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Age-related impairment of angiogenesis is likely to play a central role in cerebromicrovascular rarefaction and devel-
opment of vascular cognitive impairment, but the underlying mechanisms remain elusive. To test the hypothesis that 
dysregulation of Dicer1 (ribonuclease III, a key enzyme of the microRNA [miRNA] machinery) impairs endothelial 
angiogenic capacity in aging, primary cerebromicrovascular endothelial cells (CMVECs) were isolated from young 
(3 months old) and aged (24 months old) Fischer 344 × Brown Norway rats. We found an age-related downregulation 
of Dicer1 expression both in CMVECs and in small cerebral vessels isolated from aged rats. In aged CMVECs, Dicer1 
expression was increased by treatment with polyethylene glycol–catalase. Compared with young cells, aged CMVECs 
exhibited altered miRNA expression profile, which was associated with impaired proliferation, adhesion to vitronectin, 
collagen and fibronectin, cellular migration (measured by a wound-healing assay using electric cell–substrate impedance 
sensing technology), and impaired ability to form capillary-like structures. Overexpression of Dicer1 in aged CMVECs 
partially restored miRNA expression profile and significantly improved angiogenic processes. In young CMVECs, 
downregulation of Dicer1 (siRNA) resulted in altered miRNA expression profile associated with impaired prolifera-
tion, adhesion, migration, and tube formation, mimicking the aging phenotype. Collectively, we found that Dicer1 is 
essential for normal endothelial angiogenic processes, suggesting that age-related dysregulation of Dicer1-dependent 
miRNA expression may be a potential mechanism underlying impaired angiogenesis and cerebromicrovascular rarefac-
tion in aging.
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Vascular cognitive impairment (VCI) is the second 
most prevalent type of age-associated cognitive dys-

function in the United States today (1). Numerous clinical 
and experimental studies demonstrate that a large portion of 
the clinical picture of VCI is due to pathological microvas-
cular alterations (2). Importantly, there is convincing evi-
dence that aging is associated with cerebromicrovascular 
rarefaction and that decreases in cerebromicrovascular den-
sity contribute to the age-related decline in cerebral blood 
flow (3–16). The resulting mismatch between metabolic 
demand and blood flow has been shown to be important 
contributing factors to aging-induced cognitive impairment 
in the absence of or preceding neurodegeneration in the 
elderly individuals (1,4,7,17,18).

The process of angiogenesis, new capillary formation 
from existing blood vessels, is critical for maintenance of 
the cerebromicrovasculature. Previous studies in laboratory 

rodents demonstrate that aging is associated with a progres-
sive deterioration of microvascular homeostasis in many 
organs due to age-related impairment of angiogenic pro-
cesses (19–23). It is assumed that these changes have a key 
role in age-related microvascular rarefaction (24), decreas-
ing tissue blood supply, and impairing adaptation to hypoxia 
(25–27). Yet, the underlying mechanisms by which aging 
impairs endothelial angiogenic processes remain elusive.

MicroRNAs (miRNAs) are short, endogenous, noncoding 
transcripts that negatively regulate the expression of specific 
mRNA targets. Recent studies demonstrate that angiogenesis 
is regulated by miRNAs (28–30). Dicer1 (ribonuclease 
III) is a key enzyme of the miRNA machinery, which is 
responsible for synthesis of mature functional miRNAs. 
There is evidence that Dicer1 in endothelial cells may 
play a role in regulation of angiogenic processes (30–33). 
miRNAs control life span and the pace of aging in model 
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organisms (34–36), and there is preliminary evidence that 
miRNA expression and Dicer1 expression in the liver may 
be altered also in mammalian aging (37,38). However, no 
studies have investigated age-related alterations in Dicer1 
and miRNA expression profile in cerebromicrovascular 
endothelial cells (CMVECs). Furthermore, there are no 
studies to our knowledge investigating the role of Dicer1-
dependent pathways in impaired endothelial angiogenic 
capacity in aging.

This study was designed to elucidate how aging and 
reactive oxygen species (ROS) alter Dicer1 expression, 
how dysregulation of Dicer1 in aging affects the angiogenic 
miRNA signature and what is the causal role of dysregula-
tion of Dicer1 in age-related impairment of angiogenesis. 
Using CMVECs isolated from young and aged Fischer 
344  × Brown Norway (F344  × BN) rats, we tested the 
hypothesis that overexpression of Dicer1 in aged endothe-
lial cells improves angiogenic capacity, including prolifera-
tion, adhesion, migration, and ability to form capillary-like 
structures. We also determined whether siRNA knockdown 
of Dicer1 impairs angiogenic processes in young CMVECs, 
mimicking the cerebromicrovascular aging phenotype.

Materials and Methods

Animals and Vessel Isolation
F344 × BN rats were used as a model of aging, as this 

strain has a lower incidence of age-specific pathology than 
other rat strains. Thus, in F344  × BN rats, the primary 
effects of aging can be studied uncomplicated by com-
pensatory effects caused by age-related pathology. Male 
F344 × BN rats (3 and 24 months old; n = 15 in each group) 
were obtained from the National Institute on Aging. All ani-
mals were disease free with no signs of systemic inflamma-
tion and/or neoplastic diseases. The rats were housed in an 
environmentally controlled vivarium under pathogen-free 
conditions with unlimited access to food and water and 
a controlled photoperiod (12 h light; 12 h dark). All rats 
were maintained according to National Institutes of Health 
guidelines, and all animal use protocols were approved by 
the Institutional Animal Care and Use Committees of the 
participating institutions. The animals were euthanized with 
CO

2
. From the first cohort of animals, branches of the mid-

dle cerebral arteries and the hippocampi were isolated using 
sterile microsurgery instruments. From the second cohort 
of animals, the brains were rapidly dissected to establish 
primary CMVEC cultures.

