrinsic
properties of drugs such as poor stability in the gastric
environment, lowmucosal permeability, and low solubility in
the mucosal fluids will contribute to low absorption [26, 27].
Physiological factors such as gastrointestinal transit time,
regional pH, surface area, enzymatic activity, and colonic
microflora will also influence drug absorption [28].

Therefore, to achieve good absorption and bioavailability,
oral drugs should be stable at the low gastric pH and
have a reproducible and good pharmaceutical dissolution
profile and adequate hydrophilic/lipophilic balance to cross
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Figure 2: Formation and drug loading of PMs by self-assemble of amphiphilic block copolymers in aqueous solution.

the intestinal epithelial membrane. Furthermore, they should
not induce significant gastrointestinal toxicities, such as
nausea, vomiting, loss of appetite, or diarrhea, that would
limit continued oral administration or result in poor com-
pliance [29, 30]. To overcome these barriers and achieve
above-mentioned requirements, several strategies have been
proposed including the reduction of drug particle size [31],
salt formation [32], or prodrug synthesis [33]. It is worth
mentioning that nanosized carriers such as PMs [34] could
encapsulate drugs into protective vehicles, avoiding destruc-
tion in the GI tract and releasing them in a temporally or
spatially controlledmanner, which could potentially enhance
drug absorption and offer a promising direction for oral
therapy [28].

3. Introduction of PMs

3.1. Formation of PMs. PMs are self-assembled core-shell
nanostructures formed in an aqueous solution consisting of
amphiphilic block copolymers (see Figure 2) [35, 36]. Forma-
tion of micelles in aqueous solution occurs when the con-
centration of the block copolymer increases above a certain
concentration named the critical aggregation concentration
(CAC) or critical micelle concentration (CMC). At the CAC
or CMC, hydrophobic segments of block copolymers start
to associate to minimize the contact with water molecules,
leading to the formation of a vesicular or core-shell micellar
structure.

Theoretically, the formation of micelles is driven by
decrease of free energy. The removal of hydrophobic frag-
ments from the aqueous environment and the reestablishing
of hydrogen bond network in water decrease free energy of
the system and finally form the micelles.The typical methods
used for encapsulation of poorly water-soluble drugs are
dialysis method, oil-in-water emulsion solvent evaporation
method, and solid dispersion method [37, 38]. Other meth-
ods used are direct dissolution [39], complexation [40],
chemical conjugation [41], and various solvent evaporation
procedures [42].

3.2. Structure of PMs. PMs present a great potential as a drug
delivery system for compounds that are hydrophobic and
exhibit poor bioavailability which results from the unique
core-shell structure. The inner hydrophobic core enables
incorporation of poorly water-soluble drugs thus improving

their stability and bioavailability. Typically, the inner core
of the PMs was formed with hydrophobic blocks of the
copolymers by hydrophobic interaction. Besides, it can also
be formed by electrostatic interactions, using charged block
copolymers of oppositely charged macromolecules, resulting
in the formation of polyion complex (PIC) micelles [43,
44]. In addition, there have been reports of PMs formed
by complexation via hydrogen bonding [45–47] as well as
metal-ligand coordination interactions [48], both referred to
as noncovalently connected micelles. The outer shell of PMs
was formed by the hydrophilic blocks of the copolymers,
playing an important role in the in vivo behavior, particular
for their steric stabilization and ability to interact with the
cells [49]. Lengths of the hydrophobic and hydrophilic blocks
affect the conformation of polymers in medium, as lengthier
hydrophilic blocks of polymer cause it to remain monomeric
in water [50].