Establishment and Characterization of Primary CMVEC 
Cultures

Brains were removed aseptically, rinsed in ice-cold 
phosphate-buffered saline (PBS) and minced into ≈1 mm 
squares. The tissue was washed twice in ice-cold 1× PBS 
by low-speed centrifugation (50g, 2–3 minutes). The diced 
tissue was digested in a solution of collagenase (800 U/g 

tissue), hyaluronidase (2.5 U/g tissue), and elastase (3 U/g 
tissue) in 1 mL PBS/100 mg tissue for 45 minutes at 37°C 
in rotating humid incubator. The digested tissue was passed 
through a 100-µm cell strainer to remove undigested blocks. 
The single-cell lysate was centrifuged for 2 minutes at 70g. 
After removing the supernatant carefully, the pellet was 
washed twice in cold PBS supplemented with 2.5% fetal 
calf serum, and the suspension was centrifuged at 300g, for 
5 minutes at 4°C.

To create an endothelial cell enriched fraction, the cell 
suspension was gradient centrifuged using OptiPrep solu-
tion (Axi-Shield, PoC, Norway). Briefly, the cell pellet was 
resuspended in Hanks’ balanced salt solution (HBSS) and 
mixed with 40% iodixanol thoroughly (final concentration: 
17% (w/v) iodixanol solution; ρ = 1.096 g/mL). Two milli-
liters of HBSS were layered on top and centrifuged at 400g 
for 15 minutes at 20°C. Endothelial cells, which banded at 
the interface between HBSS and the 17% iodixanol layer, 
were collected. The endothelial cell–enriched fraction was 
incubated for 30 minutes at 4°C in dark with anti-CD31/
PE (BD BD Biosciences, San Jose, CA) and anti-MCAM/
fluorescein isothiocyanate (FITC) (BD Biosciences). After 
washing the cells twice with MACS Buffer (Milltenyi 
Biotech, Cambridge, MA, USA), anti-FITC magnetic 
bead–labeled and anti-PE magnetic bead–labeled secondary 
antibodies were used for 15 minutes at room temperature. 
Endothelial cells were collected by magnetic separation 
using the MACS LD magnetic separation columns accord-
ing to the manufacturer’s guidelines (Milltenyi Biotech). 
The endothelial fraction was cultured on fibronectin coated 
plates in Endothelial Growth Medium (Cell Application, 
San Diego, CA) for 10 days.

Endothelial cells were phenotypically characterized by 
flow cytometry (GUAVA 8HT, Merck Millipore, Billerica, 
MA). Briefly, antibodies against five different endothelial-
specific markers were used (anti-CD31-PE, anti-erythro-
poietin receptor-APC, anti-vascular endothelial growth 
factor (VEGF) R2-PerCP, anti-intercellular adhesion 
molecule-fluorescein, and anti-CD146-PE) and isotype-
specific antibody–labeled fractions served as negative con-
trols. All antibodies were purchased from R&D Systems 
(Minneapolis, MN).

Western Blotting
To analyze protein expression of Dicer1 in homogenates 

of young and aged CMVECs, Western blotting was 
performed as described (39), using the following primary 
antibody: anti-Dicer1, #3363S Cell Signaling Technology 
(Beverly, MA; 1:2000 in 5% milk). All polyvinylidene 
fluoride membranes were incubated in primary antibody 
overnight at 4°C. A donkey anti-rabbit polyclonal secondary 
antibody was used (Abcam, ab16284; 1:2000 in 5% 
milk). Equal amounts of protein were loaded in each lane. 
Because among the housekeeping genes tested the relative 
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mRNA expression of β-actin was not statistically different 
in young and aged CMVECs (β-actin:hypoxanthine 
phosphoribosyltransferase [HPRT] ratio; young: 1 ± 0.16, 
aged: 0.73 ± 0.02, ns), for normalization purposes we used 
mouse anti-β-actin (Abcam, ab6276, 1:10,000 in 5% milk) 
with a sheep anti-mouse IgG horseradish peroxidase–
linked secondary antibody (NA931V GE Healthcare UK, 
1:10,000).

Measurement of Cellular ROS Production
To assess cellular peroxide production, we used the cell-

permeant oxidative fluorescent indicator dye CM-H
2
DCFDA 

(5 [and  6]-chloromethyl-2′,7′-dichlorodihydrofluorescein 
diacetate-acetyl ester, Invitrogen, Carlsbad, CA) as we pre-
viously reported (40,41). In brief, cells were washed with 
warm PBS and incubated with CM-H

2
DCFDA (10 µM, at 

37°C, for 30 minutes). CM-H
2
DCFDA fluorescence was 

assessed by flow cytometry (40,41).

Assessment of the Effects of Oxidative Stressors and 
Antioxidants on Dicer1 Expression in CMVECs

To assess the effect of scavenging of H
2
O

2
 on Dicer1 

expression, we treated young and aged CMVECs with poly-
ethylene glycol–catalase (200 U/mL for 24 h). To assess the 
effects of oxidative stressors on Dicer1 expression, young 
CMVECs were treated with H

2
O

2
 (0.1–10 µmol/L, for 24 h), 

high glucose (30 mmol/L, for 24 h), and TNFα (10 ng/mL, 
for 24 h). To assess the effects of activators of Nrf2 sign-
aling, aged CMVECs were treated with two structurally 
different potent inducers of Nrf2: resveratrol (10−7 to 10−5 
mol/L, for 24 h) and sulforaphane (10−6 mol/L, for 24 h). 
Expression of Dicer1 mRNA was assessed by quantitative 
real-time RT-PCR (described in the following section).

miRNA Expression Profiling
The expression profile of 373 unique rat miRNAs in 

hippocampi of aged and young rats and CMVECs derived 
from young and aged rats was analyzed using the TaqMan 
Array Rodent MicroRNA A+B Cards Set v3.0 (Applied 
Biosystems, Life Technologies, Carlsbad, CA).