Amphiphilic copolymers which constitute PMs are usu-
ally block copolymers [51, 52]. Block copolymers can
be diblock copolymers or triblock copolymers. Generally,
diblock copolymers of the A-B type, where A represents a
hydrophilic block and B represents a hydrophobic block, are
commonly used to design PMs, whereas triblock copolymers
consist of two types of polymers (ABA) [53] or three types of
polymers (ABC). Most drug carrier applications have been
studied with A-B or A-B-A type block copolymers due to
the close relationship between the properties of micelles
and the structure of polymers [54]. The physicochemical
characteristics of the building blocks influence the physical
and biological properties of the PMs [55]. Hence, micelle-
forming block copolymers have been the focus of several
studies over the past few years. For oral drug delivery
system, the block copolymers used to form micelles should
(1) spontaneously self-assemble in water, (2) enhance drug
solubility by several orders of magnitude and provide high
loading efficiency, (3) remain stable upon dilution in the GI
tract, (4) be biocompatible and nontoxic, and (5) be easy
to synthesize at large scale [28, 56, 57]. The choice of core-
forming polymers is the major determinant for important
properties of PMs such as stability, drug loading capacity,
and drug release profiles [58]. Poly(propylene oxide) (PPO)
[53, 59] which belongs to Pluronics, poly(esters) such as
poly(lactic acid) (PLA) [60], hydrophobic poly(amino acids)
[61], copolymers of lactic acid and glycolic acids [62, 63],
and poly(caprolactone) (PCL) [64], which are regarded as the
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commonly used core-forming blocks of PMs, and have been
studied in the past 10 years. These core-forming polymers
cover a wide range of structural diversity and polarity for
solubilizing numbers of poorly water-soluble drugs [51, 52].
Meanwhile, the chemical nature and molecular weight of
the hydrophilic block will strongly affect the stealth prop-
erties and accordingly influence the circulation kinetics of
the micellar assembly. Poly(ethylene glycol) (PEG) is most
commonly used as the hydrophilic segment of the block
copolymers, since it is a nontoxic polymer with FDA approval
as a component of various pharmaceutical formulations.
Furthermore, its unique physicochemical properties (high
water solubility, high flexibility, and large exclusion volume)
provide good “stealth” properties for PMs [65, 66], while
poly(N-vinyl-2-pyrrolidone) (PVP) [67] and poly(acrylic
acid) (PAA) [68] are frequently used as PEG alternatives.

4. PMs for Enhancement of Bioavailability

The main mechanisms involved in the enhancement of drug
absorption by PMs are: (1) protection of the loaded drug
from the harsh environment of the GI tract, (2) release of the
loaded drug in a controlledmanner at target sites, (3) prolon-
gation of the residence time in the gut by mucoadhesion, and
(4) inhibition of efflux pumps to improve drug accumulation
[69]. Several physicochemical parameters seem to influence
translocation of micelles across the epithelium, including
surface hydrophobicity, polymer nature, and particle size
[69].There exist many characteristics of PMs that allow them
to traverse across the epithelium. For example, PMs with
appropriate particle size can be taken up and then cross the
intestinal barrier [40, 70, 71]. Furthermore, to achieve a good
bioavailability, drugs may be delivered at a specific region
in the GI tract, the so-called absorption window. To reach
the absorption window, PMs can bemanipulated by coupling
different types of polymers or by grafting various functional
groups at the hydrophilic end of the copolymer, such as the
pH-sensitive [72–74] and receptor sensitive groups [75].

4.1. Special Stability of PMs for Enhancement of Bioavailability.
As we discussed above, GI tract is the major barrier for oral
drugs. After oral administration, drugs will encounter the
harsh physicochemical environment of the GI tract and be
degraded due to the variation of pH levels as well as the
presence of enzymes or bile salts. To ensure delivery of the
carried drugs to the absorption sites, PMs must be able to
resist rapid dissociation upon dilution and retain the stable
core-shell structure before target sites. It is known that PMs
possess two aspects of structural stability, thermodynamic
and kinetic, provided by the entanglement of polymer chains
in the inner core [76–78].

For a micelle to be thermodynamically stable, the copoly-
mer concentration should be above its CMC. The CMC is
influenced by the hydrophilic-lipophilic balance (HLB) of
the block copolymer [79]. A reverse relationship between
the CMC and hydrophobicity of the core-forming blocks has
been shown in many studies: an increase in the hydrophobic
block length results in a lower CMC if the hydrophilic

segment is kept constant [80]. Generally, PMs show very
low CMC values in a range from 10−6 to 10−7M. These
CMC values are much smaller than those of micelles formed
from low-molecular weight surfactants (10−3–10−4M) [81],
which allows a series of dilution and still retain the micellar
structure. The second aspect, kinetic stability of PMs, comes
into the picture when the concentration of the copolymer
falls below the CMC. Kinetic stabilitymay bemore important
than the thermodynamic stability for the nonequilibrium
drug delivery conditions. Unlike micelles formed from low
molecular weight surfactantmolecules, the kinetic stability of
PMs is high for the stiff or bulky core structure.Therefore, the
disassembly of PMs at a concentration below CMC occurs at
a relatively slower rate because of the relatively high kinetic
stability. The slow dissociation allows PMs to retain their
integrity and drug content before reaching the target sites,
which is also helpful to enhance oral bioavailability.

4.2. pH-Sensitive PMs for Enhancement of Bioavailability. It
is indicated that non-pH-sensitive micelles may enhance
drug solubilization but probably not necessarily the drug
absorption. Free (readily absorbable) form of a drug is
one of the most important requirements for absorption in
the GI tract. However, drug release from such PMs will
occur only by diffusion when polymer concentration is well
above the CMC, preventing the complete drug release [11].
Moreover, Camilleri once studied the stomach emptying time
(ca. 177min) and the small bowel transit time (ca. 168min)
in healthy human volunteers by monitoring the migration
of a radio-labeled marker previously mixed in their meal
[82]. Thus, there is also a possibility that the PMs might be
excreted before complete drug release or drug might not be
released close to its absorptionwindow in theGI tract. Several
PMs systems designed to increase the oral bioavailability of
hydrophobic compounds exhibit release times which largely
exceeded the transit time in the small intestine [83, 84].
This is also true for surfactant micelles which have been
found in some cases to impede the absorption of hydrophobic
drugs due to excessive retention in the micellar phase [85].
Hence, when developing oral formulations for poorly water-
soluble drugs, it is important to adequately control the release
rate in order to avoid either precipitation upon dilution or
sequestration within the micellar phase which may lead to
incomplete absorption.

4.2.1. Introduction of pH-Sensitive PMs. The potential dis-
advantage of normal PMs can be solved by application of
additional stimuli that cause micelle destabilization in a
specially controlled manner thus increasing the selectivity
and efficiency of drug delivery to target sites. External factors
such as heat [86, 87], light [88], and sound (ultrasound) [89,
90] have already been studied bymany researchers. However,
these external stimuli may only activate the carriers that are
situated closely underneath the skin but not those deeply
distributed in the body. The intracellular signals also play
an important role in regulating drug release which causes a
great deal of interests, and here we focus our attention on pH-
responsive systems.
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Figure 3: Schematic representation of the mechanisms of pH sensitivity. (a) PMs with basic core units, (b) PMs with acidic core units.

As is known, blood and normal tissues have a pH of 7.23
[91]. The mildly acidic pH encountered in a tumor (pH ∼6.8)
as well as endosomes and lysosomes (pH 5.0–5.5) provides a
potential trigger to accelerate the degradation of pH-sensitive
PMs and release of encapsulated drugs. Therefore, numerous
pH-sensitive polymericmicellar systems have been employed
for intravenous administration of anticancer drugs to tumors
[92–94]. In the GI tract, the pH varies from high acidity in
the stomach (pH 1.0–2.5) to a neutral or slightly alkaline pH
in the small intestine (pH 5.1–7.8) [95]. Such wide variation
of pH along the GI tract has been utilized for controlled drug
release from carriers [2]. Strategies to prevent GI degradation
or to promote absorption in the intestine bymaking use of the
pH gradient appear promising.

4.2.2. Mechanisms of pH-Sensitive PMs for Enhancement
of Bioavailability. Among the various polymers composed
micelles, polyacids, or polybases may be used as building
blocks that impart pH sensitivity to drug release [73, 96].
Basic core monomeric units such as amines are uncharged
and thus hydrophobic at high pH conditionwhile hydrophilic
upon protonation at low pH (see Figure 3(a)). On the
contrary, acidic core units such as carboxylic acids are
unchargedwhenprotonated at lowpHandbecomenegatively
charged at a relatively high pH (see Figure 3(b)). Many exam-
ples of “protonation” approaches to trigger destabilization
of micelles have been reported, such as incorporating L-
histidine [97, 98], pyridine, and tertiary amine groups [99] in
their hydrophobic segments. PMs are formed at a pH above
the pKa of the protonatable group, where the hydrophobic
segment essentially is uncharged. As the pH decreases below
the pKa, the ionization of the polymer causes increased
hydrophilicity and electrostatic repulsions of the polymers,
leading to the destabilization of the micelles and controlled
drug release.