Knockdown and Overexpression of Dicer1
To disrupt Dicer1 signaling in young CMVECs, Dicer1 

was downregulated (by ~50%) by RNA interference using 

four proprietary shRNA sequences (OriGene Technologies, 
Rockville, MD) and the electroporation-based Amaxa 
Nucleofector technology (Amaxa, Gaithersburg, MD), as 
we have previously reported (42–45). Experiments were 
performed on Day 2 after the transfection, when gene 
silencing was optimal. Overexpression of Dicer1 (approxi-
mately twofold) was achieved in CMVECs by transfection 
with a Dicer1 full-length cDNA encoding plasmid, pDEST-
mycDICER (Addgene plasmid 19873, Addgene, www.
addgene.org, provided by the laboratory of Dr. Thomas 
Tuschl (46)). Overexpression and knockdown of Dicer1 
were confirmed by Western blotting. The negative controls 
were vector only and scrambled shRNA (Origen), respec-
tively. To induce angiogenic processes, CMVECs were 
treated with recombinant human (VEGF, 100 ng/mL; R&D 
systems).

Quantitative Real-Time RT-PCR
A quantitative real-time RT-PCR technique was used to 

analyze mRNA expression of Dicer1 and selected miRNAs, 
as previously reported (39,47–51). In brief, total RNA was 
isolated with a Mini RNA Isolation Kit (Zymo Research, 
Orange, CA) and was reverse transcribed using Superscript 
III RT (Invitrogen). A  real-time RT-PCR technique was 
used to analyze mRNA expression using a Strategen 
MX3000, as reported (39,47–51). Amplification efficien-
cies were determined using a dilution series of a standard 
vascular sample. Quantification was performed using the 
efficiency-corrected ΔΔCq method. The relative quantities 
of the reference genes HPRT, GAPDH, and ACTB were 
determined, and a normalization factor was calculated 
based on the geometric mean for internal normalization. 
Oligonucleotides used for quantitative real-time RT-PCR 
are listed in Table  1. To assess expression of MIR193-b, 
MIR214, MIR574, MIR744, MIR532, MIR672, MIR145, 
and MIR146, primer sequences proprietary to Applied 
Biosystems were used.

Cell Adhesion Assays
Angiogenesis is a multistep process involving cell 

adhesion, proliferation, migration, and morphogenesis 
(52). To determine the effects of Dicer1 in regulation of 
the adhesion capacity of CMVECs, cells were transfected 
with control plasmid, Dicer1 siRNA, or Dicer1 cDNA. 
After 48 hours, they were collected, washed, counted, and 

Table 1.  Oligonucleotides for Real-Time RT-PCR

mRNA or miRNA Targets Description Sense Antisense

Dicer1 Ribonuclease type III CACTACAACACTATTACTGATT GTGCTTGGTTATGAGGTA
Hprt Hypoxanthine phosphoribosyltransferase 

1
AAGACAGCGGCAAGTTGAATC AAGGGACGCAGCAACAGAC

Gapdh Glyceraldehyde-3-phosphate 
dehydrogenase

CCAAGGAGTAAGAAACCC TTGATGGTATTCGAGAGAAGG

Actb β-Actin GAAGTGTGACGTTGACAT ACATCTGCTGGAAGGTG

Note. RT-PCR = reverse transcription-polymerase chain reaction.

http://www.addgene.org
http://www.addgene.org
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labeled with the fluorescent CyQuant dye (Invitrogen; 
incubation time: 60 minutes at 37°C). Equal amounts of 
cells, stimulated with VEGF (100 ng/mL), were seeded 
in 96-well plates previously coated with 50 µL of either 
vitronectin (1.6 µg/mL), collagen (50 µg/mL), fibronectin 
(50  µg/mL), laminin (50  µg/mL), or bovine serum 
albumin (BSA, 12 µg/ml), which was used as the negative 
control. After 3 hours of incubation at 37°C, unattached 
cells were removed by rinsing the wells three times with 
warm PBS. The ratio of adhering cells was quantified 
by assessing the background-corrected fluorescence 
(excitation/emission: 508/527 nm, respectively) using 
an Infinite M200 plate reader (Tecan, Research Triangle 
Park, NC).

As an additional measurement, we used electric cell–
substrate impedance sensing (ECIS) technology (Applied 
Biophysics, Troy, NY) to monitor adhesion of CMVECs 
to collagen. Briefly, VEGF (100 ng/mL) stimulated cells 
were seeded in collagen coated 96-well array culture 
dishes containing gold film surface electrodes (ECIS 
96W1E). The same numbers of cells were added to each 
well in complete cell culture medium (2.5  × 105 cells/
well). The arrays were placed in an incubator and the time 
course for changes of capacitance (at 60 kHz) due to the 
adhesion of cells to the active electrode was obtained. 
The inverse of the time to reach 50% cell adhesion (100% 
change corresponds to the maximum level of cell cover-
age reached on the active electrode) was used as an index 
of adhesiveness.

Cell Proliferation Assay
Cell proliferation capacity was assessed in CMVECs 

transfected with Dicer1 siRNA, Dicer1 full-length 
cDNA encoding plasmid, or the respective scrambled 
control plasmids using the flow cytometry-based Guava 
CellGrowth assay (Guava Technologies, Hayward, CA) 
as recently reported (51). Briefly, cells were collected, 
resuspended in PBS containing 0.1% BSA, and stained 
with 16  µmol/L carboxyfluorescein diacetate succinimi-
dyl ester (CFSE) for 15 minutes at 37°C. This dye dif-
fuses into cells and is cleaved by intracellular esterases to 
form an amine-reactive product that produces a detectable 
fluorescence and binds covalently to intracellular lysine 
residues and other amine sources. Upon cell division, 
CFSE divides equally into the daughter cells halving the 
CFSE concentration of the mother cell; therefore, there is 
an inverse correlation between the fluorescence intensity 
and the proliferation capacity of the cells. After incuba-
tion, unbound dye was quenched with serum-containing 
medium. Then, cells were washed three times and incu-
bated for 24 hours with 100 ng/mL VEGF. Finally, cells 
were collected, washed, stained with propidium iodide (to 
gate out dead cells), and analyzed with a flow cytometer 
(Guava EasyCyte 8HT; Millipore, Billerica, MA). The 

inverse of the fluorescence intensity was used as an index 
of proliferation.