4.2.3. Polymers Commonly Used in Oral pH-Sensitive PMs.
Acrylic-based polymers are widely used in oral pH-sensitive
drug delivery, such as poly(methacrylic acid) (PMAA).
PMAA retains a collapsed state in the low pH of the stom-
ach and swells as it transits through the intestines. Blends
of this polymer with polyethylacrylate (PMAA-PEA) and
polymethacrylate (PMAA-PMA) can be tailored to dissolve

in specific pH ranges corresponding to specific locations in
the GI tract [100–102]. These pH-responsive micelles based
on the acrylic acid core can be either multimolecular or
unimolecular [103, 104]. Upon pH increase, the core of the
unimolecular micelles became more polar hence promoting
the release of the incorporated hydrophobic drug [103]. As
thesemicelles do not possess a CMC, they have the advantage
of being intrinsically stable upon dilution. Conversely to
unimolecular micelles that maintain their integrity upon a
change in pH, pH-sensitive multimolecular PMs based on
ionizable polyanions disassemble following an increase in
environmental pH.

Kim and his coworkers hypothesized that the physical
stability of hydrotropic polymeric (HP) micelles containing
AA moieties may decrease in the intestine, releasing the
loaded drugs faster in the intestine than in the stomach [105].
To examine this hypothesis, they took paclitaxel (PTX) as
model drug and developed a hydrotropic polymer, PEG-b-
(4-(2-vinylbenzyloxy)-N,N-(diethylnicotinamide)) (PEG-b-
VBODENA), doped with AA units (≤50mol%) to confer pH
sensitivity to PMs, testing PTX loading/release profiles by
changing the pH condition. They observed that the loading
content and efficiency of PTX were governed by the pH of
the loadingmedium, with bothmaxima at pH ≤ 4. Increasing
the pH above the pKa of the polymers provoked a rapid
dissociation of the complexes. The self-association into well-
defined micellar structure is facilitated by the hydrophobic
nonionizable Al(M)A units, whereas the pH sensitivity is
conferred by the carboxylic acid groups of theMAAmoieties
[106]. The PTX release from HPC with morethan 20%
AA contents was completed within 12 h in a simulated
intestinal fluid (pH = 6.5) while the PMs without any AA
moiety showed very slow release profiles. Therefore, the pH-
dependent release of PTX from HP micelles can be used to
increase the bioavailability of PTX upon oral delivery.

Some other groups have also developed the pH-sensitive
oral drug delivery systems. In an earlier report, Sant et al. pre-
pared and characterized a pH-sensitive PMs incorporating
poorly water-soluble model drugs [104]. The self-assemblies
were constructed from novel pH-sensitive polymers com-
posed of poly(ethylene glycol)-block-poly(alkyl acrylate-co-
methacrylic acid) (PEG-b-P(AlA-co-MAA)). Due to the
presence of pendant carboxyl groups in the hydrophobic part,
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these copolymers exhibit pH-dependent aggregation behav-
ior and form supramolecular micelles below pH 4.7. Hence,
these copolymers dissociate partially or completely with
increase in pH owing to the ionization of carboxylic groups.
Two water-insoluble model drugs, named indomethacin
(IND) and fenofibrate (FNB), were incorporated in the
supramolecular assemblies by dialysis or oil-in-water (𝑂/𝑊)
emulsion methods. The pH-dependent drug release in vitro
from the micelles was also confirmed in their study. To
make sure whether pH-sensitive PMs could improve the
bioavailability of a poorly water-soluble drug, further in vivo
study was carried out [1]. For in vivo study, FNB was chosen
as the poorly water-soluble model drug. The pharmacoki-
netics of FNB incorporated in PMs was evaluated in male
Sprague-Dawley rats after oral dosing and compared with the
commercial micronized formulation, Lipidil MicroR and an
FNB coarse suspension. The oral bioavailability of FNB from
these self-assemblies revealed 156% and 15% increases versus
FNB coarse suspension and Lipidil MicroR, respectively. The
results suggest that these pH-sensitive PMs could efficiently
improve the bioavailability of poorly water-soluble drugs.
Other types of pH-controlled release carriers such as pH-
sensitive polymer-drug conjugates [107, 108] are beyond the
scope of PMs and not discussed in this review.