Assessment of Cell Migration by ECIS-Based 
Wound-Healing Assay

The ECIS technology was used to monitor migration 
of CMVECs in a wound-healing assay as reported (51). 
Briefly, CMVECs (2.5  × 105 cells/well) were seeded 
in 96-well array culture dishes (ECIS 96W1E), placed 
in an incubator (37°C), and changes in resistance and 
impedance were continuously monitored. When imped-
ance reached a plateau, cells in each well were subjected 
to an elevated field pulse (“wounding”) of 5 mA applied 
for 20 seconds at 100 kHz, which killed the cells present 
on the small active electrode due to severe electropora-
tion. The detachment of the dead cells was immediately 
evident as a sudden drop in resistance (monitored at 
4,000 Hz) and a parallel increase in conductance. VEGF 
(100 ng/mL) was immediately added to each well. 
CMVECs surrounding the active electrode that had not 
been subjected to the wounding then migrated inward to 
replace the detached dead cells resulting in resistance 
recovery (continuously monitored at 4,000 Hz for up to 
24 hours). Time to reach 50% resistance recovery (cor-
responding to 50% confluence on the active electrode) 
was determined for cells in each experimental group and 
this parameter, and the known physical dimensions of 
the electrode were used to calculate the migration rate 
(expressed as µm/h).

Tube Formation Assay
To investigate the influence of age and Dicer1 on tube 

formation ability, 24 hours after transfection with Dicer1 
siRNA or Dicer1 full-length cDNA encoding plasmid 
or the respective scrambled control plasmids, young 
and aged CMVECs were plated on Geltrex Reduced 
Growth Factor Basement Membrane Matrix (Invitrogen) 
in Medium 200PRF (Invitrogen). Briefly, 150 μl/well of 
Geltrex was distributed in ice-cold 24-well plates. The gel 
was allowed to solidify while incubating the plates for 30 
minutes at 37°C. CMVECs were then seeded at a density 
of 5  × 104 cells/well and placed in the incubator for 24 
hours. Microscopic images were captured using a Nikon 
Eclipse Ti microscope equipped with a ×10 phase-contrast 
objective (Nikon Instruments, Melville, NY). The extent 
of tube formation was quantified by measuring total tube 
length in five random fields per well using NIS-Elements 
microscope imaging software (Nikon Instruments), as 
recently reported (51). The mean of the total tube length 
per total area imaged (µm tube/mm2) was calculated for 
each well. Experiments were run in quadruplicates. The 
experimenter was blinded to the groups throughout the 
period of analysis.
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Data Analysis
Statistical analyses were performed using one-way 

analysis of variance. p < .05 was considered statistically 
significant. Data are expressed as means ± SEM.

Results

Age-Related Decline in Dicer1 Expression in the Rat 
Cerebrovasculature

A quantitative real-time RT-PCR technique was used 
to analyze the effect of aging on Dicer1 expression in the 
hippocampus and in microdissected branches of the mid-
dle cerebral arteries of F344 × BN rats. We found that both 
hippocampal (Figure 1A) and cerebrovascular (Figure 1B) 
Dicer1 expression progressively declined with age. To ana-
lyze Dicer1 expression specifically in CMVECs, we iso-
lated primary CMVECs from young and aged rats using 
an immunomagnetic isolation technique. To evaluate the 

specificity of immunomagnetic isolation technique, flow 
cytometry was performed in each cell strain (five independ-
ent strains were individual isolates from five different brains 
per age group). Flow cytometric analysis showed that after 
the third cycle of immunomagnetic selection, there were 
virtually no CD31−, CD146−, EpoR−, and VEGFR2− cells 
in the resultant cell populations (Figure 1B). We found that 
both young and aged CMVECs showed comparable and 
abundant expression of CD31, CD146, EpoR, and VEGFR2 
(Figure 1B). Western blotting showed that CMVECs derived 
from aged rats exhibit a significantly decreased expression 
of Dicer1 (Figure 1C and D).

Age-Associated Oxidative Stress Is Associated With 
Downregulation of Dicer1 in CMVECs

Using a CM-H
2
DCFDA fluorescence-based method, we 

demonstrated that aging results in increased H
2
O

2
 produc-

tion in CMVECs (Figure 2A). The finding that scavenging 

Figure 1.  (A) Quantitative real-time reverse transcription-polymerase chain reaction data showing age-related downregulation of mRNA expression of Dicer in 
microdissected small branches of the middle cerebral arteries in F344 × BN rats. Data are mean ± SEM (n = 5–7). *p< .05 vs 3-month-old controls. (B) Flow cytomet-
ric analysis of endothelial markers in primary cerebromicrovascular endothelial cells (CMVECs) derived from young (3 months old) and aged (24 months old) F344 × 
BN rats. Analysis of anti-CD31, anti-CD146, anti-EpoR, and anti-VEGFR2 reactivity (filled areas) shows the high purity of endothelial cell cultures. Appropriate iso-
type controls (blank areas) are also shown. (C) Original Western blots showing protein expression of Dicer in CMVECs isolated from 3- and 24-month-old F344 × BN 
rats. β-Actin was used for normalization purposes. Bar graphs (Panel D) are summary densitometric values. Data are mean ± SEM. *p < .05 vs 3-month-old control.
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of H
2
O

2
 significantly increases Dicer1 expression in aged 

CMVECs suggests that age-related oxidative stress and dys-
regulation of Dicer1 are causally related (Figure 2B). Further 
support for this concept is provided by the experiments 
showing that administration of exogenous H

2
O

2
 results in 

significant downregulation of Dicer1 expression in young 
CMVECs (Figure  2C), mimicking the aging phenotype. 
We found that experimental hyperglycemia and treatment 
with TNFα (for 24 hours), which are also known to increase 
cellular ROS production (53), also result in significant 
downregulation of Dicer1 in young CMVECs (Figure 2D). 
Interestingly, short-term exposure (2–4 hours) to high glu-
cose resulted in an upregulation of Dicer1 (data not shown).