4.3. Mucoadhesive PMs for Enhancement of Bioavailability

4.3.1. Introduction of Mucoadhesive PMs. Nanocarriers for
oral administration should adhere to mucus and cross the
mucus layer. Drugs delivered to mucosal surfaces are usually
efficiently removed by mucus clearance mechanisms [109].
The luminal surface of mucosal tissues is protected by a
highly viscoelastic layer [110], and the protective coatings
rapidly remove foreign particles from the GI tract which
probably lead to low bioavailability. Unlike the relatively high
requirements of intravenous infusions, oral formulations
could include high-molecular weight polymers as long as
these components are metabolizable and cannot find their
way into the systemic circulation. Hence, it may be an effec-
tive means of increasing uptake of drugs with mucoadhesive
PMs [111, 112], and there have been considerable interests in
the concept of mucoadhesive PMs. Firstly, mucosal retention
can be used to increase the transit time in the GI tract,
resulting in prolonged time window for the release of the
payload. Secondly, mucoadhesive polymers swell and fill
the crevices of the mucous membrane, contributing to the
effective surface area in contact with the intestinal mucosa
and yielding a high local concentration of the drug [113].
Thirdly, bioadhesion could also localize the PMs at a given
target site and increase the drug concentration gradient for
the intense contact of the particles with the mucosal surface
[27].

The ability to develop mucoadhesive interactions within
the gut would be one of the key factors influencing their
ability to promote oral absorption of the loaded drug. It was
demonstrated that there exists a direct relationship between
mucoadhesion and drug absorption [114, 115]. In fact, the
development of adhesive interactions (between PMs and
mucosa) would probably induce the immobilization of these

carriers in intimate contact with the absorptive membrane.
This fact would facilitate the establishment of a concentration
gradient of the loaded drug from the PMs to the circulation,
which finally results in an enhancement of absorption and
bioavailability.

4.3.2. Mechanisms of Mucoadhesive PMs for Enhancement
of Bioavailability. Mucoadhesion is a complex phenomenon,
and several steps have been suggested in mucoadhesive bond
formation [116]. The first step is the spreading, wetting,
and dissolution of mucoadhesive polymer at the interface.
The second step is the mechanical or physical entanglement
between the polymer and the tissue surface mucus layer,
resulting in an interpenetration layer. The next step is the
result of chemical interactions [116]. Mucoadhesion can be
obtained by the building of either nonspecific interactions
with the mucosal surface, such as covalent bonds, ionic
bonds, hydrogen bonding, and van der Waals’ interactions
[117], or specific interactions by functionalizing polymers
with targeting ligands (e.g., lectins [118, 119]) or reactive
groups such as thiols [120].

The fates of the mucoadhesive PMs in the GI tract
include at least three different pathways: mucoadhesion,
translocation through themucosa or transit, and direct faecal
elimination. Among the various factors, the surface charges
of PMs seem to play an important role in particle uptake.
On one hand, the negatively charged intestinal mucosa,
due to the existence of glycocalyx, attracts more positively
charged PMs. Therefore, a considerable number of studies
have been conducted using positively charged polymers such
as chitosan to increase residence time in the GI tract [121,
122]. On the other hand, the particle mobility also seems
to be strongly dependent on surface charges, and it was
indicated that transport rateswere inversely related to particle
surface potentials. Negatively charged particles display signif-
icantly higher transport rates than near neutral or positively
charged particles whose transport was probably limited by
particle aggregation and electrostatic adhesive interactions
with mucosa [123]. Crater and Carrier demonstrated a 20–
30 times faster diffusion for anionic particles in comparison
with cationic ones [123], which proved the opinion discussed
above. Therefore, it is crucial to control the balance between
mucoadhesion and mucus penetration for an efficient oral
delivery.

4.3.3. Polymers Commonly Used in Mucoadhesive PMs. Poly-
mers such as cross-linked polyacrylic acids (PAA) [124–126],
carboxypolymethylene, carboxymethyl cellulose, alginate,
chitosan (CS), and their derivatives [127–129] are commonly
accepted as mucoadhesive and safe polymers. Mucoadhesive
polymers, especially positively charged polymers, were pref-
erential to enhance drug absorption by prolonging the resi-
dence time at the site of absorption. Chitosan (CS), a linear
amino polysaccharide composed of randomly distributed (1–
4) linked d-glucosamine and N-acetyl-d-glucosamine units,
is a well-known naturally occurring cationic biopolymer,
which has received increasing attention owed to its biocom-
patibility, nontoxicity, and low immunogenicity [130, 131].The
adhesive properties of chitosan caused by the development of
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electrostatic interactions with glycoproteins of mucus [132]
are of primary interest for oral delivery and its cationic
properties below pH 6.5 favor the mucoadhesive ability.
Moreover, among the existing cationic polymers, chitosan is
an ideal candidate for oral DNA and protein delivery [133]
due to its mucoadhesive properties and its ability to induce a
transient opening of the tight junctions [134]. Nevertheless,
due to the insolubility of chitosan observed at pH values
above its pKa (6.4) in water, micelles of amphiphilic chitosan
rapidly precipitate in biological solution (pH 7.4). Therefore,
water-soluble chitosan derivatives have often been used for
development of drug delivery systems like glycol chitosan
(GC) and chitosan oligosaccharide (CSO), exhibiting good
solubility over a broad range of pH [135, 136].