Treatment of CMVECs with two structurally differ-
ent inducers of Nrf2 activation, resveratrol (44), and sul-
foraphane, resulted in a significant upregulation of Dicer1 
(Figure  2D). Yet, presently, it is unclear whether the 

upregulation of Dicer1 expression in CMVECs upon res-
veratrol and sulforaphane treatment is mediated directly 
by Nrf2 binding to the Dicer1 promoter. We used rVISTA 
(http://rvista.dcode.org/), a tool that combines transcrip-
tion factor-binding sites database search with a comparative 
sequence analysis (54), to confirm the presence of an ARE 
consensus sequence in the 5′ flanking region of the human 
Dicer1 gene (ATGACTGAGCA) and the mouse Dicer1 
gene (TGCTGGATCAC). However, we could not identify a 
conserved ARE consensus sequence in the promoter region 
of the rat Dicer1 gene.

Downregulation of Dicer1 Is Associated With Alterations 
in miRNA Expression Profile of CMVECs

To determine whether age-related downregulation of 
Dicer1 is associated with alterations in miRNA expression 

Figure 2.  (A) Flow cytometry data showing that compared with young cells, aged cerebromicrovascular endothelial cells (CMVECs) exhibit increased peroxide 
production, as indicated by the significantly increased CM-H

2
DCFDA fluorescent signal. Data were obtained using n = 5 cell strains (samples run in triplicates) 

in each group. Data are mean ± SEM. *p < .05 vs 3-month-old control. (B) Quantitative real-time reverse transcription-polymerase chain reaction (RT-PCR) data 
showing the effect of treatment with polyethylene glycol–catalase on mRNA expression of Dicer1 in CMVECs isolated from young and aged F344 × BN rats. Data 
are mean ± SEM (n = 5 in each group). *p < .05 vs young controls; #p < .05 vs untreated aged CMVECs. (C and D) Quantitative real-time RT-PCR data showing the 
effect of treatment with the oxidative stressors H

2
O

2
 (Panel C), TNFα and high glucose (Panel D) and the Nrf2 activators resveratrol and sulforaphane (Panel D) on 

mRNA expression of Dicer1 in young CMVECs. Data are mean ± SEM (n = 5 in each group). *p < .05 vs untreated controls.

http://rvista.dcode.org/
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in CMVECs, we first determined global miRNA expression 
profiles of five independent strains of young CMVECs and 
five independent strains of aged CMVECs using micro-
fluidic cards containing TaqMan primers and probes for 
mature rodent miRNAs. Using the Rodent MicroRNA A+B 
Cards Set v3.0 TaqMan Array, we detected the expression of 
148 miRNAs in young and aged CMVECs. We found that 
the majority (89%) of miRNAs that exhibited significant 

age-related changes in their expression level were downreg-
ulated (Figure 3A). To assess the role of Dicer1 in age-related 
alterations in miRNA expression patterns, we chose a sub-
set of miRNAs that were underexpressed by more than 50% 
in aged CMVECs. This subset of miRNAs is known to be 
expressed in various endothelial cell strains and are thought 
regulate the expression of a number of genes regulating 
vital cell cycle processes, such as apoptosis, proliferation, 

Figure 3.  Effects of aging and downregulation of Dicer on miRNA expression in cerebromicrovascular endothelial cells (CMVECs). (A) miRNA expression pat-
terns of five young and five aged CMVEC strains were examined using microfluidic cards containing TaqMan probes and primer pairs for mature rodent miRNAs. 
A total of 138 miRNAs were expressed at a significant level in CMVECs. The two columns correspond to the expression profiles of young and aged CMVECs, and 
each row corresponds to a miRNA. The color in each cell reflects the mean level of expression of the corresponding miRNA in the cells, relative to the mean level 
of expression in young CMVECs. The increasing intensities of green mean that a specific miRNA has a lower mean expression in aged CMVECs and the increasing 
intensities of red mean that this miRNA has a higher expression in aged CMVECs. The scale reflects mean miRNA abundance ratio relative to the mean level in young 
CMVECs. Panels B–I: Quantitative real-time reverse transcription-polymerase chain reaction data showing expression of MIR193-b, MIR214, MIR574, MIR744, 
MIR532, MIR672, MIR145, and MIR146 in young CMVECs, young CMVECs with siRNA knockdown of Dicer (siDicer), aged CMVECs, and aged CMVECs with 
overexpression (o.e.) of Dicer. Data are means ± SEM (n = 5 in each group). *p < .05 vs young control CMVECs, #p < .05 vs untreated aged CMVECs.
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and angiogenesis. The expression level of these miRNAs 
was further analyzed in aged CMVECs with overexpression 
of Dicer1 and in young CMVECs with siRNA knockdown 
of Dicer1. We found that increasing Dicer1 expression in 
aged CMVECs significantly increased expression miR-
193-b, miR-214, miR-744, miR-532, miR-672, miR-145, 
and miR-146 and tended to increase expression of miR-574 
(Figure  3B–I). In contrast, expression of these miRNAs 
was decreased by siRNA knockdown of Dicer1 in young 
CMVECs, mimicking the aging phenotype.

We also analyzed the expression levels of known Dicer1-
dependent miRNAs in CMVECs derived from young 
and  aged rats. Figure  4A depicts expression of miRNA 
species, which were demonstrated in previous studies to be 
significantly downregulated in tissues of Dicerfl/flTie2cre+ 

mice compared with that in Dicerfl/flTie2cre− control 
mice (55). We found that several Dicer1-regulated genes 
were underexpressed in aged CMVECs, including miR-
150, a known regulator of endothelial cell migration 
(56) (Figure  4A). Panel B depicts expression of miRNA 
species, which were demonstrated in previous studies 
to be significantly downregulated in human endothelial 
cells after siRNA knockdown of Dicer1 (30). We found 
that expression of miRNAs, which are downregulated 
by siDicer1 treatment, also exhibits age-related declines 
(Figure  4B). We also analyzed the expression levels of 
known proangiogenic and antiangiogenic miRNAs (57), 
respectively, in CMVECs derived from young and aged 

Figure  4.  Expression levels of known Dicer1-dependent miRNAs in cer-
ebromicrovascular endothelial cells (CMVECs) derived from young and aged 
rats. Panel A depicts expression of miRNA species, which were demonstrated in 
previous studies to be significantly downregulated in tissues of Dicerfl/flTie2cre+ 
mice compared with that in Dicerfl/flTie2cre− control mice (55). *p < .05 vs 
young CMVECs. Panel B depicts expression of miRNA species, which were 
demonstrated in previous studies to be significantly downregulated in human 
umbilical vein endothelial cells after siRNA knockdown of Dicer1 (30). Note 
that direction of siDicer1-induced changes and age-related changes in the 
endothelial expression of each miRNA is similar.

Figure 5.  Panels A and B depict the expression levels of known proangio-
genic and antiangiogenic miRNAs (57), respectively, in cerebromicrovascular 
endothelial cells (CMVECs) derived from young and aged animals. *p < .05 
vs young CMVECs. Panel C: Expression levels of known vascular endothelial 
growth factor (VEGF) regulated miRNAs in CMVECs derived from young and 
aged animals. *p < .05 vs young CMVECs. List of VEGF-regulated endothelial 
miRNAs is taken from reference (32).
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animals (Figure  5A and B). We found that expression of 
let-7b significantly decreased in CMVECs derived from 
aged animals (Figure 5A), whereas age-related decline in 
expression of other proangiogenic miRNAs did not reach 
statistical significance. Previous studies identified VEGF-
regulated endothelial miRNAs (32), which likely play a 
role in regulation of VEGF signaling and angiogenesis. 
We found that expression levels miR191 and miR155 were 
significantly decreased in CMVECs derived from aged 
animals (Figure 5C). Expression of miR31 also tended to 
decrease in aged CMVECs but the difference did not reach 
statistical significance. To further substantiate the in vivo 
significance of our findings, we have analyzed miRNA 
expression profile in the hippocampi of young and aged 
rats. We have identified a subset of miRNAs that were both 
significantly downregulated in the hippocampi of aged rats 
and the expression of which could be detected in cultured 
CMVECs. Figure  6 shows the expression of miRNAs, 
which are downregulated in aged hippocampi and in aged 
CMVECs.

Downregulation of Dicer1 Is Associated With Impaired 
Adhesion of CMVECs to Extracellular Matrix Proteins

Despite the rapid progress of aging research in the last 
few years (58–94), there are no studies to our knowledge 
investigating the role of Dicer1 and miRNAs in age-related 
endothelial alterations that contribute to the development 
of VCI. To determine the role of Dicer1 on angiogenic 
capacity, we overexpressed Dicer1 in aged CMVECs and 
knocked down Dicer1 using siRNA in young CMVECs. 
Cell adhesion experiments were performed to investigate 
whether downregulation of Dicer1 affects VEGF-induced 
adhesion of CMVECs to different components of the 
extracellular matrix. We found that disruption of Dicer1 

Figure  6.  (A) Expression of miRNAs, which are downregulated in hip-
pocampi of aged rats and in aged cerebromicrovascular endothelial cells.

Figure 7.  Disruption of Dicer-dependent pathways by siRNA knockdown of 
Dicer (siDicer) significantly impairs adhesion capacity of cerebromicrovascular 
endothelial cells (CMVECs) derived from young F344 × BN rats. CMVECs, 
loaded with the fluorescent dye CyQuant and stimulated with vascular endothe-
lial growth factor (VEGF) (100 ng/mL) were seeded in vitronectin, collagen, 
fibronectin, or laminin-coated plates (Methods section). After 3 h of incubation, 
nonadherent cells were washed away, and the ratio of adhering cells was quan-
tified by assessing the background-corrected fluorescence at 508/527 nm. Data 
are expressed as normalized arbitrary fluorescence light units (means ± SEM) 
(n = 5 in each group), *p < .05 vs young control. (B) Adhesion capacity of 
CMVECs isolated from aged F344 × BN rats is impaired compared with that of 
young cells, and it is significantly improved by overexpression (o.e.) of Dicer. 
Data are means ± SEM (n = 5 in each group), *p < .05 vs young control, #p < 
.05 vs untreated. (C) Analysis of VEGF (100 ng/mL) stimulated cell adhesion 
by electric cell–substrate impedance sensing technology (Methods section). 
Panel C: Time course of changes of capacitance (at 60 kHz) after addition of 
CMVECs to collagen-coated wells. 100% change corresponds to the maximum 
level of cell coverage reached on the active electrode. Time to reach 50% cell 
adhesion was obtained, and its inverse was used as an index of adhesiveness. 
Panel D depicts the summary data for relative cell adhesiveness in the four 
experimental groups. Data are means ± SEM (n = 5 in each group), *p < .05 vs 
young control.
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signaling by Dicer1 siRNA treatment impaired the ability 
of CMVECs to adhere to vitronectin, collagen, fibronectin, 
and laminin (Figure  7A). Aged CMVECs exhibited 
impaired adhesion to vitronectin, collagen, and fibronectin 
(Figure7B). The ability of aged CMVECs to adhere to 
these extracellular matrix components was significantly 
improved by overexpression of Dicer1 (Figure 7B).

In other experiments, we used ECIS technology to moni-
tor changes of capacitance (at 60 kHz) due to the adhesion 
of VEGF (100 ng/mL) stimulated cells to the collagen-
coated active electrode (Figure 7C). Time to reach 50% cell 
adhesion was used to calculate an index of adhesiveness. 
We found that aged CMVECs, but not aged CMVECs over-
expressing Dicer1, exhibited impaired adhesiveness to col-
lagen (Figure  7D). Further, siRNA knockdown of Dicer1 
significantly impaired the ability of VEGF-treated young 
CMVECs to adhere to collagen, mimicking the aging phe-
notype (Figure 7D).

Downregulation of Dicer1 Is Associated With Impaired 
Proliferative Capacity of CMVECs

Proliferation represents a key step in angiogenesis. 
Proliferative capacity of young and aged CMVECs was 
compared after incubation with VEGF for 24 hours. We 
found that siRNA knockdown of Dicer1 significantly 
increased CFSE fluorescence in CMVECs, indicating that 
proliferation capacity is impaired by Dicer1 dysregulation 
(Figure 8A). Aged CMVECs exhibited impaired prolifera-
tive capacity, which was significantly improved by overex-
pression of Dicer1 (Figure 8B).