Other synthetic mucoadhesive polymers have been cur-
rently investigated in pharmaceutical formulations including
PEG, cellulose derivatives (methylcellulose) [137, 138] and
hydroxypropyl cellulose (HPC) [139], and polyelectrolytes
(PAA) [39]. These polymers bind to the mucus via noncova-
lent bonds such as hydrogen bonding, electrostatic interac-
tions, and van der Waals forces. Mucus interpenetration and
chain entanglement may also contribute to the phenomenon
ofmucoadhesion, particularlywith regard to uncharged poly-
mers. Another commonly used mucoadhesive polymers are
Pluronic-PAA copolymers. Strong mucoadhesive properties
of the Pluronic-PAA copolymers originate from both the
carboxyl-mucin interactions and the ability of the polyether
segments to interpenetrate into and anchor the copolymer on
the mucosa [124]. Mucoadhesive parameters of several types
of Pluronic-PAA copolymers have already exceeded those
of Carbopol or carbomer (lightly cross-linked PAA), which
is an industry standard for mucoadhesive polymers used
as pharmaceutical excipients. According to previous studies,
mucoadhesive PAA and thiomers increase the residence
time of insulin at the site of intestinal absorptive cells, thus
enhancing its intestinal absorption [140–142]. Investigators
assumed that the insulin uptake can be significantly enhanced
after oral administration due to the positive attributes of
the thiomer PAA-Cys including mucoadhesion, permeation
enhancement and shielding against enzymatic degradation.

Much stronger bioadhesion can be achieved by function-
alizing polymers with targeting ligands (e.g., lectins) [118, 119]
or reactive groups such as thiols [120]. Lectins are proteins or
glycoproteins of nonimmunological origin which specifically
recognize sugar molecules and therefore are capable of bind-
ing to glycosylated membrane components [143, 144]. Sugars
are all present in glycoproteins and glycolipids ofmammalian
mucosa, either at the surface of epithelial cells or in mucous
layers. Through strong adherence to glycoproteins and gly-
colipids in the membrane of enterocytes, lectins may prove
useful in both prolonging the transit time of a host cargo
through the small intestine as well as promoting its uptake
via receptor-mediated endocytosis. Bernkop-Schnürch and
coworkers have demonstrated that the thiolation of classical
PMs substantially increases their mucoadhesive properties
and therefore further improves the oral absorption of ther-
apeutic proteins [145]. Surface-exposed thiols are thought
to form disulfide bonds with cysteine-rich subdomains
of mucus glycoproteins. Thiolated polymers also exhibit

an increased permeation-enhancing effect as well as enzyme
inhibitory properties [145].Thiol-decorated polyion complex
micelles prepared through complexation between PEG-b-
poly(2-(N,N-dimethylamino)ethyl methacrylate) and a 20-
mer oligonucleotide have been shown to interact with mucin
through the formation of disulfide bonds [146]. While these
micelles were initially designed to carry nucleic acid drugs, a
similar strategy may be applied to deliver hydrophobic drugs
through the use of thiol-functionalized PEG-b-PLA or PEG-
b-PCL PMs [147].

4.4. P-gp Inhibitors for Enhancement of Bioavailability

4.4.1. Introduction of P-gp. Besides uptake, drugs are often
pumped out of enterocytes by efflux transporters on the
surface of intestinal mucosa. The extent of absorption for
poorly water-soluble drugs (and orally administered drugs in
general) is affected by these efflux pathways [148]. Among the
efflux transporters, the most well known and widely studied
is the P-glycoprotein (P-gp) efflux transporters [149]. Pgp
is a 170-kDa membrane transporter which is part of the
ATP-binding cassette (ABC) [150]. Using ATP, the human
multidrug resistance-associated protein (MDR1) and P-gp
can actively transport a wide range of relatively hydrophobic,
amphipathic drugs out of the cell. When drugs encapsulated
in PMs, they remain mainly associated with the particles and
are not likely to be substrate of the efflux pumps. However,
hydrophobic drugs can be released from the micelles and
are more likely to be transported by the efflux pumps
[151]. Compounds transported by P-gp include important
anticancer drugs like Vinca alkaloids [152], anthracyclines
[153], epipodophyllotoxins, and taxanes [154]. So ABC trans-
porters may reduce the amount of drug absorbed and limit
bioavailability in a dose-dependent, inhibitable, and saturable
manner [155]. Due to its ability to expel therapeutics, the
presence of intestinal P-gp is associated with a decrease in
oral bioavailability and is thought to be one of the most
significant causes for decreased permeability and therefore
oral bioavailability. Therefore, modulation of its activity is
regarded as a potential means to improve drug bioavailability.

4.4.2. Polymers Commonly Used in P-gp Inhibiting PMs
for Enhancement of Bioavailability. The first P-gp inhibitors
proposed were substrates that could bind to the protein and
inhibit its activity. Several drugs, including cyclosporine A
(cyA) and verapamil, have been studied for this purpose
[156, 157]. However, these molecules may be associated with
toxic side effects, and amphiphilic polymers were presented
as a potential alternative [158]. Mostly, the inhibition of efflux
transport with amphiphilic polymers appears to be related to
a modification of the fluidity of the cellular membrane [159].
This inhibitory effect has been demonstrated with both low-
molecular weight and polymeric micelles, among which D-
a-tocopheryl polyethylene glycol succinate (TPGS) [160, 161]
and Pluronics have been extensively studied.

Pluronic block copolymers (also known under their
nonproprietary name “poloxamers”) consist of hydrophilic
ethylene oxide (EO) and hydrophobic propylene oxide (PO)
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Figure 4: Pluronic block copolymers available from BASF (Wyandotte, MI, USA) contain two hydrophilic EO blocks and a hydrophobic PO
block [167].
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. The structure formula of Pluronic block copolymers
is shown in Figure 4. Membrane fluidization is known to
contribute to inhibition of P-gp efflux function. Pluronic
block copolymers are known to induce drastic changes in
the microviscosity of cell membranes, and these changes can
be attributed to the alterations in the structure of the lipid
bilayers as a result of absorption of the block copolymer
molecules on the membranes [162]. Yoncheva et al. once
prepared, characterized, and evaluated the pharmacokinetics
of PTX incorporated in stabilized Pluronic micelles [49].The
stabilization of micelles was performed by cross-linking of
their core, aiming to prevent disaggregation of micelles upon
dilution in physiological fluids. Moreover, Pluronic copoly-
mers may inhibit the activity of drug efflux transporters
such as P-gp, MRPs, and BCRP [163, 164], which make it an
adequate strategy to increase the bioavailability and promote
the efficacy of PTX. Furthermore, it is believed that inhibition
of P-gp ATPase activity, presumably through nonspecific
changes in lipid and protein conformation and mobility,
has a major contribution to the inhibition of P-gp efflux
function [3]. Pluronic copolymers could inhibit drug efflux
transporters, drug sequestration in acidic vesicles, and the
glutathione/glutathione S-transferase detoxification system
in an energy-dependent manner. Therefore, ATP depletion
caused by the inhibition of the ATPase activity induced by
the Pluronic copolymers has been proposed to be a reason
for chemosensitization of these cells [165, 166].

D-a-tocopheryl polyethylene glycol succinate (Vitamin
E TPGS or simply TPGS) (see Figure 5) is a water-soluble
derivative of natural Vitamin E, which is formed by esterifi-
cation of Vitamin E succinate with polyethylene glycol (PEG)
[168]. Therefore, it has advantages over PEG and Vitamin
E in application of various drug delivery device, including
extending the half-life of the drug in plasma and enhancing
the cellular uptake [169]. TPGS has amphiphilic structure of
lipophilic alkyl tail and hydrophilic polar head with an HLB
value of 13.2 and a low CMC value [170].

The effect of TPGS on the bioavailability of a P-gp
substrate was first reported in enhancing CyA absorption.
It was initially postulated that the improvement in oral
availability was due solely to micelle formation and increased
drug solubility. Subsequently, Chang and coworkers demon-
strated an increased CyA absorption at TPGS concentrations
below the CMC [171]. Since CyA is a known P-gp substrate,
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Figure 5: Structure of D-a-tocopheryl polyethylene glycol succinate
(TPGS).