Downregulation of Dicer1 Is Associated With Impaired 
Migratory Capability of CMVECs

The migratory capability of vascular endothelial cells has 
a pivotal role in the maintenance of microvascular integrity 
and angiogenesis. An ECIS-based wound-healing assay was 
used to assess the effect of downregulation of Dicer1 on 
migratory capability of VEGF-treated CMVECs (Figure 9A). 
We found that aged CMVECs exhibited impaired migratory 
capability compared with young CMVECs (Figure 9B). In 
contrast, the calculated migration rate of aged CMVECs 
with overexpression of Dicer1 did not differ from that of 
young CMVECs (Figure 9B). In young CMVECs, siRNA 
knockdown of Dicer1 significantly decreased migration rate, 
mimicking the aging phenotype (Figure 9B).

Downregulation of Dicer1 Is Associated With Impaired 
Formation of Capillary-Like Structures by CMVECs

When seeded onto Geltrex matrices, young CMVECs 
formed elaborated capillary networks in the presence of 
VEGF (Figure 10A). We found that siRNA knockdown of 
Dicer1 significantly inhibited the formation of capillary-
like structures by young CMVECs (Figure  10B and E). 
Compared with young cells in aged CMVECs, formation 
of capillary-like structures was significantly impaired 
(Figure  10C and E). The finding that overexpression of 
Dicer1 significantly improved formation of capillary-
like structures by aged CMVECs (Figure  10D and E) 
suggests that age-related downregulation of Dicer1 is 
causally linked to the impaired angiogenic capacity of aged 
endothelial cells.

Discussion
The principal new findings of this study are that (1) age-

related dysregulation of Dicer1-dependent miRNA expres-
sion is associated with impaired angiogenic response in 
aged rat CMVECs, that (2) a functional Dicer1-dependent 
pathway is essential for a healthy angiogenic response 
of CMVECs, and that (3) upregulation of Dicer1 in aged 
CMVECs confers proangiogenic effects, counteracting, at 
least in part, the adverse effects of aging.

To our knowledge, this is the first study demonstrating 
that expression of Dicer1 significantly declines with age 
in the cerebral circulation (Figure  1). Demonstration of 

Figure 8.  (A) Disruption of Dicer-dependent pathways by siRNA knock-
down of Dicer (siDicer) significantly impairs proliferation capacity of cerebro-
microvascular endothelial cells (CMVECs) isolated from young F344  × BN 
rats. Cell proliferation capacity was assessed in CMVECs stimulated with vas-
cular endothelial growth factor (100 ng/mL) using the flow cytometry based 
Guava CellGrowth assay (Methods section). As index of proliferation capac-
ity, the inverse of the mean fluorescence intensity of the indicator dye CFSE 
was used. Data are means ± SEM (n = 5 in each group), *p < .05 vs control. 
(B): Proliferation capacity of CMVECs isolated from aged F344 × BN rats is 
impaired compared with that of young cells and it is significantly improved by 
overexpression (o.e.) of Dicer. Data are means ± SEM (n = 5 in each group), 
*p < .05 vs young control, #p < .05 vs untreated.
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age-related downregulation of Dicer1 in the CMVECs 
(Figure  1E) is particularly important, as Dicer1-
dependent pathways have been shown to regulate, in 
addition to angiogenesis (30–33), multiple aspects of 
cellular physiology relevant for vascular aging, including 
replicative senescence (95,96), mechanotransduction 
(97), NO production (31,97), endothelial apoptosis (98), 
and inflammation (31). Age-related alterations in Dicer1 
expression in other organs have not yet been documented, 
but previous studies have linked decreased Dicer1 
expression to induction of a premature senescence cellular 
phenotype both in vivo and in vitro (99).

Previous studies demonstrate that oxidative stress con-
tributes to age-related microvascular alterations in aging 
(100) and that age-related oxidative stress is associated 
with a decreased angiogenic capacity of endothelial cells 
(20,21,101,102). Our studies demonstrate that increased 
H

2
O

2
 levels promote downregulation of Dicer1 expression 

in aged CMVECs (Figure 2), suggesting a novel mecha-
nism linking age-related oxidative stress to microvascular 
impairment. The mechanisms involved in H

2
O

2
-dependent 

transcriptional regulation of Dicer1 in endothelial cells 
are presently unknown and need to be elucidated in future 
studies. There are data suggesting that redox signaling 
in endothelial cells is subject to regulation by miRNAs 
(103); thus, it is likely that this pathway is regulated by 
a series of complex feedback loops. Our findings show-
ing upregulation of Dicer1 by resveratrol (Figure 2D) are 
interesting, as resveratrol treatment was shown to increase 
capillary density in the brain of aged mice (104). Our pre-
vious studies also demonstrated that resveratrol treatment 

attenuates oxidative stress in vascular endothelial cells in 
aged mice (105).

We have identified a number of miRNAs that are 
downregulated in CMVECs during physiological aging 
(Figures 3–5). We posit that age-related oxidative stress 
and downregulation of Dicer1 are causally involved in 
dysregulation of miRNAs in aged CMVECs (Figure 3). This 
concept is supported by the findings that overexpression 
of Dicer1 in aged CMVECs increased expression of age-
sensitive miRNAs (Figure  3). Furthermore, knockdown of 
Dicer1 resulted in downregulation of the same miRNAs, 
mimicking the aging phenotype (Figure 3). Previous studies 
using Dicerfl/flTie2cre+ mice (55) and cultured human umbilical 
vein endothelial cells with siRNA knockdown of Dicer1 (30) 
have identified a group of miRNAs the production of which 
is Dicer1-dependent. We found age-related changes in the 
expression levels of these known Dicer1-dependent miRNAs 
are consistent with the diminished expression of Dicer1 in 
aged CMVECs (Figure 4). It should be noted that although 
the majority of miRNAs that exhibited significant age-related 
changes in their expression level were downregulated, there 
were also certain miRNAs that were upregulated in aged 
endothelial cells. These alterations cannot be explained 
by age-related downregulation of Dicer1. Analysis of 
age-related changes in miRNA profiles and expression 
of factors involved in miRNA processing in other organs 
(106), including the heart (107), raises the possibility that 
age-related changes in the expression of additional factors 
involved in miRNA regulation (e.g., Ago1 and Ago2 proteins 
(107)) may also contribute to dysregulation of miRNA 
expression in aged CMVECs.