the authors hinted at a possible mechanism implicating the
efflux transporter, a premise which was later confirmed. Dab-
holkar and his coworkers made use of PEG-PE/TPGS mixed
micelles as drug carrier and investigated some properties of
the efficiency in solubilizing PTX and the ability to bypass
the P-gp-mediated drug efflux [172]. It was shown that PTX
was efficiently solubilized in the nontoxic PEG-PE/TPGS
micelles, and the entrapment was quite stable with only about
20% of the incorporated drug released from micelles after
48 h at 37∘C. In addition, PTX-containing PEG-PE/TPGS
micelles were stable in vitro under various conditions, in
particular, at low pH values and in the presence of bile
acids, which is especially important for oral administration.
Contrary to other surfactants, TPGS seems to have only a
minor effect on membrane fluidity [173], challenging earlier
reports [159]. Indeed, it was speculated that the inhibition of
P-gp resulted from a decrease in ATPase activity following
substrate binding [173]. Further in vitro studies were carried
out to investigate the mechanisms of P-gp inhibition using
Caco-2 cells model [174]. The data suggest that TPGS is
neither a P-gp substrate nor a trigger of intracellular ATP
depletion. Instead, TPGSmight act as an allostericmodulator
not involving the Cis(Z)-flupentixol binding site.

In addition, some other amphiphilic polymers have been
reported as P-gp inhibitors, such as mPEG-block-polycapro-
lactone [175], PEG-phosphatidylethanolamine [172], PEG-b-
PLA [176], mPEG-poly(caprolactone-trimethylene carbon-
ate) [177], and N-octyl-O-sulfate chitosan [178]. Among
them, N-octyl-O-sulfate chitosan (NOSC) has been exten-
sively studied. NOSC, synthesized by Q. Ping’s group, is an
amphipathic chitosan derivative, carrying sulfated groups
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as hydrophilic moieties and octyl groups as hydrophobic
moieties [179]. The oral bioavailability of PTX-loaded NOSC
micelles and Taxol was further compared. It was suggested
that NOSC, an inhibitor of P-gp, could enhance the oral
absorption of PTX by a P-gp-independent micelle inter-
nalization [180]. In vivo study, the oral bioavailability of
PTX loaded in NOSC micelles was increased by 6-fold in
comparison with that of an orally dosed Taxol. In the Caco-2
cell uptake studies, NOSC micelles brought about a signifi-
cantly higher amount of PTX accumulated via both clathrin-
and caveolae-mediated endocytosis. The mechanism of P-gp
inhibition by NOSC was probably related to interfering with
the P-gp ATPase rather than reducing the P-gp expression.

5. Conclusion

Oral administration is the most commonly preferred route
for drug delivery, especially in the case of repeated dosing for
chronic therapy. To achieve good oral absorption of poorly
water-soluble drugs, the loaded drug should be protected
from the harsh gastrointestinal environment and release in a
controlled manner at the target sites. In this review article,
we aim to illustrate the potential of PMs for delivery of
poorly water-soluble drugs, especially in the areas of oral
delivery. It was suggested that PMs could enhance the oral
drug bioavailability probably because the special stability
(thermodynamic and kinetic stability) facilitating the safe
transport of PMs through the GI tract, the pH-sensitivity of
PMs promoting the controlled release properties of loaded
drugs at target region, themucoadhesivity of PMs prolonging
the residence time in the gut, and the P-gp inhibitors
contributing to drug accumulation. To make a methodical
layout, we introduced various kinds of PMs separately in
this article. However, a possible direction of combining two
or more properties, such as pH-sensitive and mucoadhesive
PMs, has gained much attention and offers a promising way
to enhance the bioavailability of oral delivery.
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Ariën, “Intestinal uptake and biodistribution of novel polymeric
micelles after oral administration,” Journal of Controlled Release,
vol. 111, no. 1-2, pp. 47–55, 2006.

[178] R. Mo, X. Jin, N. Li et al., “The mechanism of enhancement
on oral absorption of paclitaxel by N-octyl-O-sulfate chitosan
micelles,” Biomaterials, vol. 32, no. 20, pp. 4609–4620, 2011.

[179] C. Zhang, G. Qu, Y. Sun et al., “Pharmacokinetics, biodistribu-
tion, efficacy and safety of N-octyl-O-sulfate chitosan micelles
loaded with paclitaxel,” Biomaterials, vol. 29, no. 9, pp. 1233–
1241, 2008.

[180] R. Mo, X. Jin, N. Li et al., “The mechanism of enhancement
on oral absorption of paclitaxel by N-octyl-O-sulfate chitosan
micelles,” Biomaterials, vol. 32, no. 20, pp. 4609–4620, 2011.