Figure 9.  Migration capacity of cerebromicrovascular endothelial cells (CMVECs) isolated from aged F344 × BN rats is impaired compared with that of cells 
isolated from young F344 × BN rats, and it is significantly improved by overexpression (o.e.) of Dicer. In contrast, disruption of Dicer-dependent pathways by siRNA 
knockdown of Dicer (siDicer) significantly impairs migration capacity of young CMVECs, mimicking the aging phenotype. Vascular endothelial growth factor 
(100 ng/mL) stimulated cell migration was monitored by electric cell-substrate impedance sensing technology in a wound-healing assay (Methods section). Panel A: 
Time course of resistance recovery after wounding (electric pulse of 5 mA for 20 s at 60 kHz; 100% represents prewounding levels). Resistance (at 4,000 Hz) was 
monitored in every 160 s. Data are mean ± SEM (n = 5 in each group). Time to reach 50% resistance recovery (corresponding to 50% confluence on the active elec-
trode) was determined for each group, and this parameter and the known physical dimensions of the electrode were used to calculate the migration rate (expressed as 
µm/h). Panel B depicts the summary data for migration rate in each group. Data are means ± SEM (n = 5 in each group), *p < .05 vs young control.
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Interestingly, we found that expressions of most miRNAs, 
which are downregulated in aged CMVECs, are also down-
regulated in hippocampi of aged rats (Figure 6). However, 
we cannot conclude the aging results in similar changes in 
miRNA expression profile in every tissue. A recent analy-
sis of miRNA expression profile in aortas of 18 months old 
mice showed a significant age-related decline (>1.5-fold) in 
the expression of 14 miRNAs (108). Yet, we could detect 
the expression of only four of these miRNAs in CMVECs, 
and only the expression of miR-31 exhibited an age-related 
decline in these cells (by 35% vs a 41% decline in aged 
mouse aortas). Recent in vitro studies identified changes 
in expression of various miRNAs (95,96) with increased 

number of passages, which have been implicated in gov-
erning senescence in human umbilical vein endothelial 
cells. We could not demonstrate consistent changes in these 
miRNAs in our study. Thus, further studies are warranted 
to analyze the overlap between age-related and in vitro and 
senescence-related changes in endothelial miRNA expres-
sion profile and to elucidate the precise functions of these 
miRNAs in regulating microvascular aging. It will also be 
important to identify miRNAs, the endothelial expression 
of which shows similar age-related changes across different 
species.

There is increasing experimental evidence for the involve-
ment of miRNAs in the regulation of the angiogenic process 
(31,32,57). Here, we report that age-related dysregulation of 
Dicer1 is associated with significant changes in various pro- 
and antiangiogenic miRNAs and VEGF-regulated miRNAs 
(Figure 5). Our studies provide strong evidence that a func-
tional Dicer1-dependent pathway is essential for a healthy 
endothelial angiogenic response in the cerebromicrovascu-
lature because all the major steps of the angiogenic process, 
including adhesion (Figure  7), proliferation (Figure  8), 
migration (Figure 9), and formation of capillary-like struc-
tures (Figure 10), are compromised by disruption of Dicer1 
signaling in CMVECs, extending previous findings in dif-
ferent cell types (30–33). Because overexpression of Dicer1 
in aged CMVECs exerts proangiogenic effects, improving 
cell adhesion (Figure 7), proliferation (Figure 8), migration 
(Figure 9), and endothelial tube formation (Figure 10), it 
is likely that age-related decline in Dicer1 expression con-
tributes to the aging-induced impairment of endothelial 
angiogenic capacity. Other mechanisms, which likely con-
tribute to the induction of the antiangiogenic phenotype in 
CMVECs include circulating and/or paracrine IGF-1 defi-
ciency (7,24,109), age-related Nrf2 dysfunction (51), and 
alterations in expression of pro- and anti-inflammatory fac-
tors in the brain (110).

The pathophysiological consequences of impaired angio-
genesis associated with dysregulation of Dicer1-dependent 
pathways are likely multiple. Dicer1 depletion may 
decrease capillary density in the brain and negatively affect 
cerebral angiogenesis and/or collateral formation induced 
by physiological (e.g., exercise, local ischemia) or pharma-
cological stimuli. Indeed, aging results in cerebromicrovas-
cular rarefaction (4,7) and impaired cerebral angiogenesis 
in response to hypoxia or VEGF administration (26,111). 
It is thought that microvascular rarefaction and impairment 
of compensatory proliferation of the cerebral resistance 
vessels and the capillary network play a prominent role in 
impairment of regional cerebral blood flow and the occur-
rence of VCI with age. Because the role of miRNA regu-
lation and function in the aging cardiovascular system is 
a new emerging area, additional investigations are needed 
to study the contribution of individual miRNAs or miRNA 
clusters in controlling gene expression that underlie micro-
vascular aging.

Figure 10.  Tube-forming ability of cerebromicrovascular endothelial cells 
(CMVECs) isolated from aged F344 × BN rats is impaired compared with that 
of cells isolated from young F344 × BN rats, and it is significantly improved by 
overexpression (o.e.) of Dicer. In contrast, disruption of Dicer-dependent path-
ways by siRNA knockdown of Dicer (siDicer) significantly impairs the abil-
ity of young CMVECs to form capillary-like structures, mimicking the aging 
phenotype. CMVECs were plated on Geltrex matrix-coated wells, and tube 
formation was induced by treating cells with vascular endothelial growth factor 
(100 ng/mL, for 24 h). Representative examples of capillary-like structures are 
shown in Panel A. Summary data, expressed as total tube length per total area 
scanned (µm tube/mm2), are shown in Panel B. Data are means ± SEM (n = 5 in 
each group), *p < .05 vs control.
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